1
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
2
|
Syed Zameer Ahmed S, Khader SZA, Radhakrishnan K, Marimuthu V, Chinnusamy M, Thangavel V, Ravi K, Vetrivel M. Antiobesity and antihyperlipidemic effect of Ixora coccinea on Triton X-100 induced hyperlipidemia in rats: An approach to evaluate asymmetrical temperature distribution analysis using thermography. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
3
|
Gad SC, Sullivan DW, Spasojevic I, Mujer CV, Spainhour CB, Crapo JD. Nonclinical Safety and Toxicokinetics of MnTnBuOE-2-PyP5+ (BMX-001). Int J Toxicol 2016; 35:438-53. [PMID: 27098749 DOI: 10.1177/1091581816642766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BMX-001, a manganese porphyrin that has anti-inflammatory, antioxidant, and antitumor properties, is being developed as a potential therapeutic for high-grade glioma (HGG) and head and neck (H&N) cancer. An IND has been opened for BMX-001 in the treatment of HGG (NCT02655601) and another is in preparation for H&N. The safety of BMX-001 has been evaluated in a battery of nonclinical Good Laboratory Practice (GLP)-compliant studies. Systemic toxicity has been evaluated using the intended cGMP product administered subcutaneously for periods of up to 5 weeks in both the mouse and the monkey and included toxicokinetic evaluations to characterize systemic exposure and tissue distribution and clearance of BMX-001. In additional GLP studies, BMX-001 was not irritating to the skin or eye and caused no changes in cardiac rate or rhythm or blood pressure. Mixed results for genotoxicity were seen with the weight of evidence indicating that BMX-001 poses no genotoxic risk in humans. In systemic mouse and monkey studies, loading/maintenance dose no observed adverse effect levels were 12/2 mg/kg/dose and 6/2 mg/kg/dose, respectively, with maintenance doses administered every 3 days after the initial loading dose. Systemic data were used to determine a Food and Drug Administration-approved safe starting dose for the initial clinical study in patients with HGG. BMX-001 was detected in analyzed tissues, including the brain, persisting well past the short plasma clearance period. The highest levels of BMX-001 were seen in the liver and kidneys, with amounts in these tissues returning to close to undetectable levels after a 2-week cessation of dosing.
Collapse
|
4
|
FAN XIAOQIN, LIU KAISHAN, CUI WEI, HUANG JIONGMEI, WANG WEINA, GAO YUAN. Novel mechanism of intra-renal angiotensin II-induced sodium/proton exchanger 3 expression by losartan in spontaneously hypertensive rats. Mol Med Rep 2014; 10:2483-8. [DOI: 10.3892/mmr.2014.2492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/20/2014] [Indexed: 11/06/2022] Open
|
5
|
Anyasor GN, Onajobi FD, Osilesi O, Adebawo O. Proximate composition, mineral content and in vitro antioxidant activity of leaf and stem of Costus afer (Ginger lily). JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 3:128-34. [PMID: 26401361 PMCID: PMC4566670 DOI: 10.5455/jice.20140527085848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/27/2014] [Indexed: 11/03/2022]
Abstract
AIM This study was designed to determine the proximate composition and mineral content of Costus afer leaf and stem, as well as to identify the most active antioxidant fraction. MATERIALS AND METHODS The proximate composition and mineral analysis of C. afer leaf and stem were performed using the standard methods described by Pearson and Association of Official Analytical Chemist while the 1,1 diphenyl 2 picryl hydrazyl (DPPH), thiobarbituric acid reactive species (TBARS), lipid peroxidation (LPO), and total antioxidant capacity (TAC) assays were used to determine the in vitro antioxidant activity of aqueous, n-butanol, ethyl acetate and hexane fractions of C. afer leaf and stem. RESULTS Proximate analysis revealed that the carbohydrate content was highest in the leaf (55.83 ± 3.71%) and stem (50.38 ± 1.27%) while crude fat content was lowest in the leaf (1.83 ± 0.43%) and stem (1.75 ± 0.48%). The minerals detected in appreciable quantity in both the leaf and stem samples were calcium, magnesium, potassium, sodium, chromium, lead, manganese, nickel, and copper. Further study showed that the aqueous leaf fraction exhibited a significantly (P < 0.05) high DPPH scavenging activity (IC50 = 259.07 µg/ml) and TAC (7.95 ± 0.37 mg ascorbic acid equivalent/g) compared with the other test fractions while the aqueous stem fraction had the highest TBARS scavenging activity (IC50 = 0.37 µg/ml) and inhibition of LPO (IC50 = 41.15 µg/ml) compared with the other test fractions. CONCLUSION The findings from this study indicate that C. afer could serve as a source of nutrient and minerals for animal nutrition and human metabolism. It also showed that the aqueous fractions of C. afer leaf and stem possess high antioxidant activity than the other fractions. In addition, this study may also explain the folkloric use of crude C. afer leaf or stem extracts in the treatment of oxidative stress associated diseases, including rheumatoid arthritis and hepatic disorder.
Collapse
Affiliation(s)
- G N Anyasor
- Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria
| | - F D Onajobi
- Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria
| | - O Osilesi
- Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria
| | - O Adebawo
- Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria ; Department of Biochemistry, Faculty of Basic Medical Sciences, O.A.C.H.S., Olabisi Onabanjo University, Remo Campus, Ikenne, Ogun State, Nigeria
| |
Collapse
|
6
|
Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014; 20:2465-77. [PMID: 23472672 DOI: 10.1089/ars.2013.5257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE High levels of reactive oxygen species can facilitate DNA and protein damage beyond the control of endogenous antioxidants, resulting in oxidative stress. Oxidative stress then triggers inflammation, which can lead to pathological conditions. In genetically susceptible individuals, the conglomeration of oxidative stress and inflammation can enhance autoreactive immune cell activation, causing beta-cell destruction in autoimmune type 1 diabetes. As a means of shielding pancreatic islets, manganese porphyrin (MnP) oxidoreductant treatment has been tested in a number of reported studies. RECENT ADVANCES MnP affects both innate and adaptive immune cell responses, blocking nuclear factor kappa-B activation, proinflammatory cytokine secretion, and T helper 1 T-cell responses. As a result, MnP treatment protects against type 1 diabetes onset in nonobese diabetic mice and stabilizes islets for cellular transplantation. CRITICAL ISSUES MnP displays global immunosuppressive properties, exemplified by decreased cytokine production from all T-helper cell subsets. This quality may impact infection control in the setting of autoimmunity. Nonetheless, because of their cytoprotective and immunomodulatory function, MnPs should be considered as a safer alternative to other clinical immunosuppressive agents (i.e., rapamycin) for transplantation. FUTURE DIRECTIONS Although MnP likely affects only redox-sensitive targets, the mechanism behind global T-cell immunosuppression and the outcome on infection clearance will have to be elucidated. Based on the increased primary engraftment seen with MnP use, protection against primary nonfunction in porcine to human xenotransplants would likely be enhanced. Further, a better understanding of MnP oxidoreductase function may allow for its use in other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Diabetes Institute , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
7
|
Ali DK, Oriowo M, Tovmasyan A, Batinic-Haberle I, Benov L. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications. Redox Biol 2013; 1:457-66. [PMID: 24191241 PMCID: PMC3815015 DOI: 10.1016/j.redox.2013.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005) that when the treatment started at the onset of diabetes, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin, MnTM-2-PyP5+ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5+ can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP5+ did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5+ contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i) the relative concentrations of oxidants and reductants, i.e. the cellular redox environment and (ii) MnP biodistribution. Mn porphyrins (MnP) are among the most potent SOD mimics. MnP suppressed diabetes-induced oxidative stress if applied at the onset of diabetes. Delayed administration of MnP augmented oxidative stress and diabetic complications. The overall in vivo effect of MnP depends on its redox environment.
Collapse
Affiliation(s)
- Dana K. Ali
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mabayoje Oriowo
- Department of Pharmacology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence to: Department of Radiation Oncology, Duke University Medical Center, Research Drive, 281b/285, MSRB I, Box 3455, Durham, NC 27710, USA. Tel.: +1 919 684 2101; fax: +1 919 684 8718.
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Corresponding author. Tel.: +965 2531 9489; fax: +965 2533 8908.
| |
Collapse
|
8
|
Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats. Clin Sci (Lond) 2013; 124:543-52. [PMID: 23130652 PMCID: PMC3540783 DOI: 10.1042/cs20120251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Experiments were performed to evaluate the hypothesis that ACE (angiotensin-converting enzyme) inhibition (enalapril) suppresses 3-NT (3-nitrotyrosine) production in the renal cortex during the early stage of Type 1 DM (diabetes mellitus) in the rat. Enalapril was administered chronically for 2 weeks to subsets of STZ (streptozotocin)-induced DM and vehicle-treated sham rats. O2− (superoxide anion) and NOx (nitrate+nitrite) levels were measured in the media bathing renal cortical slices after 90 min incubation in vitro. SOD (superoxide dismutase) activity and 3-NT content were measured in the renal cortex homogenate. Renal cortical nitrated protein was identified by proteomic analysis. Renal cortical production of O2− and 3-NT was increased in DM rats; however, enalapril suppressed these changes. DM rats also exhibited elevated renal cortical NOx production and SOD activity, and these changes were magnified by enalapril treatment. 2-DE (two-dimensional gel electrophoresis)-based Western blotting revealed more than 20 spots with positive 3-NT immunoreactivity in the renal cortex of DM rats. Enalapril treatment blunted the DM-induced increase in tyrosine nitration of three proteins ACO2, GDH1 and MMSDH (aconitase 2, glutamate dehydrogenase 1 and methylmalonate-semialdehyde dehydrogenase), each of which resides in mitochondria. These data are consistent with enalapril preventing DM-induced tyrosine nitration of mitochondrial proteins by a mechanism involving suppression of oxidant production and enhancement of antioxidant capacity, including SOD activation.
Collapse
|
9
|
Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St. Clair D, Batinic-Haberle I. Manganese superoxide dismutase, MnSOD and its mimics. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:794-814. [PMID: 22198225 PMCID: PMC3304004 DOI: 10.1016/j.bbadis.2011.12.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daret St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Batinic-Haberle I, Rajic Z, Tovmasyan A, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011; 51:1035-53. [PMID: 21616142 PMCID: PMC3178885 DOI: 10.1016/j.freeradbiomed.2011.04.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/30/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP⁵⁺ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N'-diethylimidazolium analogue, MnTDE-2-ImP⁵⁺ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic MnPs easily accepts and donates electrons as exemplified in the catalysis of O₂·⁻ dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait School of Medicine, Kuwait
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| |
Collapse
|
11
|
Batinic-Haberle I, Spasojevic I, Tse HM, Tovmasyan A, Rajic Z, St Clair DK, Vujaskovic Z, Dewhirst MW, Piganelli JD. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 2010; 42:95-113. [PMID: 20473774 DOI: 10.1007/s00726-010-0603-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
The most efficacious Mn(III) porphyrinic (MnPs) scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O (2) (•-) and ONOO(-). Those are Mn(III) meso tetrakis(N-alkylpyridinium-2-yl)porphyrins, more specifically MnTE-2-PyP(5+) (AEOL10113) and MnTnHex-2-PyP(5+) (where alkyls are ethyl and n-hexyl, respectively), and their imidazolium analog, MnTDE-2-ImP(5+) (AEOL10150, Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin). The efficacy of MnPs in vivo is determined not only by the compound antioxidant potency, but also by its bioavailability. The former is greatly affected by the lipophilicity, size, structure, and overall shape of the compound. These porphyrins have the ability to both eliminate reactive oxygen species and impact the progression of oxidative stress-dependent signaling events. This will effectively lead to the regulation of redox-dependent transcription factors and the suppression of secondary inflammatory- and oxidative stress-mediated immune responses. We have reported on the inhibition of major transcription factors HIF-1α, AP-1, SP-1, and NF-κB by Mn porphyrins. While the prevailing mechanistic view of the suppression of transcription factors activation is via antioxidative action (presumably in cytosol), the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated. The magnitude of the effect is dependent upon the electrostatic (porphyrin charges) and thermodynamic factors (porphyrin redox ability). The pro-oxidative action of MnPs has been suggested to contribute at least in part to the in vitro anticancer action of MnTE-2-PyP(5+) in the presence of ascorbate, and in vivo when combined with chemotherapy of lymphoma. Given the remarkable therapeutic potential of metalloporphyrins, future studies are warranted to further our understanding of in vivo action/s of Mn porphyrins, particularly with respect to their subcellular distribution.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, 281b/285 MSRB I, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|