1
|
Wang R, Xu K, Luo J, Chao X, Hu F, Zhang D, Chen Y, Li Y, Fan Z, Wang H, Xu L. Vestibular function and hearing preservation in children following a minimally invasive cochlear implantation. Eur Arch Otorhinolaryngol 2024; 281:4029-4038. [PMID: 38341823 PMCID: PMC11266237 DOI: 10.1007/s00405-024-08504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE This retrospective cohort study aimed to investigate the effect of minimally invasive cochlear implantation (CI) on the vestibular function (VF) and residual hearing (RH) as well as their relationship in pediatric recipients before and after surgery. METHODS Twenty-four pediatric patients with preoperative low frequency residual hearing (LFRH) (250 or 500 Hz ≤ 80 dB HL) who underwent minimally invasive CI were enrolled. Pure-tone thresholds, the cervical/ocular vestibular-evoked myogenic potential (cVEMP/oVEMP), and video head impulse test (vHIT) were all evaluated in the 24 pediatric patients with preoperative normal VF before and at 1 and 12 months after surgery. The relationship between changes in hearing and VF was analyzed preoperatively and at 1 and 12 months postoperatively. RESULTS There were no significant differences on VF preservation and hearing preservation (HP) at both 1 and 12 months post-CI (p > 0.05). At 1 month post-CI, the correlations of the variations in vestibulo-ocular reflex (VOR) gains of horizontal semicircular canal (HSC) and posterior semicircular canal (PSC) and the shift in 250 Hz threshold were negatively correlated (r = - 0.41, p = 0.04 and r = - 0.43, p = 0.04, respectively). At 12 months post-CI, the shift in 250 Hz threshold negatively correlated to the variations in VOR gain of superior semicircular canal (SSC) (r = - 0.43, p = 0.04); the HP positively correlated to the variation in oVEMP-amplitude ratio (AR) (r = 0.41, p = 0.04). CONCLUSION Our study confirmed that there were partial correlations between VF preservation and HP both in the short- and long-terms after atraumatic CI surgery, especially with the 250 Hz threshold. Regarding the variation of PSC function, the correlation with hearing status was variable with time after atraumatic CI surgery. Minimally invasive techniques for HP are successful and effective for the preservation of VF in pediatric patients both in the short- and long-terms.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Kaifan Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Jianfen Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Xiuhua Chao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Fangxia Hu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
| | - Yueling Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
| | - Yuanling Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China.
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China.
| |
Collapse
|
2
|
Fleet A, Nikookam Y, Radotra A, Gowrishankar S, Metcalfe C, Muzaffar J, Smith ME, Monksfield P, Bance M. Outcomes following cochlear implantation with eluting electrodes: A systematic review. Laryngoscope Investig Otolaryngol 2024; 9:e1263. [PMID: 38855776 PMCID: PMC11160184 DOI: 10.1002/lio2.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives To establish audiological and other outcomes following cochlear implantation in humans and animals with eluting electrodes. Methods Systematic review and narrative synthesis. Databases searched (April 2023): MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov, and Web of Science. Studies reporting outcomes in either humans or animals following cochlear implantation with a drug-eluting electrode were included. No limits were placed on language or year of publication. Risk of bias assessment was performed on all included studies using either the Brazzelli or Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) assessment tools. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Results Searches identified 146 abstracts and 108 full texts. Of these, 18 studies met the inclusion criteria, reporting outcomes in 523 animals (17 studies) and 24 humans (1 study). Eluting electrodes included dexamethasone (16 studies), aracytine (1 study), nicotinamide adenine dinucleotide (1 study), the growth factors insulin-like growth factor 1 (IGF1) and hepatocyte growth factor (HGF) (1 study), and neurotrophin-3 (1 study). All included studies compare outcomes following implantation with an eluting electrode with a control non-eluting electrode. In the majority of studies, audiological outcomes (e.g., auditory brainstem response threshold) were superior following implantation with an eluting electrode compared with a standard electrode. Most studies which investigated post-implantation impedance reported lower impedance following implantation with an eluting electrode. The influence of eluting electrodes on other reported outcomes (including post-implantation cochlear fibrosis and the survival of hair cells and spiral ganglion neurons) was more varied across the included studies. Conclusions Eluting electrodes have shown promise in animal studies in preserving residual hearing following cochlear implantation and in reducing impedance, though data from human studies remain lacking. Further in-human studies will be required to determine the clinical usefulness of drug-eluting cochlear implants as a future treatment for sensorineural hearing loss.
Collapse
Affiliation(s)
- Alex Fleet
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Yasmin Nikookam
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Anshul Radotra
- The Royal Wolverhampton NHS Trust New Cross HospitalWolverhamptonUK
| | - Shravan Gowrishankar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | | | - Jameel Muzaffar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Matthew E. Smith
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Peter Monksfield
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Manohar Bance
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| |
Collapse
|
3
|
Xu M, Chen A, Chen D, Wu S, Deng Z, Wen H, Zhong H, Lu K, Tang J, Ma D, Zhang H. Preparation, characterization, and in vitro/vivo evaluation of a multifunctional electrode coating for cochlear implants. BIOMATERIALS ADVANCES 2024; 157:213736. [PMID: 38128170 DOI: 10.1016/j.bioadv.2023.213736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cochlear implantation (CI) is the primary intervention for patients with sensorineural hearing loss to restore their hearing. However, approximately 90 % of CI recipients experience unexpected fibrosis around the inserted electrode arrays due to acute and chronic inflammation. This fibrosis leads to progressive residual hearing loss. Addressing this complication is crucial for enhancing CI outcomes, yet an effective treatment has not yet been found. In this study, we developed a multifunctional dexamethasone (DXM)-loaded polytrimethylene carbonate (PTMC) electrode coating to mitigate inflammatory reactions and fibrosis after CI. This thin and flexible coating could preserve the mechanical performance of the electrode and reduce the implantation resistance for CI. The in vitro release studies demonstrated the DXM-PTMC coating's efficient drug loading and sustained release capability over 90 days. DXM-PTMC also showed long-term stability, high biocompatibility, and effective anti-inflammatory effects in vitro and in vivo. Compared with the uncoated group, DXM-PTMC coating significantly inhibited the expression of inflammatory factors, such as NO, TNF-α, IL-1β, and IL-6. DXM-PTMC coating suppressed fibrosis in rat implantation models for 3 weeks by reducing both acute and chronic inflammation. Our findings suggest that DXM-PTMC coating is a novel strategy to improve the outcomes of CI.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shengquan Wu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhipeng Deng
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hang Wen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huiling Zhong
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kejin Lu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
4
|
Rongthong T, Qnouch A, Gehrke MM, Danede F, Willart J, Oliveira P, Paccou L, Tourrel G, Stahl P, Verin J, Toulemonde P, Vincent C, Siepmann F, Siepmann J. Long term behavior of dexamethasone-loaded cochlear implants: In vitro & in vivo. Int J Pharm X 2022; 4:100141. [DOI: 10.1016/j.ijpx.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
|
5
|
Wang R, Luo J, Chao X, Wang H, Fan Z, Xu L. Minimally invasive surgical techniques in vestibular function preservation in patients with cochlear implants. Front Neurosci 2022; 16:900879. [PMID: 36238083 PMCID: PMC9551174 DOI: 10.3389/fnins.2022.900879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cochlear implantation (CI) is an effective and successful method of treating individuals with severe-to-profound sensorineural hearing loss (SNHL). Coupled with it’s great clinical effectiveness, there is a risk of vestibular damage. With recent advances in surgical approach, modified electrode arrays and other surgical techniques, the potential of hearing preservation (HP) has emerged, in order to preserve the inner ear function. These techniques may also lead to less vestibular damage. However, a systematic study on this at different follow-ups after CI surgery has not been documented before. Aims To investigate changes of vestibular function systematically in recipients at short and long follow-ups after a minimally invasive CI surgery. Methods In this retrospective study, 72 patients (72 ears) with minimally invasive CI were recruited. All participants selected had bilateral SNHL and pre-operative residual hearing (RH) and underwent unilateral CI. They were treated to comprehensive care. All patients underwent vestibular function tests 5 days prior to CI. During the post-operative period, follow-up tests were performed at 1, 3, 6, 9, and 12 months. The contemporaneous results of caloric, cervical vestibular-evoked myogenic potential (cVEMP), ocular vestibular-evoked myogenic potential (oVEMP), and video head impulse (vHIT) tests were followed together longitudinally. Results On the implanted side, the percent fail rate of caloric test was significantly higher than that of vHIT at 1, 3, and 9 months post-operatively (p < 0.05); the percent fail rate of oVEMP was higher than vHIT of superior semicircular canal (SSC), posterior semicircular canal (PSC), or horizontal semicircular canal (HSC) at 1, 3, and 9 months (p < 0.05); at 3 and 9 months, the percent fail rate of cVEMP was higher than that of SSC and PSC (p < 0.05). There were no significant differences in the percent fail rates among all tests at 6 and 12 months post-CI (p > 0.05). The percent fail rates showed decreased trends in caloric (p = 0.319) and HSC tested by vHIT (p = 0.328) from 1–3 to 6–12 months post-operatively. There was no significant difference in cVEMP between 1–3 and 6–12 months (p = 0.597). No significant differences on percent fail rates of cVEMP and oVEMP between short- and long-terms post-CI were found in the same subjects (p > 0.05). Before surgery, the abnormal cVEMP and oVEMP response rates were both lower in patients with enlarged vestibular aqueduct (EVA) than patients with a normal cochlea (p = 0.001, 0.018, respectively). Conclusion The short- and long-term impacts on the vestibular function from minimally invasive CI surgery was explored. Most of the vestibular functions can be preserved with no damage discrepancy among the otolith and three semicircular canal functions at 12 months post-CI. Interestingly, a similar pattern of changes in vestibular function was found during the early and the later stages of recovery after surgery.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Jianfen Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Xiuhua Chao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantation, Shandong Provincial ENT Hospital, Jinan, China
- *Correspondence: Lei Xu,
| |
Collapse
|
6
|
Skarżyńska MB, Kołodziejak A, Gos E, Walkowiak A, Lorens A, Pastuszak A, Plichta Ł, Skarżyński PH. The Clinical Effect of Steroids for Hearing Preservation in Cochlear Implantation: Conclusions Based on Three Cochlear Implant Systems and Two Administration Regimes. Pharmaceuticals (Basel) 2022; 15:1176. [PMID: 36297289 PMCID: PMC9609478 DOI: 10.3390/ph15101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2023] Open
Abstract
The main aim of this study was to assess the clinical effect of steroids (dexamethasone and prednisone) on hearing preservation in patients who underwent cochlear implantation with different cochlear implant systems (Oticon®, Advanced Bionics®, Med-El®). 147 adult patients met the inclusion criteria and were enrolled to the study and divided into three groups depending on the brand of cochlear implant they received and participated in all follow-up visits regularly. They were also randomly divided into three subgroups depending on the steroid administration regime: (1) intravenous dexamethasone (0.1 mg/kg body weight twice a day for three days); (2) combined intravenous and oral steroids (dexamethasone 0.1 mg/kg body weight twice a day plus prednisone 1 mg/kg weight once a day); and (3) no steroids (control group). The results were measured by pure tone audiometry (PTA) at three time points: (i) before implantation, (ii) at processor activation, and (iii) 12 months after activation. A hearing preservation (HP) figure was also calculated by comparing the preoperative results and the results after 12 months. Further measures collected were electrode impedance and hearing threshold in the non-operated ear. The highest HP measures (partial and complete) were obtained in the subgroups who were given steroids. Of the 102 patients given steroids, HP was partial or complete in 63 of them (62%). In comparison, partial or complete HP was achieved in only 15 patients out of 45 (33%) who were not given steroids. There were differences between the three cochlear implant groups, with the Med-El and Advanced Bionics groups performing better than the Oticon group (45% and 43% of the former two groups achieved partial or complete HP compared to 20% in the latter). Hearing thresholds in the non-operated ear were stable over 12 months. Generally, impedance was slightly lower in the 12 month follow-up in comparison with the activation period, with the exception of the Oticon group. (4) Conclusions: Pharmacological treatment with steroids in patients undergoing cochlear implantation helps to preserve residual hearing.
Collapse
Affiliation(s)
- Magdalena B. Skarżyńska
- Institute of Sensory Organs, Mokra 1, 05-830 Kajetany, Poland
- Center of Hearing and Speech Medincus, Mokra 7, 05-830 Kajetany, Poland
| | - Aleksandra Kołodziejak
- World Hearing Center, Department of Teleaudiology of Hearing, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Poland
| | - Elżbieta Gos
- World Hearing Center, Department of Teleaudiology of Hearing, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Poland
| | - Adam Walkowiak
- World Hearing Center, Department of Cochlear Implants, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Poland
| | - Artur Lorens
- World Hearing Center, Department of Cochlear Implants, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Poland
| | - Andrzej Pastuszak
- World Hearing Center, Oto-Rhino-Laryngology Surgery Department, Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland
| | - Łukasz Plichta
- World Hearing Center, Oto-Rhino-Laryngology Surgery Department, Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland
| | - Piotr H. Skarżyński
- Institute of Sensory Organs, Mokra 1, 05-830 Kajetany, Poland
- Center of Hearing and Speech Medincus, Mokra 7, 05-830 Kajetany, Poland
- World Hearing Center, Department of Teleaudiology of Hearing, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Poland
- World Hearing Center, Oto-Rhino-Laryngology Surgery Department, Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Faculty of Medicine, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
7
|
Gene Therapy for Congenital Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Biological Response Dynamics to Cochlear Implantation: Modeling and Modulating the Electrode–Tissue Interface. Ear Hear 2022; 43:1687-1697. [DOI: 10.1097/aud.0000000000001236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Blebea CM, Ujvary LP, Necula V, Dindelegan MG, Perde-Schrepler M, Stamate MC, Cosgarea M, Maniu AA. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:747. [PMID: 35744010 PMCID: PMC9229893 DOI: 10.3390/medicina58060747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
Abstract
Hearing loss is the most common neurosensory disorder, and with the constant increase in etiological factors, combined with early detection protocols, numbers will continue to rise. Cochlear implantation has become the gold standard for patients with severe hearing loss, and interest has shifted from implantation principles to the preservation of residual hearing following the procedure itself. As the audiological criteria for cochlear implant eligibility have expanded to include patients with good residual hearing, more attention is focused on complementary development of otoprotective agents, electrode design, and surgical approaches. The focus of this review is current aspects of preserving residual hearing through a summary of recent trends regarding surgical and pharmacological fundamentals. Subsequently, the assessment of new pharmacological options, novel bioactive molecules (neurotrophins, growth factors, etc.), nanoparticles, stem cells, and gene therapy are discussed.
Collapse
Affiliation(s)
- Cristina Maria Blebea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Laszlo Peter Ujvary
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Violeta Necula
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| | - Maximilian George Dindelegan
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | | | - Mirela Cristina Stamate
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Marcel Cosgarea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Alma Aurelia Maniu
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| |
Collapse
|
10
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Schwieger J, Frisch AS, Rau TS, Lenarz T, Hügl S, Scheper V. 3D Printed Cell Culture Chamber for Testing the Effect of Pump-Based Chronic Drug Delivery on Inner Ear Tissue. Biomolecules 2022; 12:biom12040589. [PMID: 35454178 PMCID: PMC9032916 DOI: 10.3390/biom12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cochlear hair cell damage and spiral ganglion neuron (SGN) degeneration are the main causes of sensory neural hearing loss. Cochlear implants (CIs) can replace the function of the hair cells and stimulate the SGNs electrically. The condition of the SGNs and their spatial distance to the CI are key factors for CI-functionality. For a better performance, a high number of neurons and a closer contact to the electrode are intended. Neurotrophic factors are able to enhance SGN survival and neurite outgrowth, and thereby might optimize the electrode-nerve interaction. This would require chronic factor treatment, which is not yet established for the inner ear. Investigations on chronic drug delivery to SGNs could benefit from an appropriate in vitro model. Thus, an inner ear inspired Neurite Outgrowth Chamber (NOC), which allows the incorporation of a mini-osmotic pump for long-term drug delivery, was designed and three-dimensionally printed. The NOC’s function was validated using spiral ganglion explants treated with ciliary neurotrophic factor, neurotrophin-3, or control fluid released via pumps over two weeks. The NOC proved to be suitable for explant cultivation and observation of pump-based drug delivery over the examined period, with neurotrophin-3 significantly increasing neurite outgrowth compared to the other groups.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-5115327262
| | - Anna Sophie Frisch
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Thomas S. Rau
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Silke Hügl
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| |
Collapse
|
12
|
Parys QA, Van Bulck P, Loos E, Verhaert N. Inner Ear Pharmacotherapy for Residual Hearing Preservation in Cochlear Implant Surgery: A Systematic Review. Biomolecules 2022; 12:biom12040529. [PMID: 35454118 PMCID: PMC9032072 DOI: 10.3390/biom12040529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cochlear implantation initiates an inflammatory cascade in which both acute insertion trauma and chronic foreign body reaction lead to intracochlear fibrosis and loss of residual hearing. Several strategies have been proposed to attenuate the local reactive process after implantation, including intracochlear drug delivery. The present study gives an overview of what is being investigated in the field of inner ear therapeutics and cochlear implant surgery. The aim is to evaluate its potential benefit in clinical practice. A systematic search was conducted in PubMed, Embase, and Cochrane Library databases identifying comparative prospective studies examining the effect of direct inner ear drug application on mechanical cochlear trauma. Both animal and human studies were considered and all studies were assessed for quality according to the validated risk of bias tools. Intracochlear administration of drugs is a feasible method to reduce the local inflammatory reaction following cochlear implantation. In animal studies, corticosteroid use had a significant effect on outcome measures including auditory brainstem response, impedance, and histological changes. This effect was, however, only durable with prolonged drug delivery. Significant differences in outcome were predominantly seen in studies where the cochlear damage was extensive. Six additional reports assessing non-steroidal agents were found. Overall, evidence of anti-inflammatory effects in humans is still scarce.
Collapse
Affiliation(s)
- Quentin-Alexandre Parys
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Pauline Van Bulck
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Elke Loos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Nicolas Verhaert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
13
|
Skarżyńska MB, Król B, Gos E, Skarżyński PH. Preservation of hearing in partial deafness patients who received two different regimes of corticosteroid therapy following cochlear implantation: one-year observations. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- Magdalena Beata Skarżyńska
- Center of Hearing and Speech MEDINCUS, Poland; Institute of Sensory Organs, Poland; Institute of Physiology and Pathology of Hearing, Poland
| | - Bartłomej Król
- World Hearing Center, Poland; Institute of Physiology and Pathology of Hearing, Poland
| | - Elżbieta Gos
- World Hearing Center, Poland; Institute of Physiology and Pathology of Hearing, Poland
| | - Piotr Henryk Skarżyński
- Center of Hearing and Speech MEDINCUS, Poland; Institute of Sensory Organs, Poland; World Hearing Center, Poland; Institute of Physiology and Pathology of Hearing, Poland; Institute of Physiology and Pathology of Hearing, Poland; Institute of Physiology and Pathology of Hearing, Poland; Medical University of Warsaw, Poland
| |
Collapse
|
14
|
Qnouch A, Solarczyk V, Verin J, Tourrel G, Stahl P, Danede F, Willart JF, Lemesre PE, Vincent C, Siepmann J, Siepmann F. Dexamethasone-loaded cochlear implants: How to provide a desired "burst release". INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100088. [PMID: 34553137 PMCID: PMC8441626 DOI: 10.1016/j.ijpx.2021.100088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/20/2022]
Abstract
Cochlear implants containing iridium platinum electrodes are used to transmit electrical signals into the inner ear of patients suffering from severe or profound deafness without valuable benefit from conventional hearing aids. However, their placement is invasive and can cause trauma as well as local inflammation, harming remaining hair cells or other inner ear cells. As foreign bodies, the implants also induce fibrosis, resulting in a less efficient conduction of the electrical signals and, thus, potentially decreased system performance. To overcome these obstacles, dexamethasone has recently been embedded in this type of implants: into the silicone matrices separating the metal electrodes (to avoid short circuits). It has been shown that the resulting drug release can be controlled over several years. Importantly, the dexamethasone does not only act against the immediate consequences of trauma, inflammation and fibrosis, it can also be expected to be beneficial for remaining hair cells in the long term. However, the reported amounts of drug released at “early” time points (during the first days/weeks) are relatively low and the in vivo efficacy in animal models was reported to be non-optimal. The aim of this study was to increase the initial “burst release” from the implants, adding a freely water-soluble salt of a phosphate ester of dexamethasone. The idea was to facilitate water penetration into the highly hydrophobic system and, thus, to promote drug dissolution and diffusion. This approach was efficient: Adding up to 10% dexamethasone sodium phosphate to the silicone matrices substantially increased the resulting drug release rate at early time points. This can be expected to improve drug action and implant functionality. But at elevated dexamethasone sodium phosphate loadings device swelling became important. Since the cochlea is a tiny and sensitive organ, a potential increase in implant dimensions over time must be limited. Hence, a balance has to be found between drug release and implant swelling.
Collapse
Affiliation(s)
- A Qnouch
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - V Solarczyk
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - G Tourrel
- Oticon Medical, R&D, 06224 Vallauris, France
| | - P Stahl
- Oticon Medical, R&D, 06224 Vallauris, France
| | - F Danede
- Univ. Lille, UMR CNRS 8207, UMET, F-59655 Villeneuve d'Ascq, France
| | - J F Willart
- Univ. Lille, UMR CNRS 8207, UMET, F-59655 Villeneuve d'Ascq, France
| | - P E Lemesre
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - C Vincent
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
15
|
Jeong SH, Kim Y, Lyu AR, Shin SA, Kim TH, Huh YH, Je AR, Gajibhiye A, Yu Y, Jin Y, Park MJ, Park YH. Junctional Modulation of Round Window Membrane Enhances Dexamethasone Uptake into the Inner Ear and Recovery after NIHL. Int J Mol Sci 2021; 22:ijms221810061. [PMID: 34576224 PMCID: PMC8464844 DOI: 10.3390/ijms221810061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Delivery of substances into the inner ear via local routes is increasingly being used in clinical treatment. Studies have focused on methods to increase permeability through the round window membrane (RWM) and enhance drug diffusion into the inner ear. However, the clinical applications of those methods have been unclear and few studies have investigated the efficacy of methods in an inner ear injury model. Here, we employed the medium chain fatty acid caprate, a biologically safe, clinically applicable substance, to modulate tight junctions of the RWM. Intratympanic treatment of sodium caprate (SC) induced transient, but wider, gaps in intercellular spaces of the RWM epithelial layer and enhanced the perilymph and cochlear concentrations/uptake of dexamethasone. Importantly, dexamethasone co-administered with SC led to significantly more rapid recovery from noise-induced hearing loss at 4 and 8 kHz, compared with the dexamethasone-only group. Taken together, our data indicate that junctional modulation of the RWM by SC enhances dexamethasone uptake into the inner ear, thereby hastening the recovery of hearing sensitivity after noise trauma.
Collapse
Affiliation(s)
- Seong-Hun Jeong
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea; (S.-H.J.); (A.-R.L.); (A.G.)
| | - Yoonjoong Kim
- Department of Otolaryngology—Head and Neck Surgery, Chungbuk National University Hospital, Cheongju 28644, Korea;
| | - Ah-Ra Lyu
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea; (S.-H.J.); (A.-R.L.); (A.G.)
- Department of Otolaryngology—Head and Neck Surgery, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (Y.Y.)
| | - Sun-Ae Shin
- Department of Otolaryngology—Head and Neck Surgery, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (Y.Y.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Tae Hwan Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Korea;
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28116, Korea; (Y.H.H.); (A.R.J.)
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28116, Korea; (Y.H.H.); (A.R.J.)
| | - Akanksha Gajibhiye
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea; (S.-H.J.); (A.-R.L.); (A.G.)
| | - Yang Yu
- Department of Otolaryngology—Head and Neck Surgery, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (Y.Y.)
| | - Yongde Jin
- Department of Otolaryngology—Head and Neck Surgery, Yanbian University Hospital, Yanji 133000, China;
| | - Min Jung Park
- Department of Otolaryngology—Head and Neck Surgery, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (Y.Y.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (M.J.P.); (Y.-H.P.)
| | - Yong-Ho Park
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea; (S.-H.J.); (A.-R.L.); (A.G.)
- Department of Otolaryngology—Head and Neck Surgery, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (Y.Y.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Korea;
- Correspondence: (M.J.P.); (Y.-H.P.)
| |
Collapse
|
16
|
The Clinical Effects of Steroids Therapy in the Preserving Residual Hearing after Cochlear Implantation with the OTICON Neuro Zti EVO. J Clin Med 2021; 10:jcm10132868. [PMID: 34203443 PMCID: PMC8269171 DOI: 10.3390/jcm10132868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background: A prospective clinical study was conducted to investigate whether two different pharmacotherapy strategies of steroid administration impact hearing preservation in adult patients who underwent cochlear implantation with the Oticon Medical Neuro cochlear implant system. Methods: Twenty nine adult participants were included. Pure tone audiometry was performed before implantation, during processor activation and 12 months after activation. There were three treatment groups: (1) intravenous steroid therapy (standard steroid therapy with dexamethasone administrated intravenously at the dose 0.1 mg/kg body mass twice a day); (2) combined oral and intravenous steroid therapy (extended steroid therapy with dexamethasone administrated intravenously at the dose 0.1 mg/kg b.m. twice a day and prednisone (orally) at the dose 1 mg/kg body mass/24 h), and (3) no steroid therapy (a control group). Patients’ hearing thresholds before implantation were on average 103 dB HL, 89 dB HL, and 93 dB HL, respectively. Results: Deterioration of hearing thresholds was observed in all three patients’ groups. Twelve months after surgery the patients with and without steroid therapy had similar hearing thresholds. Conclusions: The steroid regimen used in this study did not play a significant role in patients with non-functional residual hearing, who underwent cochlear implantation with the Oticon Medical Neuro cochlear implant system.
Collapse
|
17
|
Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2020; 592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Despite the high incidence of inner ear disorders, there are still no dedicated medications on the market. Drugs are currently administered by the intratympanic route, the safest way to maximize drug concentration in the inner ear. Nevertheless, therapeutic doses are ensured for only a few minutes/hours using drug solutions or suspensions. The passage through the middle ear barrier strongly depends on drug physicochemical characteristics. For the past 15 years, drug encapsulation into nanocarriers has been developed to overcome this drawback. Nanocarriers are well known to sustain drug release and protect it from degradation. In this review, in vivo studies are detailed concerning nanocarrier biodistribution, their pathway mechanisms in the inner ear and the resulting drug pharmacokinetics. Key parameters influencing nanocarrier biodistribution are identified and discussed: nanocarrier size, concentration, surface composition and shape. Recent advanced strategies that combine nanocarriers with hydrogels, specific tissue targeting or modification of the round window permeability (cell-penetrating peptide, magnetic delivery) are explored. Most of the nanocarriers appear to be safe for the inner ear and provide a significant efficacy over classic formulations in animal models. However, many challenges remain to be overcome for future clinical applications.
Collapse
|
18
|
Comparison of electrode impedance measures between a dexamethasone-eluting and standard Cochlear™ Contour Advance® electrode in adult cochlear implant recipients. Hear Res 2020; 390:107924. [DOI: 10.1016/j.heares.2020.107924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
|
19
|
Liebau A, Schilp S, Mugridge K, Schön I, Kather M, Kammerer B, Tillein J, Braun S, Plontke SK. Long-Term in vivo Release Profile of Dexamethasone-Loaded Silicone Rods Implanted Into the Cochlea of Guinea Pigs. Front Neurol 2020; 10:1377. [PMID: 32038458 PMCID: PMC6987378 DOI: 10.3389/fneur.2019.01377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoids are used intra-operatively in cochlear implant surgeries to reduce the inflammatory reaction caused by insertion trauma and the foreign body response against the electrode carrier after cochlear implantation. To prevent higher systemic concentrations of glucocorticoids that might cause undesirable systemic side effects, the drug should be applied locally. Since rapid clearance of glucocorticoids occurs in the inner ear fluid spaces, sustained application is supposedly more effective in suppressing foreign body and tissue reactions and in preserving neuronal structures. Embedding of the glucocorticoid dexamethasone into the cochlear implant electrode carrier and its continuous release may solve this problem. The aim of the present study was to examine how dexamethasone concentrations in the electrode carrier influence drug levels in the perilymph at different time points. Silicone rods were implanted through a cochleostomy into the basal turn of the scala tympani of guinea pigs. The silicone rods were loaded homogeneously with 0.1, 1, and 10% concentrations of dexamethasone. After implantation, dexamethasone concentrations in perilymph and cochlear tissue were measured at several time points over a period of up to 7 weeks. The kinetic was concentration-dependent and showed an initial burst release in the 10%- and the 1%-dexamethasone-loaded electrode carrier dummies. The 10%-loaded electrode carrier resulted in a more elevated and longer lasting burst release than the 1%-loaded carrier. Following this initial burst release phase, sustained dexamethasone levels of about 60 and 100 ng/ml were observed in the perilymph for the 1 and 10% loaded rods, respectively, during the remainder of the observation time. The 0.1% loaded carrier dummy achieved very low perilymph drug levels of about 0.5 ng/ml. The cochlear tissue drug concentration shows a similar dynamic to the perilymph drug concentration, but only reaches about 0.005–0.05% of the perilymph drug concentration. Dexamethasone can be released from silicone electrode carrier dummies in a controlled and sustained way over a period of several weeks, leading to constant drug concentrations in the scala tympani perilymph. No accumulation of dexamethasone was observed in the cochlear tissue. In consideration of experimental studies using similar drug depots and investigating physiological effects, an effective dose range between 50 and 100 ng/ml after burst release is suggested for the CI insertion trauma model.
Collapse
Affiliation(s)
- Arne Liebau
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | - Ilona Schön
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michel Kather
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Wang J, Puel JL. Presbycusis: An Update on Cochlear Mechanisms and Therapies. J Clin Med 2020; 9:jcm9010218. [PMID: 31947524 PMCID: PMC7019248 DOI: 10.3390/jcm9010218] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related hearing impairment (ARHI), also referred to as presbycusis, is the most common sensory impairment seen in the elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments, e.g., gradual hearing loss, deterioration in speech comprehension (especially in noisy environments), difficulty in the localization sound sources, and ringing sensations in the ears. However, the aging process does not affect people uniformly; nor, in fact, does the aging process appear to be uniform even within an individual. Here, we outline recent research into chronological cochlear age in healthy people, and exacerbated hearing impairments during aging due to both extrinsic factors including noise and ototoxic medication, and intrinsic factors such as genetic predisposition, epigenetic factors, and aging. We review our current understanding of molecular pathways mediating ARHL and discuss recent discoveries in experimental hearing restoration and future prospects.
Collapse
Affiliation(s)
- Jing Wang
- INSERM U051, Institute for Neurosciences of Montpellier, Hôpital Saint Eloi-Bâtiment INM, 80, rue Augustin Fliche-BP 74103, 34091 Montpellier, France
- Montpellier Neuroscience Institute, University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
- Correspondence: (J.W.); (J.-L.P.); Tel.: +33-499-63-60-48 (J.W.); +33-499-63-60-09 (J.-L.P.)
| | - Jean-Luc Puel
- INSERM U051, Institute for Neurosciences of Montpellier, Hôpital Saint Eloi-Bâtiment INM, 80, rue Augustin Fliche-BP 74103, 34091 Montpellier, France
- Montpellier Neuroscience Institute, University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
- Correspondence: (J.W.); (J.-L.P.); Tel.: +33-499-63-60-48 (J.W.); +33-499-63-60-09 (J.-L.P.)
| |
Collapse
|
21
|
Eshraghi AA, Wolfovitz A, Yilmazer R, Garnham C, Yilmazer AB, Bas E, Ashman P, Roell J, Bohorquez J, Mittal R, Hessler R, Sieber D, Mittal J. Otoprotection to Implanted Cochlea Exposed to Noise Trauma With Dexamethasone Eluting Electrode. Front Cell Neurosci 2019; 13:492. [PMID: 31824265 PMCID: PMC6882736 DOI: 10.3389/fncel.2019.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Cochlear implantation (CI) is now widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, CI can lead to electrode insertion trauma (EIT) that can cause damage to sensory cells in the inner ear resulting in loss of residual hearing. Even with soft surgical techniques where there is minimal macroscopic damage, we can still observe the generation of molecular events that may initiate programmed cell death via various mechanisms such as oxidative stress, the release of pro-inflammatory cytokines, and activation of the caspase pathway. In addition, individuals with CI may be exposed to noise trauma (NT) due to occupation and leisure activities that may affect their hearing ability. Recently, there has been an increased interest in the auditory community to determine the efficacy of drug-eluting electrodes for the protection of residual hearing. The objective of this study is to determine the effect of NT on implanted cochlea as well as the otoprotective efficacy of dexamethasone eluting electrode to implanted cochlea exposed to NT in a guinea pig model of CI. Animals were divided into five groups: EIT with dexamethasone eluting electrode exposed to NT; EIT exposed to NT; NT only; EIT only and naïve animals (control group). The hearing thresholds were determined by auditory brainstem recordings (ABRs). The cochlea was harvested and analyzed for transcript levels of inflammation, apoptosis and fibrosis genes. We observed that threshold shifts were significantly higher in EIT, NT or EIT + NT groups compared to naive animals at all the tested frequencies. The dexamethasone eluting electrode led to a significant decrease in hearing threshold shifts in implanted animals exposed to NT. Proapoptotic tumor necrosis factor-α [TNF-α, TNF-α receptor 1a (TNFαR1a)] and pro-fibrotic transforming growth factor β1 (TGFβ) genes were more than two-fold up-regulated following EIT and EIT + NT compared to the control group. The use of dexamethasone releasing electrode significantly decreased the transcript levels of pro-apoptotic and pro-fibrotic genes. The dexamethasone releasing electrode has shown promising results for hearing protection in implanted animals exposed to NT. The results of this study suggest that dexamethasone releasing electrode holds great potential in developing effective treatment modalities for NT in the implanted cochlea.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States.,Department of Neurological Surgery, Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering, University of Miami, Miami, Coral Gables, FL, United States
| | - Amit Wolfovitz
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Rasim Yilmazer
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | | | - Ayca Baskadem Yilmazer
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Peter Ashman
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Jonathan Roell
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Miami, Coral Gables, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | | | | | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
22
|
Needham K, Stathopoulos D, Newbold C, Leavens J, Risi F, Manouchehri S, Durmo I, Cowan R. Electrode impedance changes after implantation of a dexamethasone-eluting intracochlear array. Cochlear Implants Int 2019; 21:98-109. [DOI: 10.1080/14670100.2019.1680167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karina Needham
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
- Otolaryngology, Department of Surgery, The University of Melbourne, East Melbourne, Australia
| | - Dimitra Stathopoulos
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
| | - Carrie Newbold
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
- Otolaryngology, Department of Surgery, The University of Melbourne, East Melbourne, Australia
| | - Jason Leavens
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Frank Risi
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | | | - Irfan Durmo
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Robert Cowan
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
| |
Collapse
|
23
|
Jang J, Kim J, Kim YC, Kim S, Chou N, Lee S, Choung Y, Kim S, Brugger J, Choi H, Jang JH. A 3D Microscaffold Cochlear Electrode Array for Steroid Elution. Adv Healthc Mater 2019; 8:e1900379. [PMID: 31532887 DOI: 10.1002/adhm.201900379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/04/2019] [Indexed: 11/05/2022]
Abstract
In cochlear implants, the electrode insertion trauma during surgery can cause damage residual hearing. Preserving the residual hearing is an important challenge and the localized administration of drugs, such as steroids, is one of the most promising ways, but remains a challenge. Here, a microscaffold cochlear electrode array (MiSCEA) consisting of a microfabricated flexible electrode array and a 3D microscaffold for steroid reservoir is reported. The MiSCEA without loaded drug is tested by measuring the electrically evoked auditory brainstem response of the cochlea in guinea pigs (n = 4). The scaffold is then coated with steroid (dexamethasone) encapsulated in polylactic-co-glycolic acid and the continuous release of the steroid into artificial perilymph during six weeks is monitored. The steroid-containing scaffolds are then implanted into guinea pigs (n = 4) and threshold shifts are analyzed for four weeks by measuring the acoustically evoked auditory brainstem response. The threshold shifts tend to be lower in the group implanted with the steroid-containing MiSCEAs. The feasibility of 3D MiSCEA opens up the development of potential next-generation cochlear electrode with improved steroid release dynamics into cochlea.
Collapse
Affiliation(s)
- Jongmoon Jang
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
- Microsystem LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland
| | - Jin‐young Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Yeong Cheol Kim
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
- Department of Biomedical SciencesBK21 Plus Research Center for Biomedical SciencesAjou University Graduate School of Medicine Suwon 16499 Republic of Korea
| | - Sangwon Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Namsun Chou
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Seungmin Lee
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Yun‐Hoon Choung
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
- Department of Biomedical SciencesBK21 Plus Research Center for Biomedical SciencesAjou University Graduate School of Medicine Suwon 16499 Republic of Korea
| | - Sohee Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Juergen Brugger
- Microsystem LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland
| | - Hongsoo Choi
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Jeong Hun Jang
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
| |
Collapse
|
24
|
Glucocorticoid for Hearing Preservation After Cochlear Implantation: A Systemic Review and Meta-analysis of Animal Studies. Otol Neurotol 2019; 40:1178-1185. [DOI: 10.1097/mao.0000000000002383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
25
|
Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019; 13:323. [PMID: 31379508 PMCID: PMC6660246 DOI: 10.3389/fncel.2019.00323] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hearing loss is the most common sensory impairment in humans and currently disables 466 million people across the world. Congenital deafness affects at least 1 in 500 newborns, and over 50% are hereditary in nature. To date, existing pharmacologic therapies for genetic and acquired etiologies of deafness are severely limited. With the advent of modern sequencing technologies, there is a vast compendium of growing genetic alterations that underlie human hearing loss, which can be targeted by therapeutics such as gene therapy. Recently, there has been tremendous progress in the development of gene therapy vectors to treat sensorineural hearing loss (SNHL) in animal models in vivo. Nevertheless, significant hurdles remain before such technologies can be translated toward clinical use. These include addressing the blood-labyrinth barrier, engineering more specific and effective delivery vehicles, improving surgical access, and validating novel targets. In this review, we both highlight recent progress and outline challenges associated with in vivo gene therapy for human SNHL.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard University, Boston, MA, United States
| |
Collapse
|
26
|
Welch C, Dillon MT, Pillsbury HC. Electric and Acoustic Stimulation in Cochlear Implant Recipients with Hearing Preservation. Semin Hear 2018; 39:414-427. [PMID: 30374212 PMCID: PMC6203459 DOI: 10.1055/s-0038-1670707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Hearing loss affects 30 million people in the United States, and a subset of these patients have normal low-frequency hearing and ski-sloped high-frequency hearing loss. For these patients, hearing aids alone may not provide adequate benefit. Cochlear implantation alone has been utilized to improve speech perception. The addition of high-frequency electric hearing to low-frequency acoustic hearing in these patients is beneficial. Technical improvements have allowed preservation of low-frequency hearing in cochlear implant recipients, allowing for electric and acoustic stimulation in the same ear with significant improvements in speech perception, sound localization, music appreciation, and quality of life.
Collapse
Affiliation(s)
- Christopher Welch
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Margaret T. Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harold C. Pillsbury
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Chambers S, Newbold C, Stathopoulos D, Needham K, Miller C, Risi F, Enke YL, Timbol G, Cowan R. Protecting against electrode insertion trauma using dexamethasone. Cochlear Implants Int 2018; 20:1-11. [PMID: 30126345 DOI: 10.1080/14670100.2018.1509531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To compare the benefits of a dexamethasone-eluting array for hearing preservation and cochlear histopathology in low trauma (soft-surgery) and high trauma models of cochlear implant surgery. METHODS Adult guinea pigs were implanted with an intra-cochlear array using two different surgical procedures: either a soft-surgery approach or following generation of electrode insertion trauma (high trauma). Two methods of dexamethasone delivery were evaluated: elution from an electrode array alone, and elution from a cochlear implant electrode array in combination with a pre-operative systemic injection. All electrode arrays were implanted for a period of 4 weeks. Outcome measures at 4 weeks post-implantation included auditory brainstem response (ABR) thresholds, histological analysis of spiral ganglion neuron density, fibrotic tissue, new bone growth, and cochlear damage. RESULTS Animals exposed to high surgical trauma showed greater hearing loss than those in the low trauma model, irrespective of the presence of dexamethasone. Whilst the area of intra-cochlear fibrotic tissue growth post-implantation was also independent of dexamethasone administration, new bone growth was significantly reduced in its presence. Our high trauma model effectively obliterated the organ of Corti and significantly reduced spiral ganglion neuron densities in the lower basal turn. This trauma-induced reduction in spiral ganglion neuron survival decreased with the inclusion of a dexamethasone-eluting array. A pre-operative systemic injection of dexamethasone did not significantly improve any outcome measures beyond those provided with a dexamethasone-eluting array alone. CONCLUSION Dexamethasone-eluting intra-cochlear arrays may inhibit osteoneogenesis, and reduce spiral ganglion neuron loss following traumatic cochlear implantation.
Collapse
Affiliation(s)
- Scott Chambers
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Carrie Newbold
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Dimitra Stathopoulos
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Karina Needham
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Chris Miller
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Frank Risi
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Ya Lang Enke
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Godofredo Timbol
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Robert Cowan
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| |
Collapse
|
29
|
A cochlear implant loaded with dexamethasone and coated with hyaluronic acid to inhibit fibroblast adhesion and proliferation. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Gehrke M, Verin J, Gnansia D, Tourrel G, Risoud M, Vincent C, Siepmann F, Siepmann J. Hybrid Ear Cubes for local controlled dexamethasone delivery to the inner ear. Eur J Pharm Sci 2018; 126:23-32. [PMID: 29723597 DOI: 10.1016/j.ejps.2018.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 01/13/2023]
Abstract
A new type of miniaturized implants for local controlled drug delivery to the inner ear is proposed: Hybrid Ear Cubes. They are composed of two main parts: (i) a cylinder, which is placed into a tiny hole (<0.4 mm) drilled into (or close to) the oval (or round) window, and (ii) a cuboid, which is placed into the middle ear. The drug is released at a pre-programmed rate into the perilymph: (i) via the cylindrical part of the implant, which is in direct contact with this liquid, and (ii) via diffusion from the cuboid through the oval/round window. Importantly, the cylindrical part assures a reliable fixation of the drug delivery system at the site of administration. Furthermore, the cuboid provides a relatively "large" drug reservoir, without expulsing perilymph from the cochlea. The required surgery is minimized compared to the placement of an intracochlear implant. In contrast to previously proposed Ear Cubes, which are mono-block systems, Hybrid Ear Cubes consist of two halves, which can: (i) be loaded with different drugs, (ii) be loaded with the same drug at different concentrations, and/or (iii) be based on two different matrix formers. This offers a substantially increased formulation flexibility. Different types of silicone-based Hybrid Ear Cubes were prepared, loaded with 10% dexamethasone in one half and 0-60% dexamethasone in the other half. Importantly, tiny drug crystals were homogeneously distributed throughout the respective implant halves. The observed drug release rates were very low (e.g., <0.5% after 2 months), which can be attributed to the type of drug and silicone as well as to the very small surface area exposed to the release medium. Importantly, no noteworthy implant swelling was observed.
Collapse
Affiliation(s)
- M Gehrke
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - D Gnansia
- Oticon Medical/Neurelec, R&D, 2720 Chemin Saint-Bernard, F-06224 Vallauris, France
| | - G Tourrel
- Oticon Medical/Neurelec, R&D, 2720 Chemin Saint-Bernard, F-06224 Vallauris, France
| | - M Risoud
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - C Vincent
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
31
|
Skarżyńska MB, Skarżyński PH, Król B, Kozieł M, Osińska K, Gos E, Skarżyński H. Preservation of Hearing Following Cochlear Implantation Using Different Steroid Therapy Regimens: A Prospective Clinical Study. Med Sci Monit 2018; 24:2437-2445. [PMID: 29680860 PMCID: PMC5933206 DOI: 10.12659/msm.906210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background A prospective clinical study was conducted to assess different regimens of steroid therapy and preservation of hearing following cochlear implantation. Material/Methods Study participants were ≥18 years-of-age, with a cochlear duct length ≥27.1 mm measured by computed tomography (CT), with hearing sound levels in the range of 10–120 decibels (dB) and sound frequencies of 125–250 hertz (Hz); sound levels of 35–120 dB and frequencies of 500–1,000 Hz; sound levels of 75–120 dB and frequencies of 2,000–8,000 Hz. Study exclusion criteria included diseases with contraindications for steroid therapy or medications that increased the effects of steroids. Patients had cochlear implantation and were divided into three treatment groups: intravenous (IV) steroid therapy (standard steroid therapy): combined oral and IV steroid therapy (prolonged steroid therapy); and a control group (cochlear implantation without steroid therapy). Hearing preservation was established by pure tone audiometry based on the pre-operative and postoperative average hearing thresholds according to the formula developed by the HEARRING Network. Results There were 36 patients included in the study. In all cases, the cochlear implant electrode was inserted via the round window approach with a straight electrode length of 28 mm. Patients with combined oral and IV steroid therapy (prolonged steroid therapy) had better results when compared with patients with intravenous (IV) steroid therapy (standard steroid therapy) and the control group. Conclusions Prolonged steroid therapy using combined oral and IV steroids stabilized hearing thresholds and preserved hearing in adult patients following cochlear implantation.
Collapse
Affiliation(s)
- Magdalena Beata Skarżyńska
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Institute of Sensory Organs, Kajetany, Poland
| | - Piotr Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland.,Centre of Hearing and Speech Medincus, Kajetany, Poland.,Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Król
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Magdalena Kozieł
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Kamila Osińska
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Elżbieta Gos
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| |
Collapse
|
32
|
Xu M, Ma D, Chen D, Cai J, He Q, Shu F, Tang J, Zhang H. Preparation, characterization and application research of a sustained dexamethasone releasing electrode coating for cochlear implantation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:16-26. [PMID: 29853079 DOI: 10.1016/j.msec.2018.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 03/24/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Cochlear inflammatory response after cochlear implantation (CI) is an important mechanism for implantation trauma and hearing loss. The hearing loss was also caused by damage to auditory hair cells (HCs), whereas ion homeostasis within the cochlea can ensure survival of HCs. In our study, pure hyaluronic acid (HA) was crosslinked with 1, 4-butanediol diglycidyl ether (BDDE) and the successful preparation of the cross-linked hydrogel (CHA) was confirmed by rheological characteristics and FTIR spectra. Artificial perilymph (APL) was prepared to simulate the ion homeostasis microenvironment within scala tympani of human cochlear, and served as the major component of artificial perilymph soaked CHA (APL-CHA). The conductivity experiment indicated that APL-CHA is more suitable to the requirements of the electrical conductivity in scala tympani. The electrode coating process found that the extrusion coating method have advantages of controllable adhesive capacity of APL-CHA, uniform coating thickness and smooth surface as compared to common method. Due to CI surgery application requirement, optimization of coating process was selected as follows: extrusion coating method, degree of 3.6 vol%, pinhole diameter of 32G (110 μm), pressure of 200 ± 15.81 Psi. Controlled dexamethasone 21-phosphate sodium salt (DSP) release of 20 days could be demonstrated using the hydrogel filled reservoir via a validated HPLC method. The morphological structure of CHA showed different sizes of porous structure among APL-CHA provided structural basis for drug delivery. L929 fibroblasts culture and Spiral Ganglion Neuron Explants culture results revealed that APL-CHA possesses fine biological compatibility. APL-CHA shows a promising application in CI surgery and has great potential in preventing hearing loss with well simulation of ion homeostasis within the cochlear, local DSP delivery for target anti-inflammatory, approximate conductivity within the scala tympani and optimization of electrode coating process.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jieqing Cai
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiaofang He
- Operating Room of Anesthesiology Department, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Institute of Mental Health, Southern Medical University, Guangzhou, 510515, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
33
|
Effects of dexamethasone on intracochlear inflammation and residual hearing after cochleostomy: A comparison of administration routes. PLoS One 2018; 13:e0195230. [PMID: 29601595 PMCID: PMC5877881 DOI: 10.1371/journal.pone.0195230] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Preservation of residual hearing after cochlear implant is an important issue with regards to hearing performance. Various methods of steroid administration have been widely used in clinical practice to reduce inflammation and preserve residual hearing. Here we compare the effect of different routes of dexamethasone administration on intracochlear inflammation and residual hearing in guinea pig ears. Dexamethasone was delivered into the guinea pigs either through intracochlear, intratympanic or systemic route. The intracochlear concentration of dexamethasone, residual hearing, inflammatory cytokines and histopathologic changes were evaluated over time. A higher intracochlear dexamethasone concentration was observed after intracochlear administration than through the other routes. Residual hearing was better preserved with local dexamethasone administration as was supported by the reduced inflammatory cytokines, more hair cell survival and less severe intracochlear fibrosis and ossification concurrently seen in the local delivery group than in the systemic group. The results demonstrate that local dexamethasone delivery can reduce intracochlear inflammation and preserve residual hearing better than in systemically administered dexamethasone.
Collapse
|
34
|
Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear Res 2018; 368:28-40. [PMID: 29551306 DOI: 10.1016/j.heares.2018.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.
Collapse
|
35
|
Scheper V, Hessler R, Hütten M, Wilk M, Jolly C, Lenarz T, Paasche G. Local inner ear application of dexamethasone in cochlear implant models is safe for auditory neurons and increases the neuroprotective effect of chronic electrical stimulation. PLoS One 2017; 12:e0183820. [PMID: 28859106 PMCID: PMC5578571 DOI: 10.1371/journal.pone.0183820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/11/2017] [Indexed: 01/15/2023] Open
Abstract
Dexamethasone (DEX) can reduce fibrous tissue growth as well as loss of residual hearing which may occur after cochlear implantation. Little is known about the effect of local inner ear DEX treatment on the spiral ganglion neurons (SGN), which are the target of the electrical stimulation with a cochlear implant (CI). Three different clinically relevant strategies of DEX-delivery into the inner ear were used. DEX was either eluted from the electrode carriers' silicone, released from a reservoir by passive diffusion, or actively applied using a pump based system. The effect of the locally applied DEX on SGN density, size and function was evaluated. DEX did not affect the SGN density compared to the relevant control groups. Simultaneously applied with chronic electrical stimulation (ES), DEX increased the neuroprotective effect of ES in the basal region and the hearing threshold tended to decrease. The EABR thresholds did not correlate with the relevant SGN density. When correlating the SGN number with fibrosis, no dependency was observed. DEX concentrations as applied in these animal models are safe for inner ear delivery in terms of their effect on SGN density. Additionally, DEX tends to improve the neuroprotective effect of chronic electrical stimulation by increasing the number of surviving neurons. This is an important finding in regard to clinical applications of DEX for local treatment of the inner ear in view of cochlear implantation and other applications.
Collapse
Affiliation(s)
- Verena Scheper
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
- * E-mail:
| | - Roland Hessler
- MED-EL Innsbruck, Research & Development, Innsbruck, Österreich
| | - Mareike Hütten
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
| | - Maciej Wilk
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
| | - Claude Jolly
- MED-EL Innsbruck, Research & Development, Innsbruck, Österreich
| | - Thomas Lenarz
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| | - Gerrit Paasche
- Hannover Medical School (MHH), Department of Otolaryngology, Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| |
Collapse
|
36
|
Abstract
Local drug application to the inner ear offers a number of advantages over systemic delivery. Local drug therapy currently encompasses extracochlear administration (i. e., through intratympanic injection), intracochlear administration (particularly for gene and stem cell therapy), as well as various combinations with auditory neurosensory prostheses, either evaluated in preclinical or clinical studies, or off-label. To improve rehabilitation with cochlear implants (CI), one focus is the development of drug-releasing electrode carriers, e. g., for delivery of glucocorticosteroids, antiapoptotic substances, or neurotrophins to the inner ear. The performance of cochlear implants may thus be improved by protecting neuronal structures from insertion trauma, reducing fibrosis in the inner ear, and by stimulating growth of neuronal structures in the direction of the electrodes. Controlled drug release after extracochlear or intracochlear application in conjunction with a CI can also be achieved by use of a biocompatible, resorbable controlled-release drug-delivery system. Two case reports for intracochlear controlled release drug delivery in combination with cochlear implants are presented. In order to treat progressive reduction in speech discrimination and increased impedance, two cochlear implant patients successfully underwent intracochlear placement of a biocompatible, resorbable drug-delivery system for controlled release of dexamethasone. The drug levels reached in inner ear fluids after different types of local drug application strategies can be calculated using a computer model. The intracochlear drug concentrations calculated in this way were compared for different dexamethasone application strategies.
Collapse
|
37
|
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs. PLoS One 2017; 12:e0183374. [PMID: 28817653 PMCID: PMC5560723 DOI: 10.1371/journal.pone.0183374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022] Open
Abstract
Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant.
Collapse
|
38
|
Abstract
Implants for controlled drug delivery can be very helpful to improve the therapeutic efficacy of a medical treatment, and at the same time reduce the risk of toxic side effects. In this article, four different strategies are exemplarily presented: hybrid bone substitutes combining hydroxyapatite and chitosan hydrogels; vascular stents coated with a bio-inspired polymer; cochlear implants for local dexamethasone delivery; and in-situ forming implants for periodontitis treatment. But this is only a restricted selection, and numerous other approaches and applications based on implants releasing a drug (or a combination of drugs) exist. Compared to conventional implants or pharmaceutical dosage forms, they might offer decisive advantages.
Collapse
Affiliation(s)
- Nicolas Blanchemain
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| | - Florence Siepmann
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| | - Juergen Siepmann
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| |
Collapse
|
39
|
|
40
|
Gehrke M, Sircoglou J, Gnansia D, Tourrel G, Willart JF, Danede F, Lacante E, Vincent C, Siepmann F, Siepmann J. Ear Cubes for local controlled drug delivery to the inner ear. Int J Pharm 2016; 509:85-94. [DOI: 10.1016/j.ijpharm.2016.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
|
41
|
Bas E, Bohorquez J, Goncalves S, Perez E, Dinh CT, Garnham C, Hessler R, Eshraghi AA, Van De Water TR. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear Res 2016; 337:12-24. [DOI: 10.1016/j.heares.2016.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
|
42
|
Trans-Oval-Window Implants, A New Approach for Drug Delivery to the Inner Ear: Extended Dexamethasone Release From Silicone-based Implants. Otol Neurotol 2016; 36:1572-9. [PMID: 26375981 DOI: 10.1097/mao.0000000000000855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. BACKGROUND Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. METHODS In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. RESULTS The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. CONCLUSIONS Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.
Collapse
|
43
|
Liu Y, Jolly C, Braun S, Stark T, Scherer E, Plontke SK, Kiefer J. In vitro and in vivo pharmacokinetic study of a dexamethasone-releasing silicone for cochlear implants. Eur Arch Otorhinolaryngol 2015; 273:1745-53. [PMID: 26319276 DOI: 10.1007/s00405-015-3760-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/21/2015] [Indexed: 01/12/2023]
Abstract
Cochlear implants have been widely used for patients with profound hearing loss and partial deafness. Residual low-frequency hearing, however, may deteriorate due to insertion trauma and tissue response around the electrode array. The present study investigated in vitro and in vivo release of dexamethasone from silicone used for cochlear implant electrode carriers. The in vitro experiment involved an apparatus simulating the inner ear fluid environment in humans. Release from two sizes of silicone films (200 µm × 1 mm × 10 mm and 500 µm × 1 mm × 10 mm), each loaded with 2 % dexamethasone, and was measured for 24 weeks. In the in vivo experiment, silicone rods loaded with 2 or 10 % dexamethasone, respectively, were implanted into the scala tympani of guinea pigs. Perilymph concentrations were measured during the first week after implantation. The results showed that dexamethasone was released from the silicone in a sustained manner. After a burst release, perilymph concentration was similar for silicone incorporated with 2 and 10 % dexamethasone, respectively. The similar pharmacokinetic profile was found in the in vitro experiment. The period of sustained drug delivery was maintained for 20 weeks in vitro and for 1 week in vivo. The results of the present study suggest that drugs like dexamethasone are released in a controlled manner from silicon electrode carriers of cochlear implants. Further studies will identify optimal release profiles for the use with cochlear implants to improve their safety and long-term performance.
Collapse
Affiliation(s)
- Ya Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Naval General Hospital, Beijing, 100048, People's Republic of China
| | - Claude Jolly
- Electrode Research Section, MED-EL Medical Electronics, Innsbruck, Austria
| | | | - Thomas Stark
- Clinic for Otorhinolaryngology, Head- and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elias Scherer
- Clinic for Otorhinolaryngology, Head- and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Kiefer
- HNO-Zentrum, Neupfarrplatz 12/II, 93047, Regensburg, Germany.
| |
Collapse
|
44
|
Yawn R, Hunter JB, Sweeney AD, Bennett ML. Cochlear implantation: a biomechanical prosthesis for hearing loss. F1000PRIME REPORTS 2015; 7:45. [PMID: 26097718 PMCID: PMC4447036 DOI: 10.12703/p7-45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cochlear implants are a medical prosthesis used to treat sensorineural deafness, and one of the greatest advances in modern medicine. The following article is an overview of cochlear implant technology. The history of cochlear implantation and the development of modern implant technology will be discussed, as well as current surgical techniques. Research regarding expansion of candidacy, hearing preservation cochlear implantation, and implantation for unilateral deafness are described. Lastly, innovative technology is discussed, including the hybrid cochlear implant and the totally implantable cochlear implant.
Collapse
Affiliation(s)
- Robert Yawn
- The Otology Group, Department of Otolaryngology-Head and Neck Surgery The Bill Wilkerson Center for Otolaryngology & Communication Sciences 7209 Medical Center East, South Tower 1215 21st Avenue South, Nashville, TN 37232 USA
| | - Jacob B Hunter
- The Otology Group, Department of Otolaryngology-Head and Neck Surgery The Bill Wilkerson Center for Otolaryngology & Communication Sciences 7209 Medical Center East, South Tower 1215 21st Avenue South, Nashville, TN 37232 USA
| | - Alex D Sweeney
- The Otology Group, Department of Otolaryngology-Head and Neck Surgery The Bill Wilkerson Center for Otolaryngology & Communication Sciences 7209 Medical Center East, South Tower 1215 21st Avenue South, Nashville, TN 37232 USA
| | - Marc L Bennett
- The Otology Group, Department of Otolaryngology-Head and Neck Surgery The Bill Wilkerson Center for Otolaryngology & Communication Sciences 7209 Medical Center East, South Tower 1215 21st Avenue South, Nashville, TN 37232 USA
| |
Collapse
|
45
|
Stathopoulos D, Chambers S, Adams L, Robins-Browne R, Miller C, Enke YL, Wei BPC, O'Leary S, Cowan R, Newbold C. Meningitis and a safe dexamethasone-eluting intracochlear electrode array. Cochlear Implants Int 2014; 16:201-7. [DOI: 10.1179/1754762814y.0000000099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|