1
|
Zur Nedden S, Safari MS, Weber D, Kuenkel L, Garmsiri C, Lang L, Orset C, Freret T, Haelewyn B, Hotze M, Kwiatkowski M, Sarg B, Faserl K, Savic D, Skvortsova II, Krogsdam A, Carollo S, Trajanoski Z, Oberacher H, Zlotek D, Ostermaier F, Cameron A, Baier G, Baier-Bitterlich G. Protein kinase N1 deficiency results in upregulation of cerebral energy metabolism and is highly protective in in vivo and in vitro stroke models. Metabolism 2024; 161:156039. [PMID: 39332493 DOI: 10.1016/j.metabol.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND AIM We recently identified protein kinase N1 (PKN1) as a master regulator of brain development. However, its function in the adult brain has not been clearly established. In this study, we assessed the cerebral energetic phenotype of wildtype (WT) and global Pkn1 knockout (Pkn1-/-) animals under physiological and pathophysiological conditions. METHODS Cerebral energy metabolism was analyzed by 13C6-glucose tracing in vivo and real time seahorse analysis of extracellular acidification rates as well as mitochondrial oxygen consumption rates (OCR) of brain slice punches in vitro. Isolated WT and Pkn1-/- brain mitochondria were tested for differences in OCR with different substrates. Metabolite levels were determined by mass spectrometric analysis in brain slices under control and energetic stress conditions, induced by oxygen-glucose deprivation and reperfusion, an in vitro model of ischemic stroke. Differences in enzyme activities were assessed by enzymatic assays, western blotting and bulk RNA sequencing. A middle cerebral artery occlusion stroke model was used to analyze lesion volumes and functional recovery in WT and Pkn1-/- mice. RESULTS Pkn1 deficiency resulted in a remarkable upregulation of cerebral energy metabolism, in vivo and in vitro. This was due to two separate mechanisms involving an enhanced glycolytic flux and higher pyruvate-induced mitochondrial OCR. Mechanistically we show that Pkn1-/- brain tissue exhibits an increased activity of the glycolysis rate-limiting enzyme phosphofructokinase. Additionally, glucose-1,6-bisphosphate levels, a metabolite that increases mitochondrial pyruvate uptake, were elevated upon Pkn1 deficiency. Consequently, Pkn1-/- brain slices had more ATP and a greater accumulation of ATP degradation metabolites during energetic stress. This translated into increased phosphorylation and activity of adenosine monophosphate (AMP)-activated protein kinase (AMPK) during in vitro stroke. Accordingly, Pkn1-/- brain slices showed a post-ischemic transcriptional upregulation of energy metabolism pathways and Pkn1 deficiency was strongly protective in in vitro and in vivo stroke models. While inhibition of mitochondrial pyruvate uptake only moderately affected the protective phenotype, inhibition of AMPK in Pkn1-/- slices increased post-ischemic cell death in vitro. CONCLUSION This is the first study to comprehensively demonstrate an essential and unique role of PKN1 in cerebral energy metabolism, regulating glycolysis and mitochondrial pyruvate-induced respiration. We further uncovered a highly protective phenotype of Pkn1 deficiency in both, in vitro and in vivo stroke models, validating inhibition of PKN1 as a promising new therapeutic target for the development of novel stroke therapies.
Collapse
Affiliation(s)
- Stephanie Zur Nedden
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Motahareh S Safari
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Dido Weber
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Louisa Kuenkel
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Carolin Garmsiri
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Luisa Lang
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Tom Freret
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Benoît Haelewyn
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Madlen Hotze
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Marcel Kwiatkowski
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Dragana Savic
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Ira-Ida Skvortsova
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Anne Krogsdam
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Sandro Carollo
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Medical University of Innsbruck, Institute of Legal Medicine and Core Facility Metabolomics, 6020 Innsbruck, Austria
| | - Dominik Zlotek
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Florian Ostermaier
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Angus Cameron
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gottfried Baier
- Medical University of Innsbruck, Institute for Cell Genetics, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Zhang J, Wang S, Zhang H, Yang X, Ren X, Wang L, Yang Y, Yang Y, Wen Y. Drp1 acetylation mediated by CDK5-AMPK-GCN5L1 axis promotes cerebral ischemic injury via facilitating mitochondrial fission. Mol Med 2024; 30:173. [PMID: 39390372 PMCID: PMC11468353 DOI: 10.1186/s10020-024-00948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
The aberrant acetylation of mitochondrial proteins is involved in the pathogenesis of multiple diseases including neurodegenerative diseases and cerebral ischemic injury. Previous studies have shown that depletion of mitochondrial NAD+, which is necessary for mitochondrial deacetylase activity, leads to decreased activity of mitochondrial deacetylase and thus causes hyperacetylation of mitochondrial proteins in ischemic brain tissues, which results in altered mitochondrial dynamics. However, it remains largely unknown about how mitochondrial dynamics-related protein Drp1 is acetylated in ischemic neuronal cells and brain tissues. Here, we showed that Drp1 and GCN5L1 expression was up-regulated in OGD-treated neuronal cells and ischemic brain tissues induced by dMCAO, accompanied by the increased mitochondrial fission, mtROS accumulation, and cell apoptosis. Further, we confirmed that ischemia/hypoxia promoted Drp1 interaction with GCN5L1 in neuronal cells and brain tissues. GCN5L1 knockdown attenuated, while its overexpression enhanced Drp1 acetylation and mitochondrial fission, indicating that GCN5L1 plays a crucial role in ischemia/hypoxia-induced mitochondrial fission by acetylating Drp1. Mechanistically, ischemia/hypoxia induced Drp1 phosphorylation by CDK5 upregulation-mediated activation of AMPK in neuronal cells, which in turn facilitated the interaction of GCN5L1 with Drp1, thus enhancing Drp1 acetylation and mitochondrial fission. Accordingly, inhibition of AMPK alleviated ischemia/hypoxia- induced Drp1 acetylation and mitochondrial fission and protected brain tissues from ischemic damage. These findings provide a novel insight into the functional roles of GCN5L1 in regulating Drp1 acetylation and identify a previously unrecognized CDK5-AMPK-GCN5L1 pathway that mediates the acetylation of Drp1 in ischemic brain tissues.
Collapse
Affiliation(s)
- Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Haitao Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaotong Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Xin Ren
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yihan Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Activated AMPK Protects Against Chronic Cerebral Ischemia in Bilateral Carotid Artery Stenosis Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01312-6. [DOI: 10.1007/s10571-022-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
|
4
|
Babataheri S, Malekinejad H, Mosarrezaii A, Soraya H. Pre-treatment or post-treatment with hydroxychloroquine demonstrates neuroprotective effects in cerebral ischemia/reperfusion. Fundam Clin Pharmacol 2022; 37:589-598. [PMID: 36433900 DOI: 10.1111/fcp.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Stroke is a serious life-threatening medical condition and is one of the principal reasons for death and disabilities worldwide. The aim of the present study was to determine the neuroprotective effects of hydroxychloroquine (HCQ) and the timing of its administration in cerebral ischemia/reperfusion (I/R) in rats. A global I/R model was used, and HCQ was administered in either pre- or post-treatment doses of 25 and 50 mg/kg. Effects of HCQ on infarct size, histological changes, oxidative stress, and learning and memory were evaluated. Phospho-AMPK and SQSTM1/p62 protein levels were also measured to elucidate the possible mechanisms involved. HCQ in both pre- (at doses of 25 and 50 mg/kg) or post-treatment (at a dose of 50 mg/kg) protocols reduces brain infarct size and histopathological changes and improves learning and memory after cerebral I/R. Pre-treatment with HCQ reduced AMPK activity with no significant effect on SQSTM1/p62 increment. Post-treatment with HCQ increased AMPK activity and SQSTM1/p62 protein levels. Our results show the neuroprotective effects of HCQ on cerebral I/R through the reduction in infarct size, histopathological changes, and improvement in memory and learning functions. Moreover, AMPK and autophagy may play a role in this protective effect.
Collapse
Affiliation(s)
- Shabnam Babataheri
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Arash Mosarrezaii
- Department of Neurology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Roflupram, a novel phosphodiesterase 4 inhibitor, inhibits lipopolysaccharide-induced neuroinflammatory responses through activation of the AMPK/Sirt1 pathway. Int Immunopharmacol 2020; 90:107176. [PMID: 33243606 DOI: 10.1016/j.intimp.2020.107176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/24/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
Roflupram (ROF) is a novel phosphodiesterase 4 inhibitor. We previously found that ROF suppressed the production of pro-inflammatory factors in microglial cells; however, the underlying mechanisms are largely unknown. The present study aimed to elucidate the underlying molecular mechanisms of the anti-neuroinflammatory effects of ROF in lipopolysaccharide (LPS)-activated microglial cells and LPS-challenged mice. Treatment with ROF suppressed LPS-induced expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in BV-2 microglia cell line. Immunofluorescence and Western blotting analysis showed that ROF significantly inhibited the activation of microglia, as evidenced by decreased expression of ionized calcium binding adaptor molecule-1 (Iba1). Similar results were obtained in primary cultured microglial cells. ROF induced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Sirtuin 1 (Sirt1). Interestingly, the AMPK inhibitor, compound C, blocked the role of ROF in both the phosphorylation of AMPK and the expression of Sirt1 in BV-2 cells stimulated with LPS. More importantly, the Sirt1 inhibitor, EX527, abolished the inhibitory role of ROF on the production of pro-inflammatory factors, and reactivated BV-2 cells. In mice challenged with LPS, ROF improved cognition and decreased the levels of IL-6 and TNF-α in both the cortex and hippocampus. In contrast, EX527 weakened the effects of ROF on cognitive enhancement and reduction of pro-inflammatory factors in the cortex and hippocampus. Furthermore, EX527 blocked the inhibitory role of ROF in the activation of microglial cells in both the hippocampus and cortex. Taken together, our results indicated that ROF attenuated LPS-induced neuroinflammatory responses in microglia, and the AMPK/Sirt1 pathway is essential for the anti-inflammatory effects of ROF.
Collapse
|
6
|
Wu H, Guo P, Li X, Jin Z, Yang X, Wang Y. Hydroxybutyrate promotes the recovery from cerebral infarction by activating Amp-activated protein kinase signaling. Exp Ther Med 2018; 16:1195-1202. [PMID: 30116369 PMCID: PMC6090228 DOI: 10.3892/etm.2018.6304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that hydroxybutyrate (GHB) is effective for protection against ischemia/brain damage in rat models. However, the specific underlying mechanism is poorly understood. In line with the previous studies, the present data showed that GHB improves cerebral blood flow (CBF) and physiological variables, including pH, pCO2 and pO2. Using CD31-immunofluorescence staining, a reduction of blood vessel density was indicated in the middle cerebral artery occlusion (MCAO) group; however, GHB treatment enhanced the cerebral vascular density in the ischemic area. In addition, GHB treatment increased the number of BrdU/lectin double-positive cells. Furthermore, the reduction of nestin-positive cells was identified in the brain of MCAO rats, while the number of nestin-positive cells was significantly increased after GHB administration. Compared with the sham group, the activation of Amp-activated protein kinase (AMPK) was identified in MCAO rats, suggesting stress-mediated AMPK activation after ischemia. Furthermore, the western blot assay showed that GHB treatment resulted in further activation of AMPK and endothelial nitric oxide synthase (eNOS), suggesting an enhanced energy supply. In summary, the present novel data indicates that GHB promotes the recovery from cerebral infarction mainly by activating AMPK and eNOS signaling, thereby enhancing angiogenesis and neuron regeneration.
Collapse
Affiliation(s)
- Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
7
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Am J Cancer Res 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
|
8
|
Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, Huang J, Xu B, Long D, Li J, Li Q, Xu L, Xuan A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69:351-363. [PMID: 29253574 DOI: 10.1016/j.bbi.2017.12.009] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer'sdisease(AD) is characterized by deposition of amyloid-β (Aβ)plaques, neurofibrillary tangles, andneuronal loss, accompaniedbyneuroinflammation. Neuroinflammatoryprocesses are thought to contribute toAD pathophysiology. Metformin has been reported to have anti-inflammatory efficacy. However, whether metformin is responsible for the anti-neuroinflammationand neuroprotection on APPswe/PS1ΔE9 (APP/PS1) mice remains unclear. Here we showed that metformin attenuated spatial memory deficit, neuron loss in the hippocampus and enhanced neurogenesis in APP/PS1 mice. In addition, metformin administration decreased amyloid-β (Aβ)plaque load and chronic inflammation (activated microglia and astrocytes as well as pro-inflammatory mediators) in the hippocampus and cortex. Further study demonstrated that treatment with metformin enhanced cerebral AMPK activation. Meanwhile, metformin notably suppressed the activation of P65 NF-κB, mTOR and S6K, reduced Bace1 protein expression. Our data suggest that metformin can exert functional recovery of memory deficits and neuroprotective effect on APP/PS1 mice via triggering neurogenesis and anti-inflammation mediated by regulating AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-κB signaling pathways in the hippocampus, which may contribute to improvement in neurological deficits.
Collapse
Affiliation(s)
- Zhenri Ou
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiangdong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingyi Huang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Biao Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Dahong Long
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
9
|
Cao M, Fang J, Wang X, Wang Y, Duan K, Ye F, Ouyang W, Tong J. Activation of AMP-activated protein kinase (AMPK) aggravated postoperative cognitive dysfunction and pathogenesis in aged rats. Brain Res 2018; 1684:21-29. [PMID: 29408499 DOI: 10.1016/j.brainres.2018.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
The upstream signal molecule modulating neuro-inflammation and synaptic changes during the pathogenesis of postoperative cognitive dysfunction (POCD) is still elusive. Here, we examined the effects and mechanisms of energy sensor AMP-activated protein kinase (AMPK) in the pathogenesis of POCD. Our data showed that surgery significantly increased the expression of p-AMPK in aged rats (p < 0.05), but not in adult rats (p > 0.05). Moreover, inhibiting AMPK activation via compound C during operation significantly improved surgery-induced impairment of the learning and memory of aged rats in water maze (p < 0.05). Further mechanism studies showed that corresponding to the impairment of learning and memory after surgery, surgery significantly increased the activation of microglia, decreased the expressions of NR2B and p-NR2B, and increased the expressions of Tau and p-Tau, which also were obviously restored by inhibiting AMPK during operation. In contrast, Inhibiting AMPK activation during operation didn't change ATP level in the hippocampus of aged rats after surgery. These data suggest that surgery induced activation of AMPK in hippocampus in an age-dependent manner. AMPK plays important roles in POCD of aged rats via multiple mechanisms, and is a possible molecular target for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Mengya Cao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiakai Fang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yi Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Kaiming Duan
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Feng Ye
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
Pineda-Ramírez N, Gutiérrez Aguilar GF, Espinoza-Rojo M, Aguilera P. Current evidence for AMPK activation involvement on resveratrol-induced neuroprotection in cerebral ischemia. Nutr Neurosci 2017; 21:229-247. [DOI: 10.1080/1028415x.2017.1284361] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Narayana Pineda-Ramírez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| | - Germán Fernando Gutiérrez Aguilar
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39087, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| |
Collapse
|
11
|
Yang H, Li L, Zhou K, Wang Y, Guan T, Chai C, Kou J, Yu B, Yan Y. Shengmai injection attenuates the cerebral ischemia/reperfusion induced autophagy via modulation of the AMPK, mTOR and JNK pathways. PHARMACEUTICAL BIOLOGY 2016; 54:2288-2297. [PMID: 26983890 DOI: 10.3109/13880209.2016.1155625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Shengmai injection (SMI) is a patented Chinese medicine originated from the ancient Chinese herbal compound Shengmai san, which is used extensively for the treatment of cardiovascular and cerebrovascular disease in the clinic. Objective To determine the neuroprotective effect of SMI, we investigated the effect of SMI on cerebral ischemia/reperfusion (I/R) injury in mice as well as the mechanisms underlying this effect. Materials and methods Right middle cerebral artery was occluded by inserting a thread through internal carotid artery for 1 h, and then reperfused for 24 h in mice. The neuroprotective effects were determined using transmission electron microscopic examination, the evaluation of infarct volume, neurological deficits and water brain content. Related mechanisms were evaluated by immunofluorescence staining and western blotting. SMI was injected intraperitoneally after 1 h of ischemia at doses of 1.42, 2.84 and 5.68 g/kg. The control group received saline as the SMI vehicle. Results Results showed that SMI (1.42, 2.84 and 5.68 g/kg) could significantly reduce the infarct volume, SMI (5.68 g/kg) could also significantly improve the neurological deficits, decreased brain water content, as well as the neuronal morphological changes. SMI (5.68g/kg) could significantly inhibit the expression of autophagy-related proteins: Beclin1 and LC3. It also reduced the increase in LC3-positive cells. SMI (5.68 g/kg) remarkably inhibited the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and Jun N-terminal kinase (JNK) after 24 h of reperfusion. Discussion and conclusion The results indicate that SMI provides remarkable protection against cerebral ischemia/reperfusion injury, which may be partly due to the inhibition of autophagy and related signalling pathways.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/drug effects
- Beclin-1/metabolism
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Brain/ultrastructure
- Brain Edema/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Combinations
- Drugs, Chinese Herbal/administration & dosage
- Enzyme Activation
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/prevention & control
- Injections, Intraperitoneal
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/metabolism
- Neuroprotective Agents/administration & dosage
- Phosphorylation
- Phytotherapy
- Plants, Medicinal
- Reperfusion Injury/enzymology
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Haopeng Yang
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Long Li
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Kecheng Zhou
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Yuqing Wang
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Teng Guan
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Chengzhi Chai
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Junping Kou
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Boyang Yu
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Yongqing Yan
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
12
|
Compound C induces the ramification of murine microglia in an AMPK-independent and small rhogtpase-dependent manner. Neuroscience 2016; 331:24-39. [DOI: 10.1016/j.neuroscience.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
|
13
|
Ran QQ, Chen HL, Liu YL, Yu HX, Shi F, Wang MS. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen Res 2015; 10:1069-75. [PMID: 26330828 PMCID: PMC4541236 DOI: 10.4103/1673-5374.160095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/16/2023] Open
Abstract
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation.
Collapse
Affiliation(s)
- Qiang-Qiang Ran
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Li Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hai-Xia Yu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
14
|
Cho BM, Kim W, Yoo DY, Jung HY, Choi JH, Won MH, Hwang IK, Moon SM. Effects of adenosine monophosphate-activated kinase in the ventral horn of rabbit spinal cord after transient ischemia. J Spinal Cord Med 2015; 38:538-43. [PMID: 24793647 PMCID: PMC4612210 DOI: 10.1179/2045772314y.0000000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To investigate the effect compound C, an adenosine monophosphate-activated kinase (AMPK) inhibitor, has on motor neurons of rabbit spinal cord after ischemia/reperfusion. DESIGN Compound C (30 mg/kg) was administered intraperitoneally to rabbits 30 minutes before ischemia and the animals were sacrificed at 15 minutes after ischemia/reperfusion to measure lactate levels and at 72 hours after ischemia/reperfusion for morphological study. RESULTS The administration of compound C did not produce any significant changes in physiological parameters such as pH, arterial blood gas (PaCO(2) and PaO(2)), and blood glucose in rabbit either at 10 minutes before ischemia or at 10 minutes after reperfusion. However, the administration of compound C did significantly ameliorate lactate acidosis at 15 minutes after reperfusion. In addition, the administration of compound C significantly improved the neurological scores of the rabbits and reduced the neuronal death seen in the ventral horn of their spinal cords at 72 hours after ischemia/reperfusion. CONCLUSIONS Inhibition of AMPK can ameliorate the ischemia-induced neuronal death in the spinal cord via the reduction of early lactate acidosis.
Collapse
Affiliation(s)
- Byung Moon Cho
- Department of Neurosurgery, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 134-701, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-170, Republic of Korea,Correspondence to: Seung Myung Moon, Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-170, Republic of Korea. ;
| |
Collapse
|
15
|
Moon SM, Choi GM, Yoo DY, Jung HY, Yim HS, Kim DW, Hwang IK, Cho BM, Chang IB, Cho SM, Won MH. Differential Effects of Pioglitazone in the Hippocampal CA1 Region Following Transient Forebrain Ischemia in Low- and High-Fat Diet-Fed Gerbils. Neurochem Res 2015; 40:1063-73. [PMID: 25894680 DOI: 10.1007/s11064-015-1568-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1β (IL-1β) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1β levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1β levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1β, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.
Collapse
Affiliation(s)
- Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 445-907, South Korea,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chantong B, Kratschmar DV, Lister A, Odermatt A. Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells. J Neuroinflammation 2014; 11:190. [PMID: 25407356 PMCID: PMC4240888 DOI: 10.1186/s12974-014-0190-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/30/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Activation of metabotropic glutamate receptor 5 (mGluR5) by (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) was shown to suppress microglia activation and decrease the release of associated pro-inflammatory mediators. In contrast, the consequences of mGluR5 inhibition are less well understood. Here, we used BV-2 cells, retaining key characteristics of primary mouse microglia, to examine whether mGluR5 inhibition by 2-methyl-6-(phenylethynyl)-pyridine (MPEP) enhances cellular stress and production of inflammatory mediators. METHODS BV-2 cells were treated with MPEP, followed by determination of cellular stress using fluorescent dyes and high-content imaging. The expression of inflammatory mediators, endoplasmic reticulum (ER)-stress markers and phosphorylated AMPKα was analyzed by quantitative PCR, ELISA and Western blotting. Additionally, phospholipase C (PLC) activity, cellular ATP content and changes in intracellular free Ca(2+) ([Ca(2+)]i) were measured using luminescence and fluorescence assays. RESULTS Treatment of BV-2 microglia with 100 μM MPEP increased intracellular reactive oxygen species (ROS), mitochondrial superoxide, mitochondrial mass as well as inducible nitric oxide synthase (iNOS) and IL-6 expression. Furthermore, MPEP reduced cellular ATP and induced AMPKα phosphorylation and the expression of the ER-stress markers CHOP, GRP78 and GRP96. The MPEP-dependent effects were preceded by a rapid concentration-dependent elevation of [Ca(2+)]i, following Ca(2+) release from the ER, mainly via inositol triphosphate-induced receptors (IP3R). The MPEP-induced ER-stress could be blocked by pretreatment with the chemical chaperone 4-phenylbutyrate and the Ca(2+) chelator BAPTA-AM. Pretreatment with the AMPK agonist AICAR partially abolished, whilst the inhibitor compound C potentiated, the MPEP-dependent ER-stress. Importantly, the PLC inhibitor U-73122 and the Gi-protein inhibitor pertussis toxin (PTX) blocked the MPEP-induced increase in [Ca(2+)]i. Moreover, pretreatment of microglia with AICAR, BAPTA-AM, U-73122 and PTX prevented the MPEP-induced generation of oxidative stress and inflammatory mediators, further supporting a role for Gi-protein-mediated activation of PLC. CONCLUSIONS The results emphasize the potential pathophysiological role of mGluR5 antagonism in mediating oxidative stress, ER-stress and inflammation through a Ca(2+)-dependent pathway in microglia. The induction of cellular stress and inflammatory mediators involves PTX-sensitive Gi-proteins and subsequent activation of PLC, IP3R and Ca(2+) release from the ER.
Collapse
Affiliation(s)
- Boonrat Chantong
- Current address: Department of Preclinical Science and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakhonpathom, Thailand.
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Adam Lister
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
17
|
Wang H. Establishment of an animal model of vascular dementia. Exp Ther Med 2014; 8:1599-1603. [PMID: 25289066 PMCID: PMC4186350 DOI: 10.3892/etm.2014.1926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/20/2014] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to establish a mouse model of vascular dementia (VaD) in order to overcome the shortcomings of rat models of VaD, which include high production costs, difficult surgery, surgical trauma and high mortality. In this study, repeated ischemia-reperfusion of the total bilateral carotid artery in mice, combined with a reduction of blood pressure, was used to establish an animal model of VaD. A total of 40 Kunming mice (clean grade) were randomly divided into a sham group and a model group. Behavioral tests were performed for each group following the surgery, and the morphology of the hippocampus was analyzed. The results of the step-down avoidance test, water maze test and microscopy examinations confirmed that following surgery, learning and memory dysfunction was significantly increased in the model group. The results of the morphological observations showed that the number of hippocampal CA1 neurons was significantly decreased in the model group compared with that in the sham surgery group (P<0.01). In the present study, a mouse model of VaD was successfully established, which was simple, effective and reliable, and may be used in the future to investigate VaD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Traditional Chinese Internal Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
18
|
Frasch MG. Putative Role of AMPK in Fetal Adaptive Brain Shut-Down: Linking Metabolism and Inflammation in the Brain. Front Neurol 2014; 5:150. [PMID: 25157238 PMCID: PMC4127551 DOI: 10.3389/fneur.2014.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynaecology, CHU Ste-Justine Research Center, Université de Montréal , Montreal, QC , Canada ; Department of Neurosciences, CHU Ste-Justine Research Center, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
19
|
Xu A, Durosier LD, Ross MG, Hammond R, Richardson BS, Frasch MG. Adaptive brain shut-down counteracts neuroinflammation in the near-term ovine fetus. Front Neurol 2014; 5:110. [PMID: 25071698 PMCID: PMC4074896 DOI: 10.3389/fneur.2014.00110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Objective: Repetitive umbilical cord occlusions (UCOs) in ovine fetus leading to severe acidemia result in adaptive shut-down of electrocortical activity [electrocorticogram (ECoG)] as well as systemic and brain inflammation. We hypothesized that the fetuses with earlier ECoG shut-down as a neuroprotective mechanism in response to repetitive UCOs will show less brain inflammation and, moreover, that chronic hypoxia will impact this relationship. Methods: Near-term fetal sheep were chronically instrumented with ECoG leads, vascular catheters, and a cord occluder and then underwent repetitive UCOs for up to 4 h or until fetal arterial pH was <7.00. Eight animals, hypoxic prior to the UCOs (SaO2 <55%), were allowed to recover 24 h post insult, while 14 animals, 5 of whom also were chronically hypoxic, were allowed to recover 48 h post insult, after which brains were perfusion-fixed. Time of ECoG shut-down and corresponding pH were noted, as well as time to then reach pH <7.00 (ΔT). Microglia (MG) were counted as a measure of inflammation in gray matter layers 4–6 (GM4–6) where most ECoG activity is generated. Results are reported as mean ± SEM for p < 0.05. Results: Repetitive UCOs resulted in worsening acidosis over 3–4 h with arterial pH decreasing to 6.97 ± 0.02 all UCO groups’ animals, recovering to baseline by 24 h. ECoG shut-down occurred 52 ± 7 min before reaching pH <7.00 at pH 7.23 ± 0.02 across the animal groups. MG counts were inversely correlated to ΔT in 24 h recovery animals (R = −0.84), as expected. This was not the case in normoxic 48 h recovery animals, and, surprisingly, in hypoxic 48 h recovery animals, this relationship was reversed (R = 0.90). Conclusion: Adaptive brain shut-down during labor-like worsening acidemia counteracts neuroinflammation in a hypoxia- and time-dependent manner.
Collapse
Affiliation(s)
- Alex Xu
- Department of Obstetrics and Gynecology, Western University , London, ON , Canada
| | - Lucien Daniel Durosier
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Sainte-Justine Centre de Recherche, Université de Montréal , Montréal, QC , Canada
| | - Michael G Ross
- Department of Obstetrics and Gynecology, LA BioMed at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Robert Hammond
- Department of Pathology, Western University , London, ON , Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynecology, Western University , London, ON , Canada
| | - Martin G Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Sainte-Justine Centre de Recherche, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
20
|
Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J. A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 2014; 92:1295-306. [PMID: 24801159 DOI: 10.1002/jnr.23400] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
SMXZF is a combination of Rb1, Rg1, schizandrin, and DT-13 (6:9:5:4) derived from Sheng-mai San, a widely used Chinese traditional medicine for the treatment of cardiovascular and cerebral diseases. The present study explores the inhibitory effects and signaling pathways of SMXZF on autophagy induced by cerebral ischemia-reperfusion injury. Male C57BL/6 mice were subjected to ischemia-reperfusion insult by right middle cerebral artery occlusion (MCAO) for 1 hr with subsequent 24 hr reperfusion. Three doses of SMXZF (4.5, 9, and 18 mg/kg) were administered intraperitoneally (i.p.) after ischemia for 1 hr. An autophagic inhibitor, 3-methyladenine (3-MA; 300 μg/kg), was administered i.p. 20 min before ischemia as a positive drug. We found that SMXZF significantly increased cerebral blood flow and reduced the infarct volume, brain water content, and the neurological deficits in a dose-dependent manner. Similar to the positive control, SMXZF at 18 mg/kg also significantly inhibited autophagosome formation. Immunofluorescence staining and Western blotting demonstrated that SMXZF could significantly decrease the expression levels of beclin1 and microtubule-associated protein 1 light chain 3. SMXZF also remarkably inhibited the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) as well as the expression of c-Jun N-terminal kinase (JNK) and its phosphorylation induced by 24 hr reperfusion. Finally, we demonstrated that the optimal administration time of SMXZF was at the early period of reperfusion. This study reveals that SMXZF displays neuroprotective effect against focal ischemia-reperfusion injury, possibly associated with autophagy inactivation through AMPK/mTOR and JNK pathways.
Collapse
Affiliation(s)
- Zhongshun Guo
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|