1
|
Zeng M, Zhang K, Yang J, Zhang Y, You P, Yan L, Weng Y. Effects of Ginseng on Cognitive Function: A Systematic Review and Meta-Analysis. Phytother Res 2024; 38:6023-6034. [PMID: 39474788 DOI: 10.1002/ptr.8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 12/13/2024]
Abstract
Ginseng is a kind of traditional Chinese medicine. It is widely believed that ginseng can improve cognitive function, but its clinical efficacy is still controversial. This study aimed to systematically evaluate the effects of ginseng on cognitive function improvement. This is a systematic review and meta-analysis of the randomized controlled trials (RCTs). Searching PubMed, Web of Science, the Cochrane Library, and Medline databases to collect RCTs of ginseng on the effects of human cognitive function. The time range is from the establishment of the database to December 2023. The main intervention in the trials was ginseng preparation. The Cochrane risk-of-bias tool 2.0 (RoB2.0) and Jadad scale were used to assess the risk of bias and evaluate the quality of the included articles. After data extraction, meta-analysis was performed using Stata 17.0 software. A total of 15 RCTs were included, and 671 patients were analyzed. The subjects included healthy people, patients of cognitive impairment, schizophrenia, hospitalized, and Alzheimer's disease. The intervention measures were mainly ginseng preparations. The meta-analysis results indicated that ginseng has a significant effect on memory improvement (SMD = 0.19, 95%CI: 0.02-0.36, p < 0.05), especially at high doses (SMD = 0.33, 95%CI: 0.04-0.61, p < 0.05). Ginseng did not have a positive effect on overall cognition, attention, and executive function (SMD = 0.06, 95%CI: -0.64-0.77, p = 0.86; SMD = 0.06, 95%CI: -0.12 to 0.23, p = 0.54; SMD = -0.03, 95%CI: -0.28 to 0.21, p = 0.79). Ginseng has some positive effects on cognitive improvement, especially on memory improvement. But in the future, more high-quality studies are needed to determine the effects of ginseng on cognitive function. Trial Registration: Prospero: CRD42024514231.
Collapse
Affiliation(s)
- Maogui Zeng
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| | - Kuan Zhang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| | - Juan Yang
- School of Pharmacy, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yu Zhang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| | - Pengcheng You
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| | - Lin Yan
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| | - Yiling Weng
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
- Key Laboratory of Traditional Chinese Medicine in Medical Institutions of Fujian Province, Fuzhou, People's Republic of China
| |
Collapse
|
2
|
Zhou L, Tan F, Zhang X, Li Y, Yin W. Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives. IUBMB Life 2024; 76:862-882. [PMID: 38822647 DOI: 10.1002/iub.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Feilong Tan
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Baek HI, Ha KC, Park YK, Kim TY, Park SJ. Efficacy and Safety of Panax ginseng Sprout Extract in Subjective Memory Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:1952. [PMID: 38931306 PMCID: PMC11206504 DOI: 10.3390/nu16121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Sprout ginseng extract (ThinkGIN™) manufactured through a smart farm system has been shown to improve memory in preclinical studies. This study conducted a 12-week randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of ThinkGIN™ for improving memory in subjective memory impairment (SMI). Subjects aged 55 to 75 years with SMI participated in this study. A total of 80 subjects who met the inclusion/exclusion criteria were assigned to the ThinkGIN™ group (n = 40, 450 mg ThinkGIN™/day) or a placebo group (n = 40). Efficacy and safety evaluations were conducted before intervention and at 12 weeks after intervention. As a result of 12 weeks of ThinkGIN™ intake, significant differences in SVLT, RCFT, MoCA-K, PSQI-K, and AChE were observed between the two groups. Safety evaluation (AEs, laboratory tests, vital signs, and electrocardiogram) revealed that ThinkGIN™ was safe with no clinically significant changes. Therefore, ThinkGIN™ has the potential to be used as a functional food to improve memory.
Collapse
Affiliation(s)
- Hyang-Im Baek
- Department of Food Science & Nutrition, Woosuk University, Wanju 55338, Republic of Korea;
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | - Ki-Chan Ha
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | - Yu-Kyung Park
- Healthcare Claims & Management Inc., Jeonju 54858, Republic of Korea; (K.-C.H.); (Y.-K.P.)
| | | | - Soo-Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Jeonju 55338, Republic of Korea
| |
Collapse
|
4
|
Lee R, Kim JH, Kim WW, Hwang SH, Choi SH, Kim JH, Cho IH, Kim M, Nah SY. Emerging evidence that ginseng components improve cognition in subjective memory impairment, mild cognitive impairment, and early Alzheimer's disease dementia. J Ginseng Res 2024; 48:245-252. [PMID: 38707644 PMCID: PMC11068985 DOI: 10.1016/j.jgr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 05/07/2024] Open
Abstract
Ginseng is a traditional herbal medicine used for prevention and treatment of various diseases as a tonic. Recent scientific cohort studies on life prolongation with ginseng consumption support this record, as those who consumed ginseng for more than 5 years had reduced mortality and cognitive decline compared to those who did not. Clinical studies have also shown that acute or long-term intake of ginseng total extract improves acute working memory performance or cognitive function in healthy individuals and those with subjective memory impairment (SMI), mild cognitive impairment (MCI), or early Alzheimer's disease (AD) dementia who are taking AD medication(s). Ginseng contains various components ranging from classical ginsenosides and polysaccharides to more recently described gintonin. However, it is unclear which ginseng component(s) might be the main candidate that contribute to memory or cognitive improvements or prevent cognitive decline in older individuals. This review describes recent clinical contributors to ginseng components in clinical tests and introduces emerging evidence that ginseng components could be novel candidates for cognitive improvement in older individuals, as ginseng components improve SMI cognition and exhibits add-on effects when co-administered with early AD dementia drugs. The mechanism behind the beneficial effects of ginseng components and how it improves cognition are presented. Additionally, this review shows how ginseng components can contribute to SMI, MCI, or early AD dementia when used as a supplementary food and/or medicine, and proposes a novel combination therapy of current AD medicines with ginseng component(s).
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Won-Woo Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan City, Jeollabuk-Do, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
6
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
8
|
Lin DY, Huang WT, Lin YC, Hung HH, Ou SC, Chang CW, Lin HE, Lin TY, Chang CW, Hung HC, Huang ST. Prescription system to calculate precise doses of Chinese herbal medicine to avoid toxic effects. Heliyon 2023; 9:e16612. [PMID: 37332963 PMCID: PMC10275772 DOI: 10.1016/j.heliyon.2023.e16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objectives Traditional Chinese Medicine (TCM) is a therapeutic system which has been practiced for thousands of years. Although for much of its history the decoction of medicinal herbs was the most common method of consuming the herbal treatments, TCM prescriptions are now primarily prepared using concentrated Chinese herbal extracts (CCHE) in powder or granular form. However, determining the precise dose of each single Chinese herbal constituent within a prescription creates a challenge in clinical practice due to the potential risk of toxicity. To alleviate this, we invented the Chinese Intelligence Prescription System (CIPS) to calculate the exact dose of each single herb within an individual prescription. Methods In this study, we applied CIPS in a real-world setting to analyze clinical prescriptions collected and prepared at the TCM Pharmacy of China Medical University Hospital (CMUH). Results Our investigation revealed that 3% of all prescriptions filled in a 1-month period contained inexact dosages, suggesting that more than 170,000 prescriptions filled in Taiwan in a given month may contain potentially toxic components. We further analyzed the data to determine the excess dosages and outline the possible associated side effects. Conclusions In conclusion, CIPS offers TCM practitioners the ability to prepare exact Chinese herbal medicine (CHM) prescriptions in order to avoid toxic effects, thereby ensuring patient safety.
Collapse
Affiliation(s)
- Dai-Ying Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuan Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Wei Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-En Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Wen Chang
- Graduate Institute of Network Learning Technology, National Central University, Taiwan
| | - Hui-Chun Hung
- Graduate Institute of Network Learning Technology, National Central University, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
9
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
10
|
Cheng J, Chen J, Liao J, Wang T, Shao X, Long J, Yang P, Li A, Wang Z, Lu X, Fan X. High-throughput transcriptional profiling of perturbations by Panax ginseng saponins and Panax notoginseng saponins using TCM-seq. J Pharm Anal 2023; 13:376-387. [PMID: 37181291 PMCID: PMC10173292 DOI: 10.1016/j.jpha.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Panax ginseng (PG) and Panax notoginseng (PN) are highly valuable Chinese medicines (CM). Although both CMs have similar active constituents, their clinical applications are clearly different. Over the past decade, RNA sequencing (RNA-seq) analysis has been employed to investigate the molecular mechanisms of extracts or monomers. However, owing to the limited number of samples in standard RNA-seq, few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level. Here, we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq (TCM-seq), a high-throughput, low-cost workflow to molecularly evaluate CM perturbations. A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq. Transcriptomes from repeated samples were used to verify the robustness of TCM-seq. We then focused on the primary active components, Panax notoginseng saponins (PNS) and Panax ginseng saponins (PGS) extracted from PN and PG, respectively. We also characterized the transcriptome changes of 10 cell lines, treated with four different doses of PNS and PGS, using TCM-seq to compare the differences in their perturbing effects on genes, functional pathways, gene modules, and molecular networks. The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct. PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease, whereas PNS resulted in a greater coagulation effect on vascular endothelial cells. This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.
Collapse
|
11
|
Ye XW, Li CS, Zhang HX, Li Q, Cheng SQ, Wen J, Wang X, Ren HM, Xia LJ, Wang XX, Xu XF, Li XR. Saponins of ginseng products: a review of their transformation in processing. Front Pharmacol 2023; 14:1177819. [PMID: 37188270 PMCID: PMC10175582 DOI: 10.3389/fphar.2023.1177819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The primary processed product of Panax ginseng C.A. Meyer (P. ginseng) is red ginseng. As technology advances, new products of red ginseng have arisen. Red ginseng products, e.g., traditional red ginseng, sun ginseng, black ginseng, fermented red ginseng, and puffed red ginseng, are commonly used in herbal medicine. Ginsenosides are the major secondary metabolites of P. ginseng. The constituents of P. ginseng are significantly changed during processing, and several pharmacological activities of red ginseng products are dramatically increased compared to white ginseng. In this paper, we aimed to review the ginsenosides and pharmacological activities of various red ginseng products, the transformation law of ginsenosides in processing, and some clinical trials of red ginseng products. This article will help to highlight the diverse pharmacological properties of red ginseng products and aid in the future development of red ginseng industrialization.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Xia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Min Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Jing Xia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| |
Collapse
|
12
|
Lee BC, Choe YM, Suh GH, Choi IG, Kim HS, Hwang J, Yi D, Jhoo JH, Kim JW. Ginseng intake and Alzheimer disease-specific cognition in older adults according to apolipoprotein ε4 allele status. Front Aging Neurosci 2023; 15:1152626. [PMID: 37122382 PMCID: PMC10130443 DOI: 10.3389/fnagi.2023.1152626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background The probable association among ginseng intake, Alzheimer's disease (AD)-specific cognition, and apolipoprotein ε4 (APOE4) remains poorly investigated. Hence, we examined the association between ginseng intake and AD-specific cognition in older adults under the moderating effect of APOE4 status. Methods This study enrolled 160 adults aged 65-90 years without dementia. All participants underwent comprehensive dietary and clinical assessments including ginseng intake, AD-related cognition (i.e., delayed episodic memory, as the earliest cognitive change in AD), and non-memory cognition for comparative purposes. Results Ginseng intake was associated with higher delayed episodic memory, but not non-memory cognition, compared to no ginseng intake. The interaction between ginseng intake and APOE4 status had a significant effect on delayed episodic memory. Subgroup analyses showed that ginseng intake was associated with higher delayed episodic memory in the APOE4-negative but not the APOE4-positive subgroup. The benefits of ginseng intake on delayed episodic memory were prominent in the high duration (≥5 years) and midlife onset (<65 years) groups. Conclusion Our study of older adults with no dementia suggests that ginseng intake (with high duration and midlife onset) had a beneficial effect on AD-specific cognitive decline, i.e., the delayed episodic memory. In addition, APOE4 status moderates the association between ginseng intake status and AD-specific cognitive decline.
Collapse
Affiliation(s)
- Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, Republic of Korea
| | - Guk-Hee Suh
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, Republic of Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
- Department of Psychiatry, Seoul W Psychiatric Office, Seoul, Republic of Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, Republic of Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Jee Wook Kim
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, Republic of Korea
- *Correspondence: Jee Wook Kim,
| |
Collapse
|
13
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
15
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
16
|
de Oliveira Zanuso B, de Oliveira Dos Santos AR, Miola VFB, Gissoni Campos LM, Spilla CSG, Barbalho SM. Panax ginseng and aging related disorders: A systematic review. Exp Gerontol 2022; 161:111731. [PMID: 35143871 DOI: 10.1016/j.exger.2022.111731] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
The aging process predisposes numerous homeostatic disorders, metabolic disorders, cardiovascular diseases, neurodegenerative diseases, and cancer. Changes in diet and lifestyle and therapeutic adjuvants are essential to minimize the effects of comorbidities associated with aging. Natural products such as Panax ginseng have been used to treat and prevent diseases related to aging. This review aims to investigate the effects of Panax ginseng in various conditions associated with aging, such as inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, neurodegenerative and metabolic disorders, cardiovascular diseases, and cancer. The ginsenosides, chemical constituents found in Panax ginseng, can inhibit the effects of inflammatory cytokines, inhibit signaling pathways that induce inflammation, and inhibit cells that participate in inflammatory processes. Besides, ginsenosides are involved in neuroprotective effects on the central nervous system due to anti-apoptotic, antioxidant, and anti-inflammatory effects. The use of ginseng extract showed actions on lipid homeostasis, positively regulating high-density lipoprotein, down-regulating low-density lipoprotein and triglyceride levels, and producing beneficial effects on vascular endothelial function. The use of this plant in cancer resulted in improved quality of life and mood. It decreased symptoms of fatigue, nausea, vomiting, and dyspnea, reducing anxiety. Panax ginseng has been shown to exert potent therapeutic benefits that can act as a complementary treatment in managing patients with chronic diseases related to aging.
Collapse
Affiliation(s)
- Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Ana Rita de Oliveira Dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Leila M Gissoni Campos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Caio Sergio Galina Spilla
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo, Brazil.
| |
Collapse
|
17
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
18
|
Li J, Huang Q, Chen J, Qi H, Liu J, Chen Z, Zhao D, Wang Z, Li X. Neuroprotective Potentials of Panax Ginseng Against Alzheimer's Disease: A Review of Preclinical and Clinical Evidences. Front Pharmacol 2021; 12:688490. [PMID: 34149431 PMCID: PMC8206566 DOI: 10.3389/fphar.2021.688490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Bauer S, Jin W, Zhang F, Linhardt RJ. The Application of Seaweed Polysaccharides and Their Derived Products with Potential for the Treatment of Alzheimer's Disease. Mar Drugs 2021; 19:89. [PMID: 33557077 PMCID: PMC7913876 DOI: 10.3390/md19020089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are among the most widespread diseases affecting humans, and the number of patients is only rising. Seaweed polysaccharide extracts show significant neuroprotective and reparative activities. Seaweed polysaccharides might provide the next big breakthrough in neurodegenerative disease treatment. This paper reviews the applications of seaweed polysaccharides as potential treatments of neurodegenerative diseases. The particular focus is on fucoidan, ulvan, and their derivatives as potential agents to treat Alzheimer's disease. This review provides a critical update on the progress in this important research area.
Collapse
Affiliation(s)
- Sarah Bauer
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Weihua Jin
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Departments of Biological Science, Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
21
|
Sánchez-Sarasúa S, Fernández-Pérez I, Espinosa-Fernández V, Sánchez-Pérez AM, Ledesma JC. Can We Treat Neuroinflammation in Alzheimer's Disease? Int J Mol Sci 2020; 21:E8751. [PMID: 33228179 PMCID: PMC7699542 DOI: 10.3390/ijms21228751] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), considered the most common type of dementia, is characterized by a progressive loss of memory, visuospatial, language and complex cognitive abilities. In addition, patients often show comorbid depression and aggressiveness. Aging is the major factor contributing to AD; however, the initial cause that triggers the disease is yet unknown. Scientific evidence demonstrates that AD, especially the late onset of AD, is not the result of a single event, but rather it appears because of a combination of risk elements with the lack of protective ones. A major risk factor underlying the disease is neuroinflammation, which can be activated by different situations, including chronic pathogenic infections, prolonged stress and metabolic syndrome. Consequently, many therapeutic strategies against AD have been designed to reduce neuro-inflammation, with very promising results improving cognitive function in preclinical models of the disease. The literature is massive; thus, in this review we will revise the translational evidence of these early strategies focusing in anti-diabetic and anti-inflammatory molecules and discuss their therapeutic application in humans. Furthermore, we review the preclinical and clinical data of nutraceutical application against AD symptoms. Finally, we introduce new players underlying neuroinflammation in AD: the activity of the endocannabinoid system and the intestinal microbiota as neuroprotectors. This review highlights the importance of a broad multimodal approach to treat successfully the neuroinflammation underlying AD.
Collapse
Affiliation(s)
| | | | | | - Ana María Sánchez-Pérez
- Neurobiotechnology Group, Department of Medicine, Health Science Faculty, Universitat Jaume I, 12071 Castellón, Spain; (S.S.-S.); (I.F.-P.); (V.E.-F.)
| | - Juan Carlos Ledesma
- Neurobiotechnology Group, Department of Medicine, Health Science Faculty, Universitat Jaume I, 12071 Castellón, Spain; (S.S.-S.); (I.F.-P.); (V.E.-F.)
| |
Collapse
|
22
|
Shao J, Zheng X, Qu L, Zhang H, Yuan H, Hui J, Mi Y, Ma P, Fan D. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model. Food Funct 2020; 11:1245-1257. [PMID: 32052003 DOI: 10.1039/c9fo02248a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the most common sleep disorder, insomnia seriously affects people's everyday lives. Phytochemicals have been shown to have excellent sleep-promoting effects. Therefore, this study was designed to investigate whether Rg5 and Rk1 extracted from ginseng had sleep-promoting effects and to explore their potential mechanisms. The results showed that Rg5 and Rk1 could significantly lessen the locomotor activity of mice and promote the sleep quality index, including increasing the amount of sleep in a pentobarbital sodium experiment with a threshold dose. In parallel, Rg5 and Rk1 could significantly shorten the sleep latency of mice and prolong the sleep time of mice. Furthermore, Rg5 and Rk1 augmented the GABA/Glu ratio, up-regulating the expression of the GABAA receptor and the GABAB receptor, whereas the GABAA receptor antagonist picrotoxin could antagonize the sleep quality of Rg5/Rk1. In addition, 5-HTP, the precursor of 5-HT, could enhance the sleep effect of Rg5 and Rk1 in mice, and both Rg5 and Rk1 could up-regulate the expression of 5-HT1A. These results were also confirmed by the detection of GABA and 5-HT in mouse cecum content. In conclusion, ginsenoside Rg5/Rk1 can exert sedative and hypnotic effects by affecting the GABA nervous system and the serotonin nervous system.
Collapse
Affiliation(s)
- Jingjing Shao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Moreira SC, Jansen AK, Silva FM. Dietary interventions and cognition of Alzheimer's disease patients: a systematic review of randomized controlled trial. Dement Neuropsychol 2020; 14:258-282. [PMID: 32973980 PMCID: PMC7500808 DOI: 10.1590/1980-57642020dn14-030008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is estimated that by 2030 there will be 82 million people in the world with
dementia.
Collapse
Affiliation(s)
- Sophia Camargos Moreira
- Universidade Federal de Minas Gerais, Ringgold Standard Institution - Belo Horizonte, MG, Brazil
| | - Ann Kristine Jansen
- Universidade Federal de Minas Gerais, Ringgold Standard Institution - Belo Horizonte, MG, Brazil
| | - Flávia Moraes Silva
- Universidade Federal de Ciências da Saúde de Porto Alegre, Ringgold Standard Institution - Nutrition - Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Kim HI, Kim JK, Kim JY, Han MJ, Kim DH. Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression. J Ginseng Res 2019; 43:635-644. [PMID: 31695569 PMCID: PMC6823749 DOI: 10.1016/j.jgr.2019.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-α, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.
Collapse
Affiliation(s)
- Hye In Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, Tsatsakis A, Spandidos DA. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 2019; 19:2975-2998. [PMID: 30816465 PMCID: PMC6423617 DOI: 10.3892/mmr.2019.9972] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/02/2022] Open
Abstract
Ginseng is one of the main representatives of traditional Chinese medicine and presents a wide range of pharmacological actions. Ginsenosides are the main class of active compounds found in ginseng. They demonstrate unique biological activity and medicinal value, namely anti-tumour, anti-inflammatory and antioxidant properties, as well as anti-apoptotic properties. Increasing levels of stress in life are responsible for the increased incidence of nervous system diseases. Neurological diseases create a huge burden on the lives and health of individuals. In recent years, studies have indicated that ginsenosides play a pronounced positive role in the prevention and treatment of neurological diseases. Nevertheless, research is still at an early stage of development, and the complex mechanisms of action involved remain largely unknown. This review aimed to shed light into what is currently known about the mechanisms of action of ginsenosides in relation to Alzheimer's disease. Scientific material and theoretical bases for the treatment of nervous system diseases with purified Panax ginseng extracts are also discussed.
Collapse
Affiliation(s)
| | - Valery Vyacheslavovich Veselov
- Center of Bioanalytical Investigation and Molecular Design, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | | | | | - Alexander Evgenyevich Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
27
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
28
|
Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food Chem Toxicol 2018; 123:42-49. [PMID: 30336256 DOI: 10.1016/j.fct.2018.10.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Recent studies have shown the role of gut microbiota in favoring the absorption of herbal products and the transformation of their active principles into metabolites endowed with biological activity. This review focuses on the evidence supporting the changes occurring, after metabolic reactions by specific bacteria that colonize the human gut, to ginseng-derived ginsenosides, green tea-derived catechins, and quercetin, this latter being a flavonoid aglycon bound to sugars and abundant in some vegetables and roots. Furthermore, the results of several studies demonstrating the potential beneficial effects of the active metabolites generated by these biotransformations on ginsenosides, catechins and quercetin will be reported.
Collapse
|
29
|
Lho SK, Kim TH, Kwak KP, Kim K, Kim BJ, Kim SG, Kim JL, Kim TH, Moon SW, Park JY, Park JH, Byun S, Suh SW, Seo JY, So Y, Ryu SH, Youn JC, Lee KH, Lee DY, Lee DW, Lee SB, Lee JJ, Lee JR, Jeong H, Jeong HG, Jhoo JH, Han K, Hong JW, Han JW, Kim KW. Effects of lifetime cumulative ginseng intake on cognitive function in late life. ALZHEIMERS RESEARCH & THERAPY 2018; 10:50. [PMID: 29793529 PMCID: PMC5968575 DOI: 10.1186/s13195-018-0380-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND We investigated the effects of lifetime cumulative ginseng intake on cognitive function in a community-dwelling population-based prospective cohort of Korean elders. METHODS Community-dwelling elders (N = 6422; mean age = 70.2 ± 6.9 years, education = 8.0 ± 5.3 years, female = 56.8%) from the Korean Longitudinal Study on Cognitive Aging and Dementia were included. Among them, 3918 participants (61.0%) completed the 2-year and 4-year follow-up evaluations. Subjects were categorized according to cumulative ginseng intake at baseline evaluation; no use group, low use (< 5 years) group, and high use (≥ 5 years) group. One-way analysis of covariance (ANCOVA) was conducted to compare the impact of cumulative ginseng intake on baseline Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet neuropsychological battery total score (CERAD total score) and Mini-Mental State Examination (MMSE) score among the three groups while adjusting for potential covariates. A repeated-measures ANCOVA was performed to investigate the impacts on the changes in CERAD total scores and MMSE scores during the 4 years of follow-up. RESULTS The high use group showed higher CERAD total scores compared to the no use group after controlling for age, sex, education years, socioeconomic status, smoking, alcohol intake, presence of hypertension, stroke history, Geriatric Depression Scale, Cumulative Illness Rating Scale, and presence of the APOE e4 allele (F(2, 4762) = 3.978, p = 0.019). The changes of CERAD total score for 2 or 4 years of follow-up did not differ according to the use of ginseng. CONCLUSIONS Cumulative ginseng use for longer than 5 years may be beneficial to cognitive function in late life.
Collapse
Affiliation(s)
- Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Tae Hui Kim
- Department of Psychiatry, Yonsei University Wonju Severance Christian Hospital, Wonju, Gangwon-do, Korea
| | - Kyung Phil Kwak
- Department of Psychiatry, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| | - Kayoung Kim
- Department of Psychiatry, National Center for Mental Health, Seoul, Korea
| | - Bong Jo Kim
- Department of Psychiatry, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Korea
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae Hyun Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Seok Woo Moon
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Chungju Hospital, Chungju, Korea
| | - Jae Young Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Joon Hyuk Park
- Department of Neuropsychiatry, Jeju National University Hospital, Jeju, Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Seung Wan Suh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Ji Young Seo
- Department of Neuropsychiatry, Changwon Gyeongsang National University Hospital, Jinju, Korea
| | - Yoonseop So
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Seung-Ho Ryu
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Medical Center, Seoul, Korea
| | - Jong Chul Youn
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Korea
| | - Kyoung Hwan Lee
- Department of Psychiatry, Bongseng Memorial Hospital, Busan, Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Woo Lee
- Department of Neuropsychiatry, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Seok Bum Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Chungcheongnam-do, Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Chungcheongnam-do, Korea
| | - Ju Ri Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Hyeon Jeong
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University, School of Medicine, Chuncheon, Korea
| | - Kyuhee Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Jong Woo Hong
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea.
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 166 Gumiro, Bundanggu, Seongnamsi, Gyeonggido, 463-707, Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea. .,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
30
|
Zheng M, Xin Y, Li Y, Xu F, Xi X, Guo H, Cui X, Cao H, Zhang X, Han C. Ginsenosides: A Potential Neuroprotective Agent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8174345. [PMID: 29854792 PMCID: PMC5964429 DOI: 10.1155/2018/8174345] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
Ginseng is a traditional Chinese medicine with a wide range of pharmacological activities. Ginsenosides are the major constituents of ginseng. Ginsenosides have the unique biological activity and medicinal value, such as antitumor, anti-inflammatory, antioxidation, and inhibition of cell apoptosis. With the increase of stress in life, the incidence of nervous system diseases is also increasing. Neurological diseases pose a huge burden on people's life and health. In recent years, some studies have shown that ginsenosides have a certain role in the prevention and treatment of neurological diseases. However, the research is still in its infancy, and the relevant mechanisms are complex. In the paper, we review the effects and mechanisms of ginsenosides on epilepsy, depression, cerebral ischemia reperfusion injury, Alzheimer's disease, and Parkinson's disease. We hope to provide a theoretical basis for the treatment of nervous system diseases by ginsenosides.
Collapse
Affiliation(s)
- Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yizhou Xin
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
31
|
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-372. [PMID: 28698154 PMCID: PMC7116968 DOI: 10.1016/j.fct.2017.07.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | - Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
32
|
The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction. Brain Res Bull 2017; 132:109-117. [PMID: 28438669 DOI: 10.1016/j.brainresbull.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/11/2017] [Indexed: 01/06/2023]
Abstract
Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway.
Collapse
|
33
|
Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2017; 42:239-247. [PMID: 29989012 PMCID: PMC6035378 DOI: 10.1016/j.jgr.2017.03.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/15/2017] [Indexed: 01/20/2023] Open
Abstract
In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
34
|
Hyde AJ, May BH, Dong L, Feng M, Liu S, Guo X, Zhang AL, Lu C, Xue CC. Herbal medicine for management of the behavioural and psychological symptoms of dementia (BPSD): A systematic review and meta-analysis. J Psychopharmacol 2017; 31:169-183. [PMID: 27899689 DOI: 10.1177/0269881116675515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Management of the behavioural and psychological symptoms of dementia remains a challenge worldwide. Herbal medicines may play a role in the development of new interventions. To determine effects of herbal medicines for management of the behavioural and psychological symptoms of dementia, meta-analysis was conducted of 31 controlled trials (3613 participants). Frequently tested herbal medicines were the Ginkgo biloba leaf extract EGb 761 (seven studies) and the multi-ingredient formula Yokukansan (eight studies). Sixteen studies tested other herbal medicines. Improvements were detected in Neuropsychiatric Inventory scores in EGb 761 groups compared to placebo (MD -3.46 [-5.94, -0.98]; I2 = 93%; n = 1757) and Yokukansan groups compared to no treatment (SMD -0.53 [-0.86, -0.21]; I2 = 0%; n = 150). Cognitive scores were improved in EGb 761 groups while Yokukansan did not appear to affect cognitive function. Of the other herbal medicines, there were improvements in the behavioural and psychological symptoms of dementia and cognitive outcomes in two of four placebo-controlled studies. EGb 761 and Yokukansan appeared safe and well tolerated. Adverse effects and dropouts were not reported consistently for the other herbal medicines. Weaknesses of these included short durations, small sample sizes, lack of blinding and other risks of bias. Well-designed studies are needed to further investigate the reported effects of these interventions on the behavioural and psychological symptoms of dementia.
Collapse
Affiliation(s)
- Anna J Hyde
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Brian H May
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Lin Dong
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Mei Feng
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shaonan Liu
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinfeng Guo
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Anthony Lin Zhang
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Chuanjian Lu
- 2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- 1 The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.,2 Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Li H, Song J, Zhang J, Wang T, Yan Y, Tao Z, Li S, Zhang H, Kang T, Yang J. Ginseng Protein Reverses Amyloid Beta Peptide and H2O2Cytotoxicity in Neurons, and Ameliorates Cognitive Impairment in AD Rats Induced by a Combination of D-Galactose and AlCl3. Phytother Res 2016; 31:284-295. [DOI: 10.1002/ptr.5747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hongyan Li
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Jie Song
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Jianghua Zhang
- Faculty of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 China
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
| | - Tianmin Wang
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Yuhui Yan
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Zhenyu Tao
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Shaoheng Li
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Hui Zhang
- Pharmaceutical College; Changchun University of Traditional Chinese Medicine; Changchun 130117 China
| | - Tingguo Kang
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| | - Jingxian Yang
- Pharmaceutical College; Liaoning University of Traditional Chinese Medicine; Dalian 116600 China
| |
Collapse
|
36
|
Cognitive-Enhancing Herbal Formulae in Korean Medicine: Identification of Candidates by Text Mining and Literature Review. J Altern Complement Med 2016; 22:413-8. [DOI: 10.1089/acm.2015.0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Sheng C, Peng W, Xia ZA, Wang Y, Chen Z, Su N, Wang Z. The impact of ginsenosides on cognitive deficits in experimental animal studies of Alzheimer's disease: a systematic review. Altern Ther Health Med 2015; 15:386. [PMID: 26497388 PMCID: PMC4619356 DOI: 10.1186/s12906-015-0894-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/04/2015] [Indexed: 02/01/2023]
Abstract
Background The efficacy of ginsenoside treatment on cognitive decline in individuals with Alzheimer’s disease (AD) has yet to be investigated. In this protocal, we conducted a systematic review to evaluate the effect of ginsenosides on cognitive deficits in experimental rodent AD models. Methods We identified eligible studies by searching seven electronic databases spanning from January 1980 to October 2014. We assessed the study quality, evaluated the efficacy of ginsenoside treatment, and performed a stratified meta-analysis and meta-regression analysis to assess the influence of the study design on ginsenoside efficacy. Results Twelve studies fulfilled our inclusion criteria from a total of 283 publications. The overall methodological quality of these studies was poor. The meta-analysis revealed that ginsenosides have a statistically significant positive effect on cognitive performance in experimental AD models. The stratified analysis revealed that ginsenoside Rg1 had the greatest effect on acquisition and retention memory in AD models. The effect size was significantly higher for both acquisition and retention memory in studies that used female animals compared with male animals. Conclusions We conclude that ginsenosides might reduce cognitive deficits in AD models. However, additional well-designed and well-reported animal studies are needed to inform further clinical investigations.
Collapse
|