1
|
Milot E, Martin T, Kuldavletova O, Bessot N, Toupet M, Hautefort C, Van Nechel C, Clément G, Quarck G, Denise P. Exploration of sleep quality and rest-activity rhythms characteristics in Bilateral Vestibulopathy patients. Sleep Med 2024; 124:9-15. [PMID: 39241434 DOI: 10.1016/j.sleep.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Sleep and circadian timing systems are constantly regulated by both photic and non-photic signals. Connections between the vestibular nuclei and the biological clock raise the question of the effect of peripheral vestibular loss on daily rhythms, such as the sleep-wake cycle and circadian rhythm. To answer this question, we compared the sleep and rest-activity rhythm parameters of 15 patients with bilateral vestibulopathy (BVP) to those of 15 healthy controls. Sleep and rest-activity cycle were recorded by a device coupling actimetry with the heart rate and actigraphy at home over 7 days. Subjective sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI). Sleep efficiency and subjective sleep quality were significantly reduced, and sleep fragmentation was increased in BVP patients compared to controls. BVP patients displayed a damped amplitude of the rest-activity rhythm and higher sleep fragmentation, reflected by a higher nocturnal activity compared to controls. These results suggest that both rest-activity and sleep cycles are impaired in BVP patients compared to healthy controls. BVP patients seem to have greater difficulty maintaining good sleep at night compared to controls. BVP pathology appears to affect the sleep-wake cycle and disturb the circadian rhythm synchronization. Nevertheless, these results need further investigation to be confirmed, particularly with larger sample sizes.
Collapse
Affiliation(s)
- E Milot
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France.
| | - T Martin
- Movement - Interactions, Performance, MIP, EA 4334, Faculty of Sciences and Technologies, Le Mans University, Le Mans, France
| | - O Kuldavletova
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France
| | - N Bessot
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France
| | - M Toupet
- Centre d'Explorations Fonctionnelles Oto-Neurologiques, Paris, France
| | - C Hautefort
- Université de Paris Cité, INSERM U1141, Paris, France; Department of Head and Neck Surgery, Lariboisière Hospital, Paris, France
| | - C Van Nechel
- Centre d'Explorations Fonctionnelles Oto-Neurologiques, Paris, France
| | - G Clément
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France
| | - G Quarck
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France
| | - P Denise
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, France
| |
Collapse
|
2
|
任 鹏, 张 青, 韩 鹏, 徐 颂, 徐 创, 李 宗, 杨 军. [The working principle and prototype construction of the Chinese vestibular prosthesis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:690-697. [PMID: 36036070 PMCID: PMC10127630 DOI: 10.13201/j.issn.2096-7993.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 04/30/2023]
Abstract
Objective:To complete the working principle design and prototype construction of the Chinese multichannel vestibular prosthesis (CMVP) with independent intellectual property rights, and verify its working performance, so as to lay the foundation for the clinical promotion and application of CMVP. Methods:On the basis of previous research, the working principle of CMVP was constructed based on the information encoding principle of vestibular nervous system, and the circuit was designed according to the principle. Then, appropriate electronic components and software systems were selected to construct a CMVP prototype according to the design. Finally, the input and output characteristics of the CMVP prototype were verified through the performance test. Results:In the present study, a block diagram of the working principle of the CMVP was successfully designed and drawn, and the working principle was explained in detail according to the block diagram. Further, the circuit diagram of the CMVP was designed and drawn based on the working principle, then the selected electronic components and software systems were combined one by one to complete the construction of a prototype. Finally, the performance test for the prototype was completed, which showed that all stimulus electrodes of the prototype could output biphasic pulse current, and the frequency of biphasic pulse current was modulated by the spatial rotation data input sensed by a motion sensor. Conclusion:The working principle and circuit design of the CMVP are reasonable; the CMVP prototype in China has been successfully constructed; the spatial rotation motion sensing input and the modulated pulse current output are stable and reliable.
Collapse
Affiliation(s)
- 鹏宇 任
- 西安交通大学第二附属医院医学人工智能研究院(西安,710016)Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- 西安交通大学第二附属医院神经外科Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - 青 张
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases
| | - 鹏 韩
- 西安交通大学医学院第一附属医院耳鼻咽喉-头颈外科Department of Otolaryngology-Head & Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - 颂华 徐
- 西安交通大学第二附属医院医学人工智能研究院(西安,710016)Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - 创新 徐
- 西安交通大学第二附属医院医学人工智能研究院(西安,710016)Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - 宗芳 李
- 西安交通大学第二附属医院医学人工智能研究院(西安,710016)Institute of Medical Artificial Intelligence, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - 军 杨
- 上海交通大学医学院附属新华医院耳鼻咽喉-头颈外科 上海交通大学医学院耳科学研究所 上海耳鼻疾病转化医学重点实验室Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Jiaotong University School of Medicine Ear Institute; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases
| |
Collapse
|
3
|
Sosna-Duranowska M, Tacikowska G, Gos E, Krupa A, Skarzynski PH, Skarzynski H. Vestibular Function After Cochlear Implantation in Partial Deafness Treatment. Front Neurol 2021; 12:667055. [PMID: 34093414 PMCID: PMC8175845 DOI: 10.3389/fneur.2021.667055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: Cochlear implantation is a fully accepted method of treating individuals with profound hearing loss. Since the indications for cochlear implantation have broadened and include patients with low-frequency residual hearing, single-sided deafness, or an already implanted ear (meaning bilateral cochlear implantation), the emphasis now needs to be on vestibular protection. Materials and Methods: The research group was made up of 107 patients operated on in the otorhinolaryngosurgery department: 59 females and 48 males, aged 10.4–80.2 years (M = 44.4; SD = 18.4) with hearing loss lasting from 1.4 to 56 years (M = 22.7; SD = 13.5). The patients underwent cVEMP, oVEMP, a caloric test, and vHIT assessment preoperatively, and, postoperatively, cVEMP and oVEMP at 1–3 months and a caloric test and vHIT at 4–6 months. Results: After cochlear implantation, there was postoperative loss of cVEMP in 19.2% of the patients, oVEMP in 17.4%, reduction of caloric response in 11.6%, and postoperative destruction of the lateral, anterior, and posterior semicircular canal as measured with vHIT in 7.1, 3.9, and 4% respectively. Conclusions: Hearing preservation techniques in cochlear implantation are connected with vestibular protection, but the risk of vestibular damage in never totally eliminated. The vestibular preservation is associated with hearing preservation and the relation is statistically significant. Informed consent for cochlear implantation must include information about possible vestibular damage. Since the risk of vestibular damage is appreciable, preoperative otoneurological diagnostics need to be conducted in the following situations: qualification for a second implant, after otosurgery (especially if the opposite ear is to be implanted), having a history of vestibular complaints, and when there are no strict audiological or anatomical indications on which side to operate.
Collapse
Affiliation(s)
| | | | - Elzbieta Gos
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Anna Krupa
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
4
|
Dlugaiczyk J. Rare Disorders of the Vestibular Labyrinth: of Zebras, Chameleons and Wolves in Sheep's Clothing. Laryngorhinootologie 2021; 100:S1-S40. [PMID: 34352900 PMCID: PMC8363216 DOI: 10.1055/a-1349-7475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The differential diagnosis of vertigo syndromes is a challenging issue, as many - and in particular - rare disorders of the vestibular labyrinth can hide behind the very common symptoms of "vertigo" and "dizziness". The following article presents an overview of those rare disorders of the balance organ that are of special interest for the otorhinolaryngologist dealing with vertigo disorders. For a better orientation, these disorders are categorized as acute (AVS), episodic (EVS) and chronic vestibular syndromes (CVS) according to their clinical presentation. The main focus lies on EVS sorted by their duration and the presence/absence of triggering factors (seconds, no triggers: vestibular paroxysmia, Tumarkin attacks; seconds, sound and pressure induced: "third window" syndromes; seconds to minutes, positional: rare variants and differential diagnoses of benign paroxysmal positional vertigo; hours to days, spontaneous: intralabyrinthine schwannomas, endolymphatic sac tumors, autoimmune disorders of the inner ear). Furthermore, rare causes of AVS (inferior vestibular neuritis, otolith organ specific dysfunction, vascular labyrinthine disorders, acute bilateral vestibulopathy) and CVS (chronic bilateral vestibulopathy) are covered. In each case, special emphasis is laid on the decisive diagnostic test for the identification of the rare disease and "red flags" for potentially dangerous disorders (e. g. labyrinthine infarction/hemorrhage). Thus, this chapter may serve as a clinical companion for the otorhinolaryngologist aiding in the efficient diagnosis and treatment of rare disorders of the vestibular labyrinth.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- Klinik für Ohren-, Nasen-, Hals- und Gesichtschirurgie
& Interdisziplinäres Zentrum für Schwindel und
neurologische Sehstörungen, Universitätsspital Zürich
(USZ), Universität Zürich (UZH), Zürich,
Schweiz
| |
Collapse
|
5
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121:2237-2255. [DOI: 10.1152/jn.00035.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
7
|
Hain TC, Cherchi M, Yacovino DA. Bilateral Vestibular Weakness. Front Neurol 2018; 9:344. [PMID: 29904366 PMCID: PMC5990606 DOI: 10.3389/fneur.2018.00344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/30/2018] [Indexed: 02/02/2023] Open
Abstract
Bilateral vestibular weakness (BVW) is a rare cause of imbalance. Patients with BVW complain of oscillopsia. In approximately half of the patients with BVW, the cause remains undetermined; in the remainder, the most common etiology by far is gentamicin ototoxicity, followed by much rarer entities such as autoimmune inner ear disease, meningitis, bilateral Ménière’s disease, bilateral vestibular neuritis, and bilateral vestibular schwannomas. While a number of bedside tests may raise the suspicion of BVW, the diagnosis should be confirmed by rotatory chair testing. Treatment of BVW is largely supportive. Medications with the unintended effect of vestibular suppression should be avoided.
Collapse
Affiliation(s)
- Timothy C Hain
- Department of Otolaryngology, Northwestern University, Chicago, IL, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Chicago, IL, United States
| | - Marcello Cherchi
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
8
|
Martin T, Moussay S, Bulla I, Bulla J, Toupet M, Etard O, Denise P, Davenne D, Coquerel A, Quarck G. Exploration of Circadian Rhythms in Patients with Bilateral Vestibular Loss. PLoS One 2016; 11:e0155067. [PMID: 27341473 PMCID: PMC4920359 DOI: 10.1371/journal.pone.0155067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/24/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND New insights have expanded the influence of the vestibular system to the regulation of circadian rhythmicity. Indeed, hypergravity or bilateral vestibular loss (BVL) in rodents causes a disruption in their daily rhythmicity for several days. The vestibular system thus influences hypothalamic regulation of circadian rhythms on Earth, which raises the question of whether daily rhythms might be altered due to vestibular pathology in humans. The aim of this study was to evaluate human circadian rhythmicity in people presenting a total bilateral vestibular loss (BVL) in comparison with control participants. METHODOLOGY AND PRINCIPAL FINDINGS Nine patients presenting a total idiopathic BVL and 8 healthy participants were compared. Their rest-activity cycle was recorded by actigraphy at home over 2 weeks. The daily rhythm of temperature was continuously recorded using a telemetric device and salivary cortisol was recorded every 3 hours from 6:00AM to 9:00PM over 24 hours. BVL patients displayed a similar rest activity cycle during the day to control participants but had higher nocturnal actigraphy, mainly during weekdays. Sleep efficiency was reduced in patients compared to control participants. Patients had a marked temperature rhythm but with a significant phase advance (73 min) and a higher variability of the acrophase (from 2:24 PM to 9:25 PM) with no correlation to rest-activity cycle, contrary to healthy participants. Salivary cortisol levels were higher in patients compared to healthy people at any time of day. CONCLUSION We observed a marked circadian rhythmicity of temperature in patients with BVL, probably due to the influence of the light dark cycle. However, the lack of synchronization between the temperature and rest-activity cycle supports the hypothesis that the vestibular inputs are salient input to the circadian clock that enhance the stabilization and precision of both external and internal entrainment.
Collapse
Affiliation(s)
- Tristan Martin
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
| | - Sébastien Moussay
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
| | - Ingo Bulla
- Theoretical Biology and Biophysics, Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institut für Mathematik und Informatik, Universität Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany
| | - Jan Bulla
- Department of Mathematics, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Michel Toupet
- Centre d’explorations fonctionnelles oto-neurologiques, 10 rue Falguière, 75 015 Paris, France
| | - Olivier Etard
- Normandie Universite, Caen, France
- CHU de Caen, Service des Explorations Fonctionnelles, 14000 Caen, France
| | - Pierre Denise
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
- CHU de Caen, Service des Explorations Fonctionnelles, 14000 Caen, France
| | - Damien Davenne
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
| | - Antoine Coquerel
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
- CHU de Caen, Laboratoire de pharmacologie-toxicologie, 14000 Caen, France
| | - Gaëlle Quarck
- UNICAEN, COMETE, 14032 Caen, France
- INSERM, U1075, 14032 Caen, France
- Normandie Universite, Caen, France
| |
Collapse
|
9
|
Contralateral cochlear implantation prior to vestibular nerve section for ‘drop attacks’ in the only hearing ear. The Journal of Laryngology & Otology 2015; 129 Suppl 3:S58-60. [DOI: 10.1017/s0022215115000699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:A dilemma occurs in the treatment of second-sided Ménière's disease in the only hearing ear, particularly in patients with severe symptoms such as ‘drop attacks’. This paper describes a patient treated with contralateral cochlear implantation prior to vestibular nerve section of the symptomatic ear.Case report:A 53-year-old man, with second-sided Ménière's disease and drop attacks in the only serviceable right ear, underwent successful left cochlear implantation 30 years after hearing loss, followed by right vestibular nerve section. The patient achieved control of Ménière's attacks and improved hearing. Although the patient experienced oscillopsia post-operatively, he was satisfied with his improved everyday functioning.Conclusion:Patients with severe second-sided Ménière's disease in the only hearing ear are a small but difficult treatment group. In those that are suitable for cochlear implantation in the non-serviceable ear, it is suggested that this be employed prior to surgical treatment of the Ménière's symptoms, even if the implanted ear has had no auditory stimulation for many years.
Collapse
|
10
|
Head impulse test abnormalities and influence on gait speed and falls in older individuals. Otol Neurotol 2014; 34:1729-35. [PMID: 23928523 DOI: 10.1097/mao.0b013e318295313c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess the prevalence of vestibular dysfunction in older adults using the head impulse test (HIT) and to assess the independent influence of HIT abnormalities on gait speed and fall risk in older individuals. STUDY DESIGN Cross-sectional study. SETTING Tertiary care academic medical center. PATIENTS Fifty community-dwelling individuals age 70 and older. INTERVENTIONS HIT (abnormal HIT defined as right or left HIT abnormality), visual acuity, monofilament testing, and grip strength. MAIN OUTCOME MEASURES Gait speed on a 4-meter walk and a history of falls (including number of falls) in the last 1 and 5 years. RESULTS The participants' mean age was 77 years (range, 70-95 yr); 52% were female subjects. Fifty percent of participants had an abnormal HIT. An abnormal HIT was significantly associated with a 0.23 m/s reduction in gait speed (p = 0.042), 0.44 more falls in the last 1 year (p = 0.047), and a 5-fold increase in the odds of falling in the last 5 years (p = 0.024) in multivariate analyses adjusted for age, sex, and other balance and fall risk factors. CONCLUSION We observed that half of the community-dwelling older individuals in our study had evidence of vestibular dysfunction, which was significantly associated with gait speed and fall risk in adjusted analyses. Screening for vestibular impairment using the simple HIT and directing targeted vestibular therapy may be important to reduce gait impairment and fall risk in older individuals.
Collapse
|
11
|
Agrawal Y, Ward BK, Minor LB. Vestibular dysfunction: prevalence, impact and need for targeted treatment. J Vestib Res 2014; 23:113-7. [PMID: 24177344 DOI: 10.3233/ves-130498] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
12
|
|
13
|
MacKeith SAC, Bottrill ID, Ramsden JD. Simultaneous Labyrinthectomy With Cochlear Implantation in Patients With Bilateral Ménière’s Disease. Ann Otol Rhinol Laryngol 2014; 123:485-9. [DOI: 10.1177/0003489414527226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: The development of second-side Ménière’s disease in the only remaining serviceable ear is difficult to treat. We describe an intervention to control disabling disease combining a labyrinthectomy and cochlear implant to restore hearing. Methods: Following a thorough preoperative assessment and consenting process, 2 patients underwent labyrinthectomy of the affected ear with simultaneous cochlear implantation. Results: Both patients achieved control of Ménière’s attacks with improved hearing rehabilitation. Oscillopsia was noted by both patients. Both patients were pleased to have undergone the treatment. Conclusion: Severe symptomatic second-side Ménière’s disease in the only hearing ear is uncommon. We report the successful treatment of 2 patients in this difficult management scenario, by simultaneous surgical labyrinthectomy and cochlear implantation. We propose this as a potential management strategy in this rare but complex group of patients in whom all less destructive measures have failed.
Collapse
Affiliation(s)
- Samuel A. C. MacKeith
- Department of Otolaryngology–Head and Neck Surgery, John Radcliffe Hospital, Headington, Oxford, UK
| | - Ian D. Bottrill
- Department of Otolaryngology–Head and Neck Surgery, John Radcliffe Hospital, Headington, Oxford, UK
| | - James D. Ramsden
- Department of Otolaryngology–Head and Neck Surgery, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
14
|
Dai C, Fridman GY, Chiang B, Rahman MA, Ahn JH, Davidovics NS, Della Santina CC. Directional plasticity rapidly improves 3D vestibulo-ocular reflex alignment in monkeys using a multichannel vestibular prosthesis. J Assoc Res Otolaryngol 2013; 14:863-77. [PMID: 24013822 DOI: 10.1007/s10162-013-0413-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 08/11/2013] [Indexed: 11/25/2022] Open
Abstract
Bilateral loss of vestibular sensation can be disabling. We have shown that a multichannel vestibular prosthesis (MVP) can partly restore vestibular sensation as evidenced by improvements in the 3-dimensional angular vestibulo-ocular reflex (3D VOR). However, a key challenge is to minimize misalignment between the axes of eye and head rotation, which is apparently caused by current spread beyond each electrode's targeted nerve branch. We recently reported that rodents wearing a MVP markedly improve 3D VOR alignment during the first week after MVP activation, probably through the same central nervous system adaptive mechanisms that mediate cross-axis adaptation over time in normal individuals wearing prisms that cause visual scene movement about an axis different than the axis of head rotation. We hypothesized that rhesus monkeys would exhibit similar improvements with continuous prosthetic stimulation over time. We created bilateral vestibular deficiency in four rhesus monkeys via intratympanic injection of gentamicin. A MVP was mounted to the cranium, and eye movements in response to whole-body passive rotation in darkness were measured repeatedly over 1 week of continuous head motion-modulated prosthetic electrical stimulation. 3D VOR responses to whole-body rotations about each semicircular canal axis were measured on days 1, 3, and 7 of chronic stimulation. Horizontal VOR gain during 1 Hz, 50 °/s peak whole-body rotations before the prosthesis was turned on was <0.1, which is profoundly below normal (0.94 ± 0.12). On stimulation day 1, VOR gain was 0.4-0.8, but the axis of observed eye movements aligned poorly with head rotation (misalignment range ∼30-40 °). Substantial improvement of axis misalignment was observed after 7 days of continuous motion-modulated prosthetic stimulation under normal diurnal lighting. Similar improvements were noted for all animals, all three axes of rotation tested, for all sinusoidal frequencies tested (0.05-5 Hz), and for high-acceleration transient rotations. VOR asymmetry changes did not reach statistical significance, although they did trend toward slight improvement over time. Prior studies had already shown that directional plasticity reduces misalignment when a subject with normal labyrinths views abnormal visual scene movement. Our results show that the converse is also true: individuals receiving misoriented vestibular sensation under normal viewing conditions rapidly adapt to restore a well-aligned 3D VOR. Considering the similarity of VOR physiology across primate species, similar effects are likely to occur in humans using a MVP to treat bilateral vestibular deficiency.
Collapse
Affiliation(s)
- Chenkai Dai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA,
| | | | | | | | | | | | | |
Collapse
|
15
|
Fridman GY, Della Santina CC. Safe direct current stimulation to expand capabilities of neural prostheses. IEEE Trans Neural Syst Rehabil Eng 2013; 21:319-28. [PMID: 23476007 DOI: 10.1109/tnsre.2013.2245423] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While effective in treating some neurological disorders, neuroelectric prostheses are fundamentally limited because they must employ charge-balanced stimuli to avoid evolution of irreversible electrochemical reactions and their byproducts at the interface between metal electrodes and body fluids. Charge-balancing is typically achieved by using brief biphasic alternating current (AC) pulses, which typically excite nearby neural tissues but cannot efficiently inhibit them. In contrast, direct current (DC) applied via a metal electrode in contact with body fluids can excite, inhibit and modulate sensitivity of neurons; however, chronic DC stimulation is incompatible with biology because it violates charge injection limits that have long been considered unavoidable. In this paper, we describe the design and fabrication of a Safe DC Stimulator (SDCS) that overcomes this constraint. The SCDS drives DC ionic current into target tissue via salt-bridge micropipette electrodes by switching valves in phase with AC square waves applied to metal electrodes contained within the device. This approach achieves DC ionic flow through tissue while still adhering to charge-balancing constraints at each electrode-saline interface. We show the SDCS's ability to both inhibit and excite neural activity to achieve improved dynamic range during prosthetic stimulation of the vestibular part of the inner ear in chinchillas.
Collapse
Affiliation(s)
- Gene Y Fridman
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21208, USA.
| | | |
Collapse
|
16
|
Valentin NS, Hageman KN, Dai C, Della Santina CC, Fridman GY. Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Trans Neural Syst Rehabil Eng 2013; 21:830-9. [PMID: 23649285 DOI: 10.1109/tnsre.2013.2259261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.
Collapse
|
17
|
Williams I, Constandinou TG. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:129-139. [PMID: 23853295 DOI: 10.1109/tbcas.2013.2256906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm(2) for an 8 channel implementation.
Collapse
Affiliation(s)
- Ian Williams
- Centre for Bio-Inspired Technology and the Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK.
| | | |
Collapse
|
18
|
Agrawal Y, Bremova T, Kremmyda O, Strupp M. Semicircular canal, saccular and utricular function in patients with bilateral vestibulopathy: analysis based on etiology. J Neurol 2012; 260:876-83. [PMID: 23104126 DOI: 10.1007/s00415-012-6724-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/08/2012] [Accepted: 10/17/2012] [Indexed: 11/28/2022]
Abstract
The diagnosis of bilateral vestibulopathy (BV) is typically established based on bilateral semicircular canal dysfunction. The degree to which both otolith organs-the saccule and utricle-are also impaired in BV is not well-established, particularly with respect to the etiology and severity of BV. The aim of this study was to evaluate semicircular canal, saccular and utricular function in patients with BV due to aminoglycoside ototoxicity and bilateral Menière's disease, and with different severities of BV. Caloric and head impulse testing were used as measures of canal function. Cervical vestibular-evoked myogenic potentials (cVEMP) and ocular VEMPs (oVEMP) were used as measures of saccular and utricular function, respectively. We enrolled 34 patients with BV and 55 controls in a prospective case-control study. Patients with BV were less likely to have saccular (61 %) or utricular (64 %) dysfunction relative to canal dysfunction (100 %). Utricular function differed significantly between patients by etiologic group: the poorest function was found in patients with BV due to aminoglycoside toxicity, and the best function in Menière's disease patients. Canal and saccular function did not vary according to etiology. Further, utricular but not saccular function was significantly correlated with canal function. Saccular and utricular function had the strongest association with Dizziness Handicap Inventory scores relative to canal function. These data suggest that when a patient with BV is identified in a clinical context, oVEMP testing is the most sensitive test in distinguishing between aminoglycoside toxicity and bilateral Menière's disease. Both cVEMP and oVEMP testing may be considered to evaluate the functional impact on the patient.
Collapse
Affiliation(s)
- Yuri Agrawal
- Department of Neurology and German Dizziness Center (IFBLMU), University Hospital Munich, Campus Grosshadern, Munich, Germany.
| | | | | | | |
Collapse
|
19
|
Travo C, Gaboyard-Niay S, Chabbert C. Plasticity of Scarpa's Ganglion Neurons as a Possible Basis for Functional Restoration within Vestibular Endorgans. Front Neurol 2012; 3:91. [PMID: 22685444 PMCID: PMC3368229 DOI: 10.3389/fneur.2012.00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/19/2012] [Indexed: 12/21/2022] Open
Abstract
In a previous study, we observed spontaneous restoration of vestibular function in young adult rodents following excitotoxic injury of the neuronal connections within vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within 5 days following the synaptic damage. To assess whether repair capacity is a fundamental trait of vestibular endorgans and to decipher the cellular mechanisms supporting such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa's ganglion from young and adult rodents. We demonstrate that, under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. Preliminary observations using co-cultures of adult rodents suggest that this reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.
Collapse
Affiliation(s)
- Cécile Travo
- INSERM U1051, Institute for Neurosciences Montpellier, France
| | | | | |
Collapse
|
20
|
Chiang B, Fridman GY, Dai C, Rahman MA, Della Santina CC. Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in rhesus monkey. IEEE Trans Neural Syst Rehabil Eng 2011; 19:588-98. [PMID: 21859631 DOI: 10.1109/tnsre.2011.2164937] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In normal individuals, the vestibular labyrinths sense head movement and mediate reflexes that maintain stable gaze and posture. Bilateral loss of vestibular sensation causes chronic disequilibrium, oscillopsia, and postural instability. We describe a new multichannel vestibular prosthesis (MVP) intended to restore modulation of vestibular nerve activity with head rotation. The device comprises motion sensors to measure rotation and gravitoinertial acceleration, a microcontroller to calculate pulse timing, and stimulator units that deliver constant-current pulses to microelectrodes implanted in the labyrinth. This new MVP incorporates many improvements over previous prototypes, including a 50% decrease in implant size, a 50% decrease in power consumption, a new microelectrode array design meant to simplify implantation and reliably achieve selective nerve-electrode coupling, multiple current sources conferring ability to simultaneously stimulate on multiple electrodes, and circuitry for in vivo measurement of electrode impedances. We demonstrate the performance of this device through in vitro bench-top characterization and in vivo physiological experiments with a rhesus macaque monkey.
Collapse
Affiliation(s)
- Bryce Chiang
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
21
|
Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res 2011; 210:623-40. [PMID: 21380738 DOI: 10.1007/s00221-011-2599-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
To facilitate design of a multichannel vestibular prosthesis that can restore sensation to individuals with bilateral loss of vestibular hair cell function, we created a virtual labyrinth model. Model geometry was generated through 3-dimensional (3D) reconstruction of microMRI and microCT scans of normal chinchillas (Chinchilla lanigera) acquired with 30-48 μm and 12 μm voxels, respectively. Virtual electrodes were positioned based on anatomic landmarks, and the extracellular potential field during a current pulse was computed using finite element methods. Potential fields then served as inputs to stochastic, nonlinear dynamic models for each of 2,415 vestibular afferent axons with spiking dynamics based on a modified Smith and Goldberg model incorporating parameters that varied with fiber location in the neuroepithelium. Action potential propagation was implemented by a well validated model of myelinated fibers. We tested the model by comparing predicted and actual 3D angular vestibulo-ocular reflex (aVOR) axes of eye rotation elicited by prosthetic stimuli. Actual responses were measured using 3D video-oculography. The model was individualized for each animal by placing virtual electrodes based on microCT localization of real electrodes. 3D eye rotation axes were predicted from the relative proportion of model axons excited within each of the three ampullary nerves. Multiple features observed empirically were observed as emergent properties of the model, including effects of active and return electrode position, stimulus amplitude and pulse waveform shape on target fiber recruitment and stimulation selectivity. The modeling procedure is partially automated and can be readily adapted to other species, including humans.
Collapse
|
22
|
Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp Brain Res 2011; 210:595-606. [PMID: 21374081 DOI: 10.1007/s00221-011-2591-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith end organs can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular deficient via bilateral gentamicin treatment and unilaterally implanted them with a head-mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third, and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of 1 week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2-5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans.
Collapse
|
23
|
Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hear Res 2010; 277:204-10. [PMID: 21195755 DOI: 10.1016/j.heares.2010.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/23/2022]
Abstract
To investigate the effects of vestibular prosthesis electrode implantation and activation on hearing in rhesus monkeys, we measured auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) in four rhesus monkeys before and after unilateral implantation of vestibular prosthesis electrodes in each of 3 left semicircular canals (SCC). Each of the 3 left SCCs were implanted with electrodes via a transmastoid approach. Right ears, which served as controls, were not surgically manipulated. Hearing tests were conducted before implantation (BI) and then 4 weeks post-implantation both without electrical stimulation (NS) and with electrical stimulation (S). During the latter condition, prosthetic electrical stimuli encoding 3 dimensions of head angular velocity were delivered to the 3 ampullary branches of the left vestibular nerve via each of 3 electrode pairs of a multichannel vestibular prosthesis. Electrical stimuli comprised charge-balanced biphasic pulses at a baseline rate of 94 pulses/s, with pulse frequency modulated from 48 to 222 pulses/s by head angular velocity. ABR hearing thresholds to clicks and tone pips at 1, 2, and 4 kHz increased by 5-10 dB from BI to NS and increased another ∼5 dB from NS to S in implanted ears. No significant change was seen in right ears. DPOAE amplitudes decreased by 2-14 dB from BI to NS in implanted ears. There was a slight but insignificant decrease of DPOAE amplitude and a corresponding increase of DPOAE/Noise floor ratio between NS and S in implanted ears. Vestibular prosthesis electrode implantation and activation have small but measurable effects on hearing in rhesus monkeys. Coupled with the clinical observation that patients with cochlear implants only rarely exhibit signs of vestibular injury or spurious vestibular nerve stimulation, these results suggest that although implantation and activation of multichannel vestibular prosthesis electrodes in human will carry a risk of hearing loss, that loss is not likely to be severe.
Collapse
|