1
|
Jiao H, Zhang M, Xu W, Pan T, Luan J, Zhao Y, Zhang Z. Chlorogenic acid alleviate kidney fibrosis through regulating TLR4/NF-қB mediated oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118693. [PMID: 39142620 DOI: 10.1016/j.jep.2024.118693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorogenic acid (CGA), a phenolic acid produced by the interaction of Caffeic acid and Quinic acid, is considered to be the main active ingredient in many heat-clearing and detoxifying Chinese medicines, such as honeysuckle, Houttuynia, Artemisia annua, Gardenia, etc. CGA has anti-inflammatory, antioxidant, anticancer, antibacterial and other properties. However, the effect and process of CGA in kidney fibrosis remain unknown. AIM OF THE STUDY To investigate the therapeutic effects of CGA on alleviating kidney fibrosis and the underlying mechanisms. MATERIALS AND METHODS C57BL/6 mouse kidney fibrosis model was established by unilateral uretera obstruction (UUO), followed by treatment with CGA (40, 80 mg/kg/d) for 10 days. The serum and kidney tissue were collected. Network pharmacology, molecular docking and transcriptomic analysis were conducted to explore the possible mechanisms. The HK-2 cells were cultured and treated with TGF-β1(10 ng/mL) and CGA (50, 100 μM), to examine the role of TLR4/NF-қB signaling pathway in the therapeutic effect of CGA on kidney fibrosis. RESULTS CGA significantly alleviated kidney injury, inflammation, oxidative stress and fibrosis in UUO models. CGA also effectively inhibited the expression of inflammatory factors and the process of oxidative stress both in vivo and in vitro fibrosis models. Further, transcriptomic analysis, molecular docking, and network pharmacology results indicated that the therapeutic effect of CGA on fibrosis was through the regulation of TLR4/NF-қB signaling pathway. CONCLUSION CGA might provide benefits for the regulation of inflammatory response, oxidative stress and fibrogenesis by modulating TLR4/NF-қB signaling pathway on kidney fibrosis. Hence, CGA is an attractive agent for treating kidney fibrosis. The present study provided a basis for further research on the therapeutic strategies of kidney fibrosis.
Collapse
Affiliation(s)
- Hao Jiao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Meijuan Zhang
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wuqin Xu
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Tongshuai Pan
- Department of Pharmacy, Wannan Medical College, Wuhu, 241001, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Zhirui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China.
| |
Collapse
|
2
|
Luo D, Hou Y, Zhan J, Hou Y, Wang Z, Li X, Sui L, Chen S, Lin D. Bu Shen Huo Xue Formula Provides Neuroprotection Against Spinal Cord Injury by Inhibiting Oxidative Stress by Activating the Nrf2 Signaling Pathway. Drug Des Devel Ther 2024; 18:4779-4797. [PMID: 39494153 PMCID: PMC11530378 DOI: 10.2147/dddt.s487307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear. This study aimed to evaluate the effects of BSHXF in a mouse model of SCI and to identify potential therapeutic targets. Methods The composition of BSHXF was analyzed using high-performance liquid chromatography (HPLC). In vivo, SCI was induced in mice following established protocols, followed by administration of BSHXF. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) and footprint tests. Levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified with specific assay kits. Protein expression analysis was performed using Western blot and immunofluorescence. Additionally, reactive oxygen species (ROS) levels and apoptosis rates were evaluated with dedicated staining kits. In vitro, neurons were exposed to lipopolysaccharide (LPS) to investigate the effects of BSHXF on neuronal oxidative stress. The protective effects of BSHXF against LPS-induced neuronal injury were examined through RT-PCR, Western blot, and immunofluorescence. Results The eight primary bioactive constituents of BSHXF were identified using HPLC. BSHXF significantly reduced tissue damage and enhanced functional recovery following SCI. Meanwhile, BSHXF treatment led to significant reductions in oxidative stress and apoptosis rates. It also reversed neuronal loss and reduced glial scarring after SCI. LPS exposure induced neuronal apoptosis and axonal degeneration; however, after intervention with BSHXF, neuronal damage was reduced, and the protective effects of BSHXF were mediated by the activation of the Nrf2 pathway. Conclusion BSHXF decreased tissue damage and enhanced functional recovery after SCI by protecting neurons against oxidative stress and apoptosis. The effects of BSHXF on SCI may be related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zenglu Wang
- ICU Critical Care Medicine Department, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lili Sui
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shudong Chen
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Mirzaei F, Agbaria L, Bhatnagar K, Sirimanne N, Omar A'amar N, Jindal V, Gerald Thilagendra A, Tawfiq Raba F. Coffee and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:21-55. [PMID: 39168581 DOI: 10.1016/bs.pbr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee, a universally consumed beverage, is known to contain thousands of bioactive constituents that have garnered interest due to their potential neuroprotective effects against various neurodegenerative disorders, including Alzheimer's disease (AD). Extensive research has been conducted on coffee constituents such as Caffeine, Trigonelline, Chlorogenic acid, and Caffeic acid, focusing on their neuroprotective properties. These compounds have potential to impact key mechanisms in AD development, including amyloidopathy, tauopathy, and neuroinflammation. Furthermore, apart from its neuroprotective effects, coffee consumption has been associated with anticancerogenic and anti-inflammatory effects, thereby enhancing its therapeutic potential. Studies suggest that moderate coffee intake, typically around two to three cups daily, could potentially contribute to mitigating AD progression and lowering the risk of related neurological disorders. This literature underscores the potential neuroprotective properties of coffee compounds, which usually perform their neuronal protective effects via modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid-derived 2-like 2 (Nrf2), interleukins, tumor necrosis factor-alpha (TNF-α), and many other molecules.
Collapse
Affiliation(s)
- Foad Mirzaei
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia.
| | - Lila Agbaria
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Khushbu Bhatnagar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nethmini Sirimanne
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nathalie Omar A'amar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Vaishali Jindal
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Albankha Gerald Thilagendra
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Farah Tawfiq Raba
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| |
Collapse
|
4
|
Tarahi M, Gharagozlou M, Niakousari M, Hedayati S. Protein-Chlorogenic Acid Interactions: Mechanisms, Characteristics, and Potential Food Applications. Antioxidants (Basel) 2024; 13:777. [PMID: 39061846 PMCID: PMC11273606 DOI: 10.3390/antiox13070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between proteins and chlorogenic acid (CGA) have gained significant attention in recent years, not only as a promising approach to modify the structural and techno-functional properties of proteins but also to enhance their bioactive potential in food systems. These interactions can be divided into covalent (chemical or irreversible) and non-covalent (physical or reversible) linkages. Mechanistically, CGA forms covalent bonds with nucleophilic amino acid residues of proteins by alkaline, free radical, and enzymatic approaches, leading to changes in protein structure and functionality, such as solubility, emulsification properties, and antioxidant activity. In addition, the protein-CGA complexes can be obtained by hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals forces, each offering unique advantages and outcomes. This review highlights the mechanism of these interactions and their importance in modifying the structural, functional, nutritional, and physiological attributes of animal- and plant-based proteins. Moreover, the potential applications of these protein-CGA conjugates/complexes are explored in various food systems, such as beverages, films and coatings, emulsion-based delivery systems, and so on. Overall, this literature review provides an in-depth overview of protein-CGA interactions, offering valuable insights for future research to develop novel protein-based food and non-food products with improved nutritional and functional characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Maryam Gharagozlou
- Center for Organic Farming, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
5
|
Ünel ÇÇ, Eroğlu E, Özatik O, Erol K. Chlorogenic acid co-administration alleviates cisplatin-induced peripheral neuropathy in rats. Fundam Clin Pharmacol 2024; 38:523-537. [PMID: 37996998 DOI: 10.1111/fcp.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is still an unresolved problem in cisplatin (CIS) use. OBJECTIVES This study investigates possible anti-neuropathic effect of chlorogenic acid (CGA) against CIS-induced CIPN in rats while also investigating the contribution of nitric oxide (NO) to this phenomenon. METHODS Initially, CGA (250-1000 μM) was tested by MTT assay on primary DRG neurons. Subsequently, CIPN was induced in Sprague-Dawley rats by 3 mg/kg intraperitoneal injections of CIS once/week for 5 weeks. CGA (100 mg/kg) was co-administered with CIS, both alone and in combination with l-arginine (LARG) or l-nitro-arginine-methyl-ester (LNAME), to elucidate the contribution of nitrergic system to anti-neuropathic effects. Mechanical allodynia, thermal hyperalgesia, and cold plate tests were performed to test CIPN. Rotarod, footprint analysis, and activitymeter were used to evaluate motor coordination and performance. Tumor necrosis factor alpha (TNF-α) was measured as a marker of inflammation. Histological evaluations of DRG and sciatic nerves (SNs) were performed utilizing toluidine blue staining. Two-way analysis of variance and Kruskal-Wallis following Tukey's test were used as statistical analysis. RESULTS Higher concentration of CGA (1000 μM) exhibited protective effect against in vitro neurotoxicity. Neither LARG nor LNAME exerted significant change in this effect. Co-administration of CGA alleviated histological abnormalities and neuropathic effects induced by CIS. Ameliorative effect of CGA was not changed in mechanical allodynia but attenuated in cold allodynia, and motor activity/coordination tests by LARG and LNAME. Neuropathic effects of CIS remained unchanged with LARG and LNAME in behavioral experiments. CONCLUSION The study identified CGA as candidate agent in mitigating CIPN. NO seems to play a modulatory role in this effect.
Collapse
Affiliation(s)
- Çiğdem Çengelli Ünel
- Faculty of Medicine, Department of Medical Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ezgi Eroğlu
- Department of Clinical Research, Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Orhan Özatik
- Faculty of Medicine, Department of Histology and Embryology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Kevser Erol
- Faculty of Medicine, Department of Pharmacology, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
6
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
7
|
Senekovič J, Ciringer T, Ambrožič-Dolinšek J, Islamčević Razboršek M. The Effect of Combined Elicitation with Light and Temperature on the Chlorogenic Acid Content, Total Phenolic Content and Antioxidant Activity of Berula erecta in Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1463. [PMID: 38891272 PMCID: PMC11174371 DOI: 10.3390/plants13111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Chlorogenic acid is one of the most prominent bioactive phenolic acids with great pharmacological, cosmetic and nutritional value. The potential of Berula erecta in tissue culture was investigated for the production of chlorogenic acid and its elicitation combined with light of different wavelengths and low temperature. The content of chlorogenic acid in the samples was determined by HPLC-UV, while the content of total phenolic compounds and the antioxidant activity of their ethanol extracts were evaluated spectrophotometrically. The highest fresh and dry biomasses were obtained in plants grown at 23 °C. This is the first study in which chlorogenic acid has been identified and quantified in Berula erecta. The highest chlorogenic acid content was 4.049 mg/g DW. It was determined in a culture grown for 28 days after the beginning of the experiment at 12 °C and under blue light. The latter also contained the highest content of total phenolic compounds, and its extracts showed the highest antioxidant activity. Berula erecta could, potentially, be suitable for the in vitro production of chlorogenic acid, although many other studies should be conducted before implementation on an industrial scale.
Collapse
Affiliation(s)
- Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Terezija Ciringer
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
| | - Jana Ambrožič-Dolinšek
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Hu S, Zhao R, Chi X, Chen T, Li Y, Xu Y, Zhu B, Hu J. Unleashing the power of chlorogenic acid: exploring its potential in nutrition delivery and the food industry. Food Funct 2024; 15:4741-4762. [PMID: 38629635 DOI: 10.1039/d4fo00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yangjing Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
9
|
Lee HS, Kim JM, Lee HL, Go MJ, Lee DY, Kim CW, Kim HJ, Heo HJ. Eucommia ulmoides Leaves Alleviate Cognitive Dysfunction in Dextran Sulfate Sodium (DSS)-Induced Colitis Mice through Regulating JNK/TLR4 Signaling Pathway. Int J Mol Sci 2024; 25:4063. [PMID: 38612870 PMCID: PMC11012925 DOI: 10.3390/ijms25074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.
Collapse
Affiliation(s)
- Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea;
| | - Chul-Woo Kim
- Division of special Forest Resources, Department of Forest Bio-Resources, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| |
Collapse
|
10
|
Sedeek K, Mohammed N, Zhou Y, Zuccolo A, Sanikommu K, Kantharajappa S, Al-Bader N, Tashkandi M, Wing RA, Mahfouz MM. Multitrait engineering of Hassawi red rice for sustainable cultivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112018. [PMID: 38325660 DOI: 10.1016/j.plantsci.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Sustainable agriculture requires locally adapted varieties that produce nutritious food with limited agricultural inputs. Genome engineering represents a viable approach to develop cultivars that fulfill these criteria. For example, the red Hassawi rice, a native landrace of Saudi Arabia, tolerates local drought and high-salinity conditions and produces grain with diverse health-promoting phytochemicals. However, Hassawi has a long growth cycle, high cultivation costs, low productivity, and susceptibility to lodging. Here, to improve these undesirable traits via genome editing, we established efficient regeneration and Agrobacterium-mediated transformation protocols for Hassawi. In addition, we generated the first high-quality reference genome and targeted the key flowering repressor gene, Hd4, thus shortening the plant's lifecycle and height. Using CRISPR/Cas9 multiplexing, we simultaneously disrupted negative regulators of flowering time (Hd2, Hd4, and Hd5), grain size (GS3), grain number (GN1a), and plant height (Sd1). The resulting homozygous mutant lines flowered extremely early (∼56 days) and had shorter stems (approximately 107 cm), longer grains (by 5.1%), and more grains per plant (by 50.2%), thereby enhancing overall productivity. Furthermore, the awns of grains were 86.4% shorter compared to unedited plants. Moreover, the modified rice grain displayed improved nutritional attributes. As a result, the modified Hassawi rice combines several desirable traits that can incentivize large-scale cultivation and reduce malnutrition.
Collapse
Affiliation(s)
- Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Krishnaveni Sanikommu
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sunitha Kantharajappa
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Noor Al-Bader
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manal Tashkandi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA; International Rice Research Institute (IRRI), Strategic Innovation, Los Baños, 4031 Laguna, Philippines
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Shang GJ, Liu SY, Zhu R, Li DL, Meng ST, Wang YT, Wu LF. Chlorogenic acid improves common carp (Cyprinus carpio) liver and intestinal health through Keap-1/Nrf2 and NF-κB signaling pathways: Growth performance, immune response and antioxidant capacity. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109378. [PMID: 38272333 DOI: 10.1016/j.fsi.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1β were decreased. The IL-10 and TGF-β were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.
Collapse
Affiliation(s)
- Guo-Jun Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Ying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Deng-Lai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Tong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yin-Tao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Lee HJ, Ortiz DM, Sayson LV, Kim M, Cheong JH, Kim HJ. Ameliorating effects of Acanthopanax koreanum extract and components on nicotine dependence and withdrawal symptoms. Addict Biol 2024; 29:e13360. [PMID: 38380695 PMCID: PMC10898842 DOI: 10.1111/adb.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 11/17/2023] [Indexed: 02/22/2024]
Abstract
Tobacco smoking is a serious health problem in society. While smoking rates are declining, smoking remains a serious risk to national health. Currently, there are several medications available to aid in smoking cessation. However, these medications have the disadvantages of low success rates in smoking cessation and various side effects. Therefore, natural-based smoking cessation aids are being suggested as a good alternative due to their accessibility and minimal side effects. The roots and stems of Acanthopanax koreanum (AK) Nakai, a plant that is native to Jeju Island, South Korea, have traditionally been used as tonic and sedatives. Moreover, eleutheroside B and chlorogenic acid are the main components of AK stem extract. In the present study, we investigated the effect of 70% ethanol AK extract and its components on ameliorating nicotine dependence and withdrawal symptoms by using behavioural tests in mice. In addition, alterations in the dopaminergic and DRD1-EPAC-ERK-CREB pathways were observed using dopamine ELISA and western blotting using mouse brains. Our findings demonstrate that the AK extract and its components effectively mitigated the effects of nicotine treatment in behavioural tests. Furthermore, it normalized the dopamine concentration and the expression level of nicotine acetylcholine receptor α7. Additionally, it was observed that AK extract and its components led to the normalization of DRD1, ERK and CREB expression levels. These results indicate that AK extract exhibits effects in ameliorating nicotine dependence behaviour and alleviating withdrawal symptoms. Moreover, EB and CGA are considered potential marker components of AK extract.
Collapse
Affiliation(s)
- Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversitySeoulRepublic of Korea
| | - Jae Hoon Cheong
- School of PharmacyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
Uy NP, Kim H, Ku J, Lee S. Regional Variations in Peucedanum japonicum Antioxidants and Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2024; 13:377. [PMID: 38337910 PMCID: PMC10857489 DOI: 10.3390/plants13030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Peucedanum japonicum has long been a staple in East Asian cuisine. In the context of traditional medicine, various members of the Peucedanum genus have been investigated for potential medicinal properties. In laboratory settings, some compounds derived from this plant have shown antioxidant and anti-inflammatory properties-characteristics often associated with potential medicinal applications. This study aimed to determine which part of the P. japonicum plants cultivated on two Korean islands contains the most antioxidant compounds. This determination was made through assessments of total polyphenol content and total flavonoid content, coupled with evaluation of antioxidant activity via DPPH and ABTS assays. The results showed that the aerial parts contain a richer array of bioactive compounds and demonstrate superior antioxidant activity compared to their root counterparts in the plants from both islands. To characterize the phytochemicals underpinning this bioactivity, LC-MS/MS and HPLC analyses were carried out. These methods detected varying amounts of chlorogenic acid, peucedanol 7-O-glucoside, rutin, and peucedanol, with good separation and retention times. This study addresses the lack of research on the antioxidant activity of different parts of P. japonicum. The findings hold significance for traditional medicine, dietary supplements, and the development of functional foods. Understanding antioxidant distribution aids in the development of medicinal and nutritional applications, influences agricultural practices, and contributes to regional biodiversity-conservation efforts. The study's geographical scope provides insights into how location impacts the concentration of bioactive compounds in plants. Overall, the results contribute valuable data for future research in plant biology, biochemistry, and related fields.
Collapse
Affiliation(s)
- Neil Patrick Uy
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Jajung Ku
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| |
Collapse
|
14
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
15
|
La Rosa G, Sozio C, Pipicelli L, Raia M, Palmiero A, Santillo M, Damiano S. Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells. Int J Mol Sci 2023; 24:16731. [PMID: 38069054 PMCID: PMC10706857 DOI: 10.3390/ijms242316731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Concetta Sozio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Maddalena Raia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Napoli, Italy;
| | - Anna Palmiero
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| |
Collapse
|
16
|
Urbanek Krajnc A, Senekovič J, Cappellozza S, Mikulic-Petkovsek M. The Darker the Better: Identification of Chemotype Profile in Soroses of Local and Introduced Mulberry Varieties with Respect to the Colour Type. Foods 2023; 12:3985. [PMID: 37959104 PMCID: PMC10650418 DOI: 10.3390/foods12213985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Mulberries are the "essence of the past", the so-called Proust effect, for the inhabitants of the sericultural regions who enthusiastically remember feeding silkworms with mulberry leaves and picking the different coloured fruits that were their favourite sweets in childhood. To determine the chemistry behind the colour and taste of mulberry soroses, the main metabolites of the local and introduced varieties were studied. The soroses were classified into five different colour types and the size parameters were determined. The main sugars identified were glucose and fructose, while the predominant organic acids were citric and malic acids, which were highest in the darker varieties, and fumaric and tartaric acids, which were highest in the lighter varieties. A total of 42 phenolic compounds were identified. The predominant phenolic acid was chlorogenic acid, followed by other caffeoylquinic acids and coumaroylquinic acids. The predominant anthocyanins were cyanidin-3-glucoside and cyanidin-3-rutinoside. According to PCA analysis, the colour types showed a clear chemotype character. The sweet taste of the yellowish-white soroses was defined by 49% fructose, followed by 45% glucose and 6% organic acids. The sour character of the black genotypes was characterised by a lower sugar and higher (11%) organic acid content. The colour- and species-dependent effect was observed in the proportion of caffeoylquinic acids and quercetin glycosides, which decreased with increasing colour intensity from 60% of the total to 7%, and from 17% to 1%, respectively. An upward trend was observed for flavanols (5% to 29%) and anthocyanins, which accounted for 62% of the total phenolics in black varieties. This article gives an insight into the metabolite composition of mulberry soroses as the sweets of choice between light and sweet and dark and sour.
Collapse
Affiliation(s)
- Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via Eulero 6a, 35143 Padua, Italy;
| | - Maja Mikulic-Petkovsek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Dong L, Gao L. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum Mol Genet 2023; 32:3040-3052. [PMID: 37453035 DOI: 10.1093/hmg/ddad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to characterize the functional relevance and mechanistic basis of the histone demethylase Jumonji domain-containing protein-3 (JMJD3) in preserving dopaminergic neuron survival in Parkinson's disease (PD). Mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions and MN9D dopaminergic neuronal cell lines exposed to 6-OHDA, respectively, were used to simulate in vivo and in vitro PD-like environments. PD-related genes with differential expressions were identified using RNA sequencing of hippocampal tissues collected from MPTP-lesioned mice. A specific lentiviral shRNA vector was used to investigate the effects of JMJD3 on neuron activities in vitro and PD-like phenotypes in vivo. JMJD3 was found to up-regulate the expression of Snail family transcriptional repressor 2 (SNAI2) through the inhibition of H3 on lysine 27 (H3K27me3) enrichment in the SNAI2 promoter region. As a result, the viability of 6-OHDA-exposed MN9D cells was stimulated, and cell apoptosis was diminished. Knockdown of SNAI2 decreased the expression of yes-associated protein (YAP) and HIF1α while also reducing the viability of 6-OHDA-exposed MN9D cells and increasing cell apoptosis. The in vivo experiments demonstrated that JMJD3 activated the SNAI2/YAP/HIF1α signaling pathway, inhibiting PD-like phenotypes in MPTP-lesioned mice. Thus, the findings provide evidence that JMJD3 inhibits the enrichment of H3K27me3 at the SNAI2 promoter, leading to the upregulation of SNAI2 expression and activation of the YAP/HIF1α signaling pathway, ultimately exerting a protective effect on PD mice. This finding suggests that targeting the JMJD3-SNAI2 pathway could be a promising therapeutic strategy for PD. Further in-depth studies are needed to elucidate the underlying mechanisms and identify potential downstream targets of this pathway.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
18
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease. ACS OMEGA 2023; 8:35499-35522. [PMID: 37810693 PMCID: PMC10552500 DOI: 10.1021/acsomega.3c04855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Nowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly. The current review summarizes the experimental evidence of the neuroprotective capacity of nutraceuticals against Alzheimer's disease, describing their mechanisms of action and the in vitro and in vivo models applied to evaluate their neuroprotective potential.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería
y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C. 45201 Zapopan, Jalisco, Mexico
| |
Collapse
|
19
|
Suzuki T, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Anti-Inflammatory Effects of Dietary Polyphenols through Inhibitory Activity against Metalloproteinases. Molecules 2023; 28:5426. [PMID: 37513300 PMCID: PMC10385587 DOI: 10.3390/molecules28145426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases that play important roles in a variety of diseases, including cancer, cardiovascular disease, diabetes, obesity, and brain diseases. Dietary polyphenols are thought to have a variety of beneficial effects on these diseases characterized by inflammation. Clinical studies have demonstrated that MMPs are in most cases upregulated in various inflammatory diseases, including osteoarthritis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Studies using patient-derived human samples, animal studies, and cellular experiments have suggested that polyphenols may be beneficial against inflammatory diseases by suppressing MMP gene expression and enzyme activity. One important mechanism by which polyphenols exert their activity is the downregulation of reactive oxygen species that promote MMP expression. Another important mechanism is the direct binding of polyphenols to MMPs and their inhibition of enzyme activity. Molecular docking analyses have provided a structural basis for the interaction between polyphenols and MMPs and will help to explore new polyphenol-based drugs with anti-inflammatory properties.
Collapse
Affiliation(s)
- Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Hiroki Tanabe
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro, Hokkaido 096-8641, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
20
|
Zhang Z, Shi C, Wang Z. Therapeutic Effects and Molecular Mechanism of Chlorogenic Acid on Polycystic Ovarian Syndrome: Role of HIF-1alpha. Nutrients 2023; 15:2833. [PMID: 37447160 DOI: 10.3390/nu15132833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chlorogenic acid (CGA) is a powerful antioxidant polyphenol molecule found in many diets and liquid beverages, playing a preventive and therapeutic role in various diseases caused by oxidative stress and inflammation. Recent research has found that CGA can not only improve clinical symptoms in PCOS patients but also improve follicular development, hormone status, and oxidative stress in PCOS rats, indicating the therapeutic effect of CGA on PCOS. Notably, our previous series of studies has demonstrated the expression changes and regulatory mechanisms of HIF-1alpha signaling in PCOS ovaries. Considering the regulatory effect of CGA on the HIF-1alpha pathway, the present article systematically elucidates the therapeutic role and molecular mechanisms of HIF-1alpha signaling during the treatment of PCOS by CGA, including follicular development, steroid synthesis, inflammatory response, oxidative stress, and insulin resistance, in order to further understand the mechanisms of CGA effects in different types of diseases and to provide a theoretical basis for further promoting CGA-rich diets and beverages simultaneously.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
21
|
Ruano-González A, Pinto AA, Chinchilla N, Palma M, Barbero GF, Carrera C, Vázquez-Espinosa M. Determination of Caffeoylquinic Acids Content by UHPLC in Scolymus hispanicus Extracts Obtained through Ultrasound-Assisted Extraction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2340. [PMID: 37375965 DOI: 10.3390/plants12122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Scolymus hispanicus L., also known as golden thistle, Spanish oyster thistle or, more commonly, as tagarnina is a plant that belongs to the Asteraceae family. It is collected from the wild for human consumption in Mediterranean countries. It is a relevant ingredient in Andalusian culinary culture, where the midribs of young plants are harvested for consumption. Scolymus hispanicus L. contains a wide variety of phenolic compounds such as caffeoylquinic acids (CQAs), among others. In the present work, the major phenolic compounds present in tagarnina have been identified, with 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-diCQA) being the main ones. A method based on ultrasound-assisted extraction (UAE) has been developed for the extraction of these compounds, with the percentage of methanol, sample-to-solvent ratio and the pH being the most influential factors. The developed method has been validated and employed to determine the concentration of 5-CQA and 3,5-diCQA in the midribs of Scolymus hispanicus, collected in six different places in the south of Spain. The antioxidant activity of the samples has also been determined, and a direct correlation with their caffeoylquinic compounds content has been established, showing an antioxidant effect.
Collapse
Affiliation(s)
- Antonio Ruano-González
- Department of Organic Chemistry, Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Spain
| | - Ana A Pinto
- Department of Organic Chemistry, Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Spain
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Nuria Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, 11510 Puerto Real, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
22
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
23
|
Olea AF, Rubio J, Sedan C, Carvajal D, Nuñez M, Espinoza L, Llovera L, Nuñez G, Taborga L, Carrasco H. Antifungal Activity of 2-Allylphenol Derivatives on the Botrytis cinerea Strain: Assessment of Possible Action Mechanism. Int J Mol Sci 2023; 24:ijms24076530. [PMID: 37047503 PMCID: PMC10095406 DOI: 10.3390/ijms24076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes serious damage to the agricultural industry by infecting various important crops. 2-allylphenol has been used in China as a fungicide for more than a decade, and it has been shown that is a respiration inhibitor. A series of derivatives of 2-allylphenol were synthesized and their activity against B. cinerea was evaluated by measuring mycelial growth inhibition. Results indicate that small changes in the chemical structure or the addition of substituent groups in the aromatic ring induce important variations in activity. For example, changing the hydroxyl group by methoxy or acetyl groups produces dramatic increases in mycelial growth inhibition, i.e., the IC50 value of 2-allylphenol decreases from 68 to 2 and 1 μg mL−1. In addition, it was found that the most active derivatives induce the inhibition of Bcaox expression in the early stages of B. cinerea conidia germination. This gene is associated with the activation of the alternative oxidase enzyme (AOX), which allows fungus respiration to continue in the presence of respiratory inhibitors. Thus, it seems that 2-allylphenol derivatives can inhibit the normal and alternative respiratory pathway of B. cinerea. Therefore, we believe that these compounds are a very attractive platform for the development of antifungal agents against B. cinerea.
Collapse
|
24
|
Tosun F, Göger F, İşcan G, Kürkçüoğlu M, Kuran FK, Miski M. Biological Activities of the Fruit Essential Oil, Fruit, and Root Extracts of Ferula drudeana Korovin, the Putative Anatolian Ecotype of the Silphion Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:830. [PMID: 36840178 PMCID: PMC9959981 DOI: 10.3390/plants12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In the present study, preliminary phytochemical investigations were performed on the fruit essential oil and antioxidant-rich methanolic extracts of the fruits and roots of Ferula drudeana, the putative Anatolian ecotype of the Silphion plant, to corroborate its medicinal plant potential and identify its unique characteristics amongst other Ferula species. The essential oil from the fruits of the endemic species Ferula drudeana collected from Aksaray was analyzed by GC and GC/MS. The main components of the oil were determined as shyobunone (44.2%) and 6-epishyobunone (12.6%). The essential oil of the fruits and various solvent extracts of the fruits and roots of F. drudeana were evaluated for their antibacterial and anticandidal activity using microbroth dilution methods. The essential oil of the fruits, methanol, and methylene chloride extracts of the fruits and roots showed weak to moderate inhibitory activity against all tested microorganisms with MIC values of 78-2000 µg/mL. However, the petroleum ether extract of the roots showed remarkable inhibitory activity against Candida krusei and Candida utilis with MIC values of 19.5 and 9.75 µg/mL, respectively. Furthermore, all the samples were tested for their antioxidant activities using DPPH• TLC spot testing, online HPLC-ABTS screening, and DPPH/ABTS radical scavenging activity assessment assays. Methanolic extracts of the fruits and roots showed strong antioxidant activity in both systems.
Collapse
Affiliation(s)
- Fatma Tosun
- Department of Pharmacognosy, School of Pharmacy, İstanbul Medipol University, İstanbul 34083, Turkey
| | - Fatih Göger
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| |
Collapse
|
25
|
An Q, Zhang L, Qin X, Wang X, Wang W, Meng Q, Zhang Y. Phenolic Compounds from Sonchus arvensis Linn. and Hemerocallis citrina Baroni. Inhibit Sucrose and Stearic Acid Induced Damage in Caenorhabditis elegans. Molecules 2023; 28:molecules28041707. [PMID: 36838695 PMCID: PMC9966267 DOI: 10.3390/molecules28041707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 02/15/2023] Open
Abstract
Sonchus arvensis Linn. and Hemerocallis citrina Baroni. have been reported to improve body resistance. However, the underlying mechanism is not clear. In this study, Sonchus arvensis Linn. phenolic compounds (SAP) and Hemerocallis citrina Baroni. phenolic compounds (HCP) were extracted and their protective effects in Caenorhabditis elegans evaluated. SAP and HCP showed considerably different phenolic compositions. In the normal C. elegans model, HCP exhibited better effects in promoting growth than SAP. In the sucrose-incubated C. elegans model, both SAP and HCP showed positive effects against the high-sucrose-induced damage. In the stearic acid-incubated C. elegans model, both SAP and HCP improved lifespan, reproductive ability and growth, while HCP had a more evident effect than SAP on reproductive ability. The TGF-β signaling pathway was confirmed to be involved in the protective effects of SAP and HCP. The antioxidant ability of SAP was also found to be related to skn-1. Our study shows that both SAP and HCP have protective effects against high sucrose- or high stearic acid-induced damage.
Collapse
Affiliation(s)
- Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiyue Qin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
26
|
Bai C, Zhou X, Yu L, Wu A, Yang L, Chen J, Tang X, Zou W, Wu J, Zhu L. A Rapid and Sensitive UHPLC-MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain. Pharmaceuticals (Basel) 2023; 16:178. [PMID: 37259330 PMCID: PMC9964875 DOI: 10.3390/ph16020178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 12/25/2023] Open
Abstract
Chlorogenic acid (5-CQA) is a phenolic natural product that has been reported to improve neurobehavioral disorders and brain injury. However, its pharmacokinetics and distribution in the rat brain remain unclear. In this study, we established a rapid and sensitive UHPLC-MS/MS method for the determination of 5-CQA in rat plasma, cerebrospinal fluid (CSF), and brain tissue to investigate whether it could pass through the blood-brain barrier (BBB) and its distribution in the rat brain, and a Caenorhabditis elegans (C. elegans) strain paralysis assay was used to investigate the neuroprotective effect of 5-CQA in different brain tissues. Chromatographic separation of 5-CQA and glycyrrhetinic acid (GA, used as internal standard) was completed in 0.5 min, and the full run time was maintained at 4.0 min. Methodological validation results presented a high accuracy (95.69-106.81%) and precision (RSD ≤ 8%), with a lower limit of quantification of 1.0 ng/mL. Pharmacokinetic results revealed that 5-CQA can pass through the BBB into the CSF, but the permeability of BBB to 5-CQA (ratio of mean AUC0-∞ of CSF to plasma) was only approximately 0.29%. In addition, 5-CQA can penetrate into the rat brain extensively and is distributed with different intensities in different nuclei. A C. elegans strain paralysis assay indicated that the neuroprotective effect of 5-CQA is positively correlated with its content in different brain tissues. In conclusion, our study for the first time explored the BBB pass rate and brain tissue distribution of 5-CQA administered via the tail vein by the UHPLC-MS/MS method and investigated the potential main target area of 5-CQA for neuroprotection, which could provide a certain basis for the treatment of nervous system-related diseases of 5-CQA.
Collapse
Affiliation(s)
- Chongfei Bai
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaogang Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Le Yang
- Chengdu Analytical Applications Center, Shimadzu (China) Co., Ltd., Chengdu 610023, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Tang
- Chengdu Analytical Applications Center, Shimadzu (China) Co., Ltd., Chengdu 610023, China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Linjie Zhu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
27
|
He CL, Tang Y, Wu JM, Long T, Yu L, Teng JF, Qiu WQ, Pan R, Yu CL, Qin DL, Wu AG, Zhou XG. Chlorogenic acid delays the progression of Parkinson's disease via autophagy induction in Caenorhabditis elegans. Nutr Neurosci 2023; 26:11-24. [PMID: 34927571 DOI: 10.1080/1028415x.2021.2009993] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.
Collapse
Affiliation(s)
- Chang-Long He
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Jin-Feng Teng
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Wen-Qiao Qiu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Rong Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
| |
Collapse
|
28
|
Fu XQ, Lin ZL, Li LY, Wang Q, Deng L, Lin Z, Lin JJ, Wang XY, Shen TY, Zheng YH, Lin W, Li PJ. Chlorogenic acid alleviates hypoxic-ischemic brain injury in neonatal mice. Neural Regen Res 2023; 18:568-576. [DOI: 10.4103/1673-5374.350203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
30
|
A Comprehensive Chemical and Nutritional Analysis of New Zealand Yacon Concentrate. Foods 2022; 12:foods12010074. [PMID: 36613290 PMCID: PMC9818590 DOI: 10.3390/foods12010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Global interest in yacon (Smallanthus sonchifolius) is growing due to its potential as a functional food, attributable to its unique profile of bioactives and high fructooligosaccharide (FOS) content, which vary between cultivars. Our objective was to conduct a comprehensive chemical and nutritional analysis of New Zealand yacon concentrate (NZYC)-a sweet syrup derived from the roots of cultivar 'New Zealand', which was first grown in the 1980s. The major minerals in NZYC were potassium, phosphorus, and calcium. The FOS content ranged from 17.6 to 52.7 g/100g. Total phenolic content ranged from 565 to 785 mg gallic acid equivalents per 100 g; chlorogenic acid and caffeic acid were the major phenolic compounds. The major amino acids were L-arginine, L-glutamic acid, L-proline, L-aspartic acid, and asparagine. The major organic acids were citric, malic, quinic, and fumaric acids. Antioxidant activity ranged from 1084.14 to 3085.78 mg Trolox equivalents per 100 g depending on the assay used. The glycaemic index (GI) value was 40 ± 0.22, classifying it as a low-GI food. These results support the classification of NZYC as a nutraceutical food product for future diet therapy applications.
Collapse
|
31
|
Shah MA, Kang JB, Koh PO. Chlorogenic acid modulates the ubiquitin-proteasome system in stroke animal model. Lab Anim Res 2022; 38:41. [PMID: 36539905 PMCID: PMC9768937 DOI: 10.1186/s42826-022-00151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlorogenic acid, a phenolic compound, has potent antioxidant and neuroprotective properties. The ubiquitin-proteasome system is an important regulators of neurodevelopment and modulators of neuronal function. This system is associated with neurodevelopment and neurotransmission through degradation and removal of damaged proteins. Activation of the ubiquitin-proteasome system is a critical factor in preventing cell death. We have previously reported a decrease in the activity of the ubiquitin-proteasome system during cerebral ischemia. This study investigated whether chlorogenic acid regulates the ubiquitin-proteasome system in an animal stroke model. In adult rats, middle cerebral artery occlusion (MCAO) surgery was performed to induce focal cerebral ischemia. Chlorogenic acid (30 mg/kg) or normal saline was injected into the abdominal cavity 2 h after MCAO surgery, and cerebral cortex tissues were collected 24 h after MCAO damage. RESULTS Chlorogenic acid attenuated neurobehavioral disorders and histopathological changes caused by MCAO damage. We identified the decreases in ubiquitin C-terminal hydrolase L1, ubiquitin thioesterase OTUB1, proteasome subunit α type 1, proteasome subunit α type 3, and proteasome subunit β type 4 expression using a proteomics approach in MCAO animals. The decrease in these proteins was alleviated by chlorogenic acid. In addition, the results of reverse transcription-polymerase chain reaction confirmed these changes. The identified proteins were markedly reduced in MCAO damage, while chlorogenic acid prevented these reductions induced by MCAO. The decrease of ubiquitin-proteasome system proteins in ischemic damage was associated with neuronal apoptosis. CONCLUSIONS Our results showed that chlorogenic acid regulates ubiquitin-proteasome system proteins and protects cortical neurons from neuronal damage. These results provide evidence that chlorogenic acid has neuroprotective effects and maintains the ubiquitin-proteasome system in ischemic brain injury.
Collapse
Affiliation(s)
- Murad-Ali Shah
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| | - Ju-Bin Kang
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| |
Collapse
|
32
|
Valanciene E, Malys N. Advances in Production of Hydroxycinnamoyl-Quinic Acids: From Natural Sources to Biotechnology. Antioxidants (Basel) 2022; 11:antiox11122427. [PMID: 36552635 PMCID: PMC9774772 DOI: 10.3390/antiox11122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hydroxycinnamoyl-quinic acids (HCQAs) are polyphenol esters formed of hydroxycinnamic acids and (-)-quinic acid. They are naturally synthesized by plants and some micro-organisms. The ester of caffeic acid and quinic acid, the chlorogenic acid, is an intermediate of lignin biosynthesis. HCQAs are biologically active dietary compounds exhibiting several important therapeutic properties, including antioxidant, antimicrobial, anti-inflammatory, neuroprotective, and other activities. They can also be used in the synthesis of nanoparticles or drugs. However, extraction of these compounds from biomass is a complex process and their synthesis requires costly precursors, limiting the industrial production and availability of a wider variety of HCQAs. The recently emerged production through the bioconversion is still in an early stage of development. In this paper, we discuss existing and potential future strategies for production of HCQAs.
Collapse
Affiliation(s)
- Egle Valanciene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (E.V.); (N.M.)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (E.V.); (N.M.)
| |
Collapse
|
33
|
He F, Gao F, Cai N, Jiang M, Wu C. Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154474. [PMID: 36194973 DOI: 10.1016/j.phymed.2022.154474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Impaired alveolar macrophages phagocytosis can contribute to pathogenesis of acute respiratory distress syndrome (ARDS) and negatively impacts clinical outcomes. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound with potential anti-inflammatory and antioxidant bioactivities. Studies have shown that CGA plays a protective role in ARDS, however, the precise protective mechanism of CGA against ARDS, is still unclear. PURPOSE The aim of this study was to investigate whether CGA enhances alveolar macrophages phagocytosis to attenuate lung injury during ARDS. METHODS RAW264.7 cells were stimulated with lipopolysaccharides (100 μg/ml for 24 h) and treated with CGA (100, 200, and 400 μM CGA for 1 h) to measure pro-inflammatory cytokine levels, GPR37 expression and macrophages phagocytosis. Mouse models of ARDS induced by cecal ligation and perforation (CLP) surgery were treated with CGA (100 or 200 mg/kg) to investigate lung inflammatory injury and alveolar macrophages phagocytosis. Computational modeling was performed to examine potential binding sites of G protein-coupled receptor 37 (GPR37) with CGA, and the results were validated by interfering with the binding sites. RESULT In vitro, CGA notably ameliorated inflammatory response and increased phagocytosis in lipopolysaccharides-induced RAW264.7 cells. In vivo, CGA administration significantly alleviated lung inflammatory injury, decreased the bacteria load in the lung, promoted alveolar macrophages phagocytosis and improved the survival rate in mice with CLP-induced ARDS. Moreover, CGA markedly upregulated the expression of GPR37 in vivo and in vitro. However, the protective effect of CGA against ARDS were reversed after silencing the expression of GPR37. CONCLUSION CGA has a protective effect against ARDS and may enhance alveolar macrophages phagocytosis and attenuate lung inflammatory injury by upregulating GPR37 expression.
Collapse
Affiliation(s)
- Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China..
| | - Fengjuan Gao
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Cai
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Min Jiang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Wu
- Department of Infectious Disease, Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
34
|
Calani L, Bresciani L, Rodolfi M, Del Rio D, Petruccelli R, Faraloni C, Ganino T. Characterization of the (Poly)Phenolic Fraction of Fig Peel: Comparison among Twelve Cultivars Harvested in Tuscany. PLANTS (BASEL, SWITZERLAND) 2022; 11:3073. [PMID: 36432801 PMCID: PMC9697167 DOI: 10.3390/plants11223073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: The fig tree (Ficus carica L.) is widely cultivated in the Mediterranean area and it produces fruits largely consumed in the Mediterranean diet. Previous studies have shown that this fruit represents a rich source of (poly)phenols, which are mainly located in the peel rather than the pulp. In our study, fig peel derived from twelve different cultivars located in Tuscany was assessed for its (poly)phenol profile. (2) Methods: The (poly)phenol characterization was performed through ultra-high performance liquid chromatography coupled to multiple-stage mass spectrometry. (3) Results: Twenty-eight (poly)phenolic compounds were quantified in the investigated fig peel. It was possible to observe an interesting variability in the (poly)phenol content among the twelve cultivars of fig peel. Rutin and 5-caffeoylquinic acid were the main compounds in the greenish fig peel, while cyanidin-3-O-rutinoside was the main component in the dark-violet fig peel. (4) Conclusions: fig peel could be used as a (poly)phenol-rich ingredient in several food products to increase the bioactive compound content of foods. Moreover, dark-violet peel could be considered potentially suitable as a natural food colorant.
Collapse
Affiliation(s)
- Luca Calani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Margherita Rodolfi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Del Rio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Raffaella Petruccelli
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cecilia Faraloni
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Institute of BioEconomy (IBE-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
35
|
Ogunsuyi OB, Omage FB, Ijomone OM, Oboh G, Rocha JBT. Effect of chlorogenic acid plus donepezil on critical neurocortical enzyme activities, inflammatory markers, and synaptophysin immunoreactivity in scopolamine-assaulted rats, supported by multiple ligand simultaneous docking. J Food Biochem 2022; 46:e14312. [PMID: 35791518 DOI: 10.1111/jfbc.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022]
Abstract
The effect of chlorogenic acid (a natural phenolic acid ubiquitous in plant foods) on selected therapeutic properties of donepezil (DON) in a scopolamine (SCOP)-induced rat model of amnesia was the focus of this study. Adult albino (Wister strain) rats were allocated into five groups (n = 11) consisting of control, SCOP, SCOP + chlorogenic acid (CGA), SCOP + DON, and SCOP + CGA + DON for 7 days. Post-treatment, the rat brain cerebral cortex homogenate was assayed for cholinesterase and monoamine oxidase activities. Also, the reactive oxygen species, total thiol and nitric oxide contents, alongside catalase, and superoxide dismutase activities were determined. Routine histology for neuronal and glial cells as well as synaptophysin immunoreactivity was also carried out on the cerebral cortex. Thereafter, multiple ligand simultaneous docking was carried out for DON and CGA at the active sites of AChE and BChE. The results revealed that the biochemical parameters, glial cells, and synaptophysin immunoreactivity were significantly impaired in the cerebral cortex of scopolamine-treated rats. However, impaired butyrylcholinesterase and monoamine oxidase activity, together with antioxidant, glial cells, and synaptophysin levels were significantly ameliorated in scopolamine-treated rats administered DON + CGA compared to donepezil alone. The docking of both DON and CGA at the active sites of AChE or BChE showed higher binding energy to both enzymes compared to individual interactions of either DON or CGA. Hence, this study has been able to show that CGA could improve some of the therapeutic effects of DON, which could broaden the therapeutic spectrum of this drug. PRACTICAL APPLICATIONS: This study showed that chlorogenic acid (a major phenolic acid found in plant foods such as coffee) modulated some of the therapeutic properties of donepezil (an anticholinesterase drug used in the treatment of mild-to-moderate Alzheimer's disease). The combinations elicited better anti-butyrylcholinesterase, antimonoamine oxidase, and antioxidant properties, thus presenting this food-drug interaction as potentially able to offer better therapeutic properties.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Biomedical Technology Department, Federal University of Technology, Akure, Nigeria.,Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Folorunsho B Omage
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Human Anatomy Department, Federal University of Technology Akure, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
36
|
Chong H, Xi Y, Zhou Y, Wang G. Protective effects of chlorogenic acid on isoflurane-induced cognitive impairment of aged mice. Food Sci Nutr 2022; 10:3492-3500. [PMID: 36249964 PMCID: PMC9548348 DOI: 10.1002/fsn3.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by impairment in cognitive functions in patients following anesthesia and surgery. Chlorogenic acid (CGA) is a plant-derived compound possessing numerous bioactive properties. The aim of this study was to investigate the therapeutic potential of CGA in isoflurane (ISO)-induced cognitive dysfunction of aged mice, and further identify the mechanisms involved in the protective effects of CGA. A total of 80 male C57BL/6 mice, 20-month-old, were randomly divided into control group, isoflurane group (ISO), and ISO + 30 mg/kg CGA group and ISO + 60 mg/kg CGA. CGA was given orally once daily for 7 days to the mice and they were exposed to ISO (1.5%; 4 h). The open-field and Morris water maze tests were used to investigate the cognitive function of mice. Pretreatment with CGA significantly attenuated ISO-induced cognitive impairment. The levels of IL-1β, TNF-α, IL-6, nuclear p65 NF-kB, cleaved caspase-3, and Bax were significantly increased, while the levels of IkBα and Bcl-2 were decreased in the hippocampus 24 h after the ISO anesthesia. All the mentioned effects induced by ISO were reversed by CGA pretreatment. Furthermore, ISO exposure induced marked downregulation of SOD, CAT, HO-1, and NQO-1 and elevation of MDA and nuclear translocation of Nrf2 in the hippocampus tissue. All these parameters were reversed by CGA treatment. Importantly, the higher dose of CGA (60 mg/kg) showed a greater neuroprotective effect. In conclusion, these findings suggest that CGA attenuates the ISO-induced cognitive impairment via its anti-inflammatory, anti-oxidative, and anti-apoptotic properties in aged mice.
Collapse
Affiliation(s)
- Hao Chong
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Yang Xi
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Yan Zhou
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| | - Geng Wang
- Department of AnesthesiologyBeijing Jishuitan HospitalBeijingChina
| |
Collapse
|
37
|
Zheng T, Bielinski DF, Fisher DR, Zhang J, Shukitt-Hale B. Protective Effects of a Polyphenol-Rich Blueberry Extract on Adult Human Neural Progenitor Cells. Molecules 2022; 27:6152. [PMID: 36234687 PMCID: PMC9571008 DOI: 10.3390/molecules27196152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
The aging process impacts neural stem cells and causes a significant decline in neurogenesis that contributes to neuronal dysfunction leading to cognitive decline. Blueberries are rich in polyphenols and have been shown to improve cognition and memory in older humans. While our previous studies have shown that blueberry supplementations can increase neurogenesis in aged rodents, it is not clear whether this finding can be extrapolated to humans. We thus investigated the effects of blueberry treatments on adult hippocampal human neural progenitor cells (AHNPs) that are involved in neurogenesis and potentially in memory and other brain functions. Cultured AHNPs were treated with blueberry extract at different concentrations. Their viability, proliferation, and differentiation were evaluated with and without the presence of a cellular oxidative stressor, dopamine, and potential cellular mechanisms were also investigated. Our data showed that blueberry extract can significantly increase the viability and proliferation rates of control hippocampal AHNPs and can also reverse decreases in viability and proliferation induced by the cellular stressor dopamine. These effects may be associated with blueberry's anti-inflammatory, antioxidant, and calcium-buffering properties. Polyphenol-rich berry extracts thus confer a neuroprotective effect on human hippocampal progenitor cells in vitro.
Collapse
Affiliation(s)
- Tong Zheng
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Donna F. Bielinski
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Derek R. Fisher
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Jianyi Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Barbara Shukitt-Hale
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
38
|
Carpentieri S, Augimeri G, Ceramella J, Vivacqua A, Sinicropi MS, Pataro G, Bonofiglio D, Ferrari G. Antioxidant and Anti-Inflammatory Effects of Extracts from Pulsed Electric Field-Treated Artichoke By-Products in Lipopolysaccharide-Stimulated Human THP-1 Macrophages. Foods 2022; 11:2250. [PMID: 35954020 PMCID: PMC9368542 DOI: 10.3390/foods11152250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/01/2023] Open
Abstract
In this study, pulsed electric field (PEF-3 kV/cm; 5 kJ/kg) pretreatment was used to intensify the extractability of valuable intracellular compounds from artichoke by-products during a subsequent aqueous extraction (solid-liquid ratio = 1:10 g/mL, T = 20 °C; t = 120 min). Total phenolic content (TPC), antioxidant activity (DPPH, ABTS) and HPLC-PDA analysis of the artichoke extract (AE) and the biological effects on human cell lines were determined. Chlorogenic acid was found to be the most abundant phenolic compound (53% of the TPC) in the AE. The extract showed good antioxidant properties in a concentration-dependent manner. The potential biological effects of AE were investigated using THP-1 macrophages stimulated by lipopolysaccharides (LPS) as an in vitro model system of oxidative stress. Reduced reactive oxygen species production upon treatment with AE was found. Moreover, AE was able to reduce the secretion of the pro-inflammatory mediators Interleukin-6 and Monocyte Chemoattractant Protein-1 in LPS-stimulated macrophages, as determined by qRT-PCR and ELISA assays. These results highlighted the anti-inflammatory and antioxidant properties of the extracts from PEF-treated artichoke by-products, corroborating their potential application as a source of functional ingredients obtained through a feasible and sustainable process.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
39
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
40
|
Zeng P, Su HF, Ye CY, Qiu SW, Shi A, Wang JZ, Zhou XW, Tian Q. A Tau Pathogenesis-Based Network Pharmacology Approach for Exploring the Protections of Chuanxiong Rhizoma in Alzheimer’s Disease. Front Pharmacol 2022; 13:877806. [PMID: 35529440 PMCID: PMC9068950 DOI: 10.3389/fphar.2022.877806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia and one of the top medical concerns worldwide. Currently, the approved drugs to treat AD are effective only in treating the symptoms, but do not cure or prevent AD. Although the exact causes of AD are not understood, it is recognized that tau aggregation in neurons plays a key role. Chuanxiong Rhizoma (CR) has been widely reported as effective for brain diseases such as dementia. Thus, we explored the protections of CR in AD by a tau pathogenesis–based network pharmacology approach. According to ultra-HPLC with triple quadrupole mass spectrometry data and Lipinski’s rule of five, 18 bioactive phytochemicals of CR were screened out. They were shown corresponding to 127 tau pathogenesis–related targets, among which VEGFA, IL1B, CTNNB1, JUN, ESR1, STAT3, APP, BCL2L1, PTGS2, and PPARG were identified as the core ones. We further analyzed the specific actions of CR-active phytochemicals on tau pathogenesis from the aspects of tau aggregation and tau-mediated toxicities. It was shown that neocnidilide, ferulic acid, coniferyl ferulate, levistilide A, Z-ligustilide, butylidenephthalide, and caffeic acid can be effective in reversing tau hyperphosphorylation. Neocnidilide, senkyunolide A, butylphthalide, butylidenephthalide, Z-ligustilide, and L-tryptophan may be effective in promoting lysosome-associated degradation of tau, and levistilide A, neocnidilide, ferulic acid, L-tryptophan, senkyunolide A, Z-ligustilide, and butylidenephthalide may antagonize tau-mediated impairments of intracellular transport, axon and synaptic damages, and neuron death (especially apoptosis). The present study suggests that acting on tau aggregation and tau-mediated toxicities is part of the therapeutic mechanism of CR against AD.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Fei Su
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo-Wen Qiu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xin-Wen Zhou, ; Qing Tian,
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xin-Wen Zhou, ; Qing Tian,
| |
Collapse
|
41
|
Hua R, Ding Y, Liu X, Niu B, Chen X, Zhang J, Liu K, Yang P, Zhu X, Xue J, Wang H. Lonicerae Japonicae Flos Extract Promotes Sleep in Sleep-Deprived and Lipopolysaccharide-Challenged Mice. Front Neurosci 2022; 16:848588. [PMID: 35495054 PMCID: PMC9040552 DOI: 10.3389/fnins.2022.848588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lonicerae Japonicae Flos (LJF) is commonly used in Chinese herbal medicines and exhibits anti-viral, anti-oxidative, and anti-inflammatory properties. The reciprocal relationship between sleep, the immune system and the central nervous system is well-established in the animal models. In this study, we used the mouse model to analyze the beneficial effects of the LJF on the dysregulated sleep-wakefulness cycle in response to acute sleep deprivation and lipopolysaccharide (LPS)-induced inflammation and the potential underlying mechanisms. Polysomnography data showed that LJF increased the time spent in non-rapid eye movement (NREM) sleep during the day under basal conditions. Furthermore, latency to sleep was reduced and the time spent in rapid eye movement (REM) sleep was increased during recovery from acute sleep deprivation. Furthermore, LJF-treated mice showed increased REM sleep and altered electroencephalogram (EEG) power spectrum in response to intra-peritoneal injection of LPS. LJF significantly reduced the levels of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in the blood serum as well as hippocampus, and medial prefrontal cortex (mPFC) tissues in the LPS-challenged mice by inhibiting microglial activation. Moreover, LJF increased the time spent in REM sleep in the LPS-challenged mice compared to the control mice. These results suggested that LJF stimulated the sleep drive in response to acute sleep deprivation and LPS-induced inflammation, thereby increasing REM sleep for recovery and neuroprotection. In conclusion, our findings demonstrate that the clinical potential of LJF in treating sleep disorders related to sleep deprivation and neuro-inflammation.
Collapse
Affiliation(s)
- Ruifang Hua
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yan Ding
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaolong Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bingxuan Niu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Jingjing Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Kerui Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pei Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xiaofei Zhu,
| | - Jintao Xue
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Jintao Xue,
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang,
| |
Collapse
|
42
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
43
|
Su MT, Jheng YS, Lu CW, Wu WJ, Yang SY, Chuang WC, Lee MC, Wu CH. Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer's Disease Model of Drosophila melanogaster by Alleviating Aβ 42 Expression. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040572. [PMID: 35214904 PMCID: PMC8878444 DOI: 10.3390/plants11040572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 05/13/2023]
Abstract
Alzheimer's disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to the abnormal accumulation of amyloid β (Aβ) proteins. Yi-Gan-San (YGS), a traditional herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia and dementia. The aim of this study was to examine antioxidant capacity and cytotoxicity of YGS treatment by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in vitro. We explored neuroprotective effects of YGS treatment in alleviating Aβ neurotoxicity of Drosophila melanogaster in vivo by comparing survival rate, climbing index, and Aβ expressions through retinal green fluorescent protein (GFP) expression, highly sensitive immunomagnetic reduction (IMR) and Western blotting assays. In the in vitro study, our results showed that scavenging activities of free radical and SH-SY5Y nerve cell viability were increased significantly (p < 0.01-0.05). In the in vivo study, Aβ42-expressing flies (Aβ42-GFP flies) and their WT flies (mCD8-GFP flies) were used as an animal model to examine the neurotherapeutic effects of YGS treatment. Our results showed that, in comparison with those Aβ42 flies under sham treatments, Aβ42 flies under YGS treatments showed a greater survival rate, better climbing speed, and lower Aβ42 aggregation in Drosophila brain tissue (p < 0.01). Our findings suggest that YGS should have a beneficial alternative therapy for AD and dementia via alleviating Aβ neurotoxicity in the brain tissue.
Collapse
Affiliation(s)
- Ming-Tsan Su
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (M.-T.S.); (Y.-S.J.); (C.-W.L.); (W.-J.W.)
| | - Yong-Sin Jheng
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (M.-T.S.); (Y.-S.J.); (C.-W.L.); (W.-J.W.)
| | - Chen-Wen Lu
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (M.-T.S.); (Y.-S.J.); (C.-W.L.); (W.-J.W.)
| | - Wen-Jhen Wu
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (M.-T.S.); (Y.-S.J.); (C.-W.L.); (W.-J.W.)
| | | | | | - Ming-Chung Lee
- Brion Research Institute of Taiwan, Taipei 23143, Taiwan;
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (M.-T.S.); (Y.-S.J.); (C.-W.L.); (W.-J.W.)
- Correspondence:
| |
Collapse
|
44
|
Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L. Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 2022; 36:1386-1401. [PMID: 35133045 DOI: 10.1002/ptr.7401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022]
Abstract
As one of the major diabetic microvascular complications, diabetic retinopathy (DR) is mainly initiated by the blood-retinal barrier (BRB) dysfunction. Chlorogenic acid (CGA) is a natural polyphenolic compound in Lonicerae Japonicae Flos, which traditionally has the beneficial function for eyes and is commonly included in many anti-diabetic formulas. In this study, the potential protective mechanism of CGA against DR was investigated. Streptozotocin (STZ) was used to induce diabetes in mice. CGA attenuated BRB dysfunction and reversed endothelial-mesenchymal transition (EndoMT) and epithelial-mesenchymal transition (EMT) in retinas in vivo. CGA inhibited microglia activation and reduced tumor necrosis factor (TNF)α release both in vivo and in vitro. CGA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) activation and prevented EndoMT/EMT in TNFα-treated human retinal endothelial cells (HRECs) or retinal pigment epithelial APRE19 cells. CGA alleviated endothelial/epithelial barrier oxidative injury in HRECs or APRE19 cells stimulated with TNFα, but this effect was disappeared in cells co-incubated with Nrf2 inhibitor. Additionally, the CGA-supplied alleviation on BRB damage and EndoMT/EMT was markedly weakened in retinas from STZ-treated Nrf2 knock-out mice. All results suggest that CGA improves DR through attenuating BRB injury by reducing microglia-initiated inflammation and preventing TNFα-induced EndoMT/EMT and oxidative injury via inducing Nrf2 activation.
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyu Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Li W, Deng X, Wu Z, Zhang L, Jiao J. An Electrochemical Sensor for Quantitation of the Oral Health Care Agent Chlorogenic Acid Based on Bimetallic Nanowires with Functionalized Reduced Graphene Oxide Nanohybrids. ACS OMEGA 2022; 7:4614-4623. [PMID: 35155952 PMCID: PMC8829851 DOI: 10.1021/acsomega.1c06612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Chlorogenic acid (CGA), a phenolic acid from coffee, has been regarded as a powerful ingredient against oxidative stress and inflammation. Meanwhile, its healing feature to interfere with periodontal disease (PD) makes it a promising drug candidate. However, the existing methods for chlorogenic acid detection limit its practical application in purification and further pharmacological study in stomatology due to their lack of accuracy and productivity. Therefore, it is crucial to find a forceful approach to precisely evaluate CGA for an in-depth anti-PD study. In this work, we reported a facile and controllable synthesis of Pt@Pd nanowires (NWs) in a non-compacted core-shell structure with high electrocatalytic activity. In addition, polyethylenimine (PEI)-capped reduced graphene oxide (rGO) nanoflakes provided large binding sites for a network structure composed of interweaved Pt@Pd nanowires and protected hemin from self-destruction, which empowered Pt@Pd NWs-Hemin-PEI-rGO nanohybrids to own a large electroactive surface area and great electrochemical property for CGA detection. The enzyme-free electrochemical sensor based on Pt@Pd NWs-Hemin-PEI-rGO displayed a favorable capacity for trace CGA detection with a detection limit of 7.8 nM and a wide linear range of 0.5 μM to 4 mM. The exceptional sensitivity and selectivity of the sensor made it accomplish the measurements of chlorogenic acid in soft drinks and coffee with high consistency of HPLC results. The satisfactory performance of the obtained sensor enables it to be used for quality control and study of drug metabolism in PD treatments.
Collapse
Affiliation(s)
- Wei Li
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
| | - Xiuli Deng
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Tianjin
Beichen Traditional Chinese Medicine Hospital, Tianjin 300400, China
| | - Ziyu Wu
- Tianjin
Beichen Traditional Chinese Medicine Hospital, Tianjin 300400, China
| | - Louqiang Zhang
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
| | - Jian Jiao
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
- School
of Dentistry, Stomatological Hospital, Tianjin
Medical University, Tianjin 300070, China
| |
Collapse
|
46
|
Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Molecules 2022; 27:molecules27020448. [PMID: 35056759 PMCID: PMC8778917 DOI: 10.3390/molecules27020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 11/22/2022] Open
Abstract
Considering the current trend in the global coffee market, which involves an increased demand for decaffeinated coffee, the aim of the present study was to formulate coffee blends with reduced caffeine content, but with pronounced antioxidant and attractive sensory properties. For this purpose, green and roasted Arabica and Robusta coffee beans of different origins were subjected to the screening analysis of their chemical and bioactive composition using standard AOAC, spectrophotometric and chromatographic methods. From roasted coffee beans, espresso, Turkish and filter coffees were prepared, and their sensory evaluation was performed using a 10-point hedonic scale. The results showed that Arabica coffee beans were richer in sucrose and oil, while Robusta beans were characterized by higher content of all determined bioactive parameters. Among all studied samples, the highest content of 3-O-caffeoylquinic acid (14.09 mg g−1 dmb), 4-O-caffeoylquinic acid (8.23 mg g−1 dmb) and 5-O-caffeoylquinic acid (4.65 mg g−1 dmb), as well as caffeine (22.38 mg g−1 dmb), was detected in roasted Robusta beans from the Minas Gerais region of Brazil, which were therefore used to formulate coffee blends with reduced caffeine content. Robusta brews were found to be more astringent and recognized as more sensorily attractive, while Arabica decaffeinated brews were evaluated as more bitter. The obtained results point out that coffee brews may represent a significant source of phenolic compounds, mainly caffeoylquinic acids, with potent antioxidant properties, even if they have reduced caffeine content.
Collapse
|
47
|
Li L, Zhang H, Chen B, Xia B, Zhu R, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, Orekhov AN, Prentki M, Wang L, Guo S, Zhang D. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114653. [PMID: 34547420 DOI: 10.1016/j.jep.2021.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, H2X 0A9, QC, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuzhen Guo
- Department of Scientific Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
48
|
Kim JM, Kang JY, Park SK, Moon JH, Kim MJ, Lee HL, Jeong HR, Kim JC, Heo HJ. Powdered Green Tea (Matcha) Attenuates the Cognitive Dysfunction via the Regulation of Systemic Inflammation in Chronic PM 2.5-Exposed BALB/c Mice. Antioxidants (Basel) 2021; 10:antiox10121932. [PMID: 34943034 PMCID: PMC8750520 DOI: 10.3390/antiox10121932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to evaluate the anti-amnesic effect of the aqueous extract of powdered green tea (matcha) (EM) in particulate matter (PM)2.5-induced systemic inflammation in BALB/c mice. EM ameliorated spatial learning and memory function, short-term memory function, and long-term learning and memory function in PM2.5-induced mice. EM protected against antioxidant deficit in pulmonary, dermal, and cerebral tissues. In addition, EM improved the cholinergic system through the regulation of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activity in brain tissue, and it protected mitochondrial dysfunction by regulating the production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP contents in brain tissue. EM attenuated systemic inflammation and apoptotic signaling in pulmonary, dermal, olfactory bulb, and hippocampal tissues. Moreover, EM suppressed neuronal cytotoxicity and cholinergic dysfunction in hippocampal tissue. This study suggests that EM might be a potential substance to improve PM2.5-induced cognitive dysfunction via the regulation of systemic inflammation.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jong Hyun Moon
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | - Hye Rin Jeong
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
| | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (J.H.M.); (M.J.K.); (H.L.L.); (H.R.J.)
- Correspondence: ; Tel.: +82-557721907
| |
Collapse
|
49
|
Molska GR, Paula-Freire LIG, Sakalem ME, Köhn DO, Negri G, Carlini EA, Mendes FR. Green coffee extract attenuates Parkinson's-related behaviors in animal models. AN ACAD BRAS CIENC 2021; 93:e20210481. [PMID: 34730624 DOI: 10.1590/0001-3765202120210481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have shown an inverse association between coffee consumption and the development of Parkinson's disease (PD). The effects of the oral treatment with green (non-roasted) coffee extracts (CE, 100 or 400 mg/kg) and caffeine (31.2 mg/kg) were evaluated on catalepsy induced by haloperidol in mice, and unilateral 6-OHDA lesion of medial forebrain bundle (MFB) or striatum in rats. Also, the in vitro antioxidant activity and the monoamine levels in the striatum were investigated. CE presented a mild antioxidant activity in vitro and its administration decreased the catalepsy index. CE at the dose of 400 mg/kg induced ipsilateral rotations 14 days after lesion; however, chronic 30-day CE and caffeine treatments did not interfere with the animals' rotation after apomorphine or methamphetamine challenges in animals with MFB lesion, nor on monoamines levels. Furthermore, CE and caffeine were effective in inhibiting the asymmetry between ipsilateral and contralateral rotations induced by methamphetamine and apomorphine in animals with lesion in the striatum but did not avoid the monoamines depletion. These results indicate that CE components indirectly modulate dopaminergic transmission, suggesting a pro-dopaminergic action of CE, and further investigation must be conducted to elucidate the mechanisms of action and the possible neuroprotective role in PD.
Collapse
Affiliation(s)
- Graziella R Molska
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil.,Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G6, Canada
| | - Lyvia Izaura G Paula-Freire
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Marna E Sakalem
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Daniele O Köhn
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Giuseppina Negri
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Elisaldo A Carlini
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, Rua Botucatu, 740, 4º andar, 04024-002 São Paulo, SP, Brazil
| | - Fúlvio R Mendes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Arcturus, 03, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
50
|
Chlorogenic Acid Decreases Glutamate Release from Rat Cortical Nerve Terminals by P/Q-Type Ca 2+ Channel Suppression: A Possible Neuroprotective Mechanism. Int J Mol Sci 2021; 22:ijms222111447. [PMID: 34768876 PMCID: PMC8583876 DOI: 10.3390/ijms222111447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.
Collapse
|