1
|
Volynkina IA, Bychkova EN, Karakchieva AO, Tikhomirov AS, Zatonsky GV, Solovieva SE, Martynov MM, Grammatikova NE, Tereshchenkov AG, Paleskava A, Konevega AL, Sergiev PV, Dontsova OA, Osterman IA, Shchekotikhin AE, Tevyashova AN. Hybrid Molecules of Azithromycin with Chloramphenicol and Metronidazole: Synthesis and Study of Antibacterial Properties. Pharmaceuticals (Basel) 2024; 17:187. [PMID: 38399402 PMCID: PMC10892836 DOI: 10.3390/ph17020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The sustained rise of antimicrobial resistance (AMR) causes a strong need to develop new antibacterial agents. One of the methods for addressing the problem of antibiotic resistance is through the design of hybrid antibiotics. In this work, we proposed a synthetic route for the conjugation of an azithromycin derivative with chloramphenicol and metronidazole hemisuccinates and synthesized two series of new hybrid molecules 4a-g and 5a-g. While a conjugation did not result in tangible synergy for wild-type bacterial strains, new compounds were able to overcome AMR associated with the inducible expression of the ermC gene on a model E. coli strain resistant to macrolide antibiotics. The newly developed hybrids demonstrated a tendency to induce premature ribosome stalling, which might be crucial since they will not induce a macrolide-resistant phenotype in a number of pathogenic bacterial strains. In summary, the designed structures are considered as a promising direction for the further development of hybrid molecules that can effectively circumvent AMR mechanisms to macrolide antibiotics.
Collapse
Affiliation(s)
- Inna A. Volynkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Anastasiia O. Karakchieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Alexander S. Tikhomirov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - George V. Zatonsky
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Svetlana E. Solovieva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Maksim M. Martynov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Andrey G. Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
| | - Alena Paleskava
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantiniv of NRC “Kurchatov Institute”, Mkr. Orlova Roshcha 1, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Khlopina 11, 195251 Saint Petersburg, Russia
| | - Andrey L. Konevega
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantiniv of NRC “Kurchatov Institute”, Mkr. Orlova Roshcha 1, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Khlopina 11, 195251 Saint Petersburg, Russia
- NBICS Center, NRC “Kurchatov Institute”, Kurchatov Square 1, 123182 Moscow, Russia
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119234 Moscow, Russia; (A.O.K.); (P.V.S.); (O.A.D.); (I.A.O.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; (E.N.B.); (A.S.T.); (G.V.Z.); (S.E.S.); (M.M.M.); (N.E.G.); (A.E.S.)
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
2
|
Heinsoo I, Walker DJ, Bergum Hjellegjerde K, Tang JWY, Moores AL. Canine Pyothorax: Comparison of Culture and Susceptibility Results to the BSAVA PROTECT ME Poster and Other Published Recommended Antimicrobial Use Guidelines. Animals (Basel) 2023; 13:3843. [PMID: 38136880 PMCID: PMC10740867 DOI: 10.3390/ani13243843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The most common bacterial isolates in dogs with pyothorax include mixed anaerobes, Enterobacteriaceae (especially Escherichia coli), Pasteurella spp., Streptococcus spp., and Staphylococcus spp. A fluoroquinolone with amoxicillin (±clavulanate) or a fluoroquinolone with clindamycin are the most commonly recommended empirical antimicrobials whilst pending bacterial culture of the pleural effusion. The aim of this study is to review and compare the pleural effusion culture and antimicrobial susceptibility results to the PROTECT ME poster and other published antimicrobial use guidelines. The medical records of 53 dogs diagnosed with pyothorax between 2014 and 2020 at two veterinary referral centres were reviewed. Information, including culture and susceptibility results, was assessed. Antimicrobial susceptibility panels varied; susceptibility to a particular antibiotic was calculated as a percentage of isolates tested against the same antibiotic. A total of 30 of 53 dogs (57.7%) had a positive pleural fluid culture. The most common isolates were Pasteurella species (23.3%), Escherichia coli (23.3%), and mixed anaerobes (20%). From the aerobic isolates, 73-83% were susceptible to a fluoroquinolone, 14/19 (74%) to amoxicillin, and 20/22 (91%) to potentiated amoxicillin. Resistance to clindamycin was documented in 9/13 (69%) aerobic isolates, with all Gram-negative bacteria (9/9) being resistant. The combination of potentiated amoxicillin with marbofloxacin would have been appropriate in most of the dogs (75-92.9%). This study shows a high rate of resistance to clindamycin, which is not a suitable option for monotherapy and may be less effective in combination therapy compared to potentiated amoxicillin.
Collapse
Affiliation(s)
- Iris Heinsoo
- Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Lane, Hursley, Winchester SO21 2LL, UK
- Lumbry Park Veterinary Specialists, CVS Group Plc, Selborne Road, Alton GU34 3HL, UK
| | - David J. Walker
- Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Lane, Hursley, Winchester SO21 2LL, UK
| | - Kine Bergum Hjellegjerde
- Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Lane, Hursley, Winchester SO21 2LL, UK
| | - Julia W. Y. Tang
- Dick White Referrals, Station Farm, London Road, Cambridge CB8 0UH, UK
| | - Alison L. Moores
- Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Lane, Hursley, Winchester SO21 2LL, UK
| |
Collapse
|
3
|
Reissier S, Penven M, Guérin F, Cattoir V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms 2023; 11:1474. [PMID: 37374976 DOI: 10.3390/microorganisms11061474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Anaerobic bacteria are normal inhabitants of the human commensal microbiota and play an important role in various human infections. Tedious and time-consuming, antibiotic susceptibility testing is not routinely performed in all clinical microbiology laboratories, despite the increase in antibiotic resistance among clinically relevant anaerobes since the 1990s. β-lactam and metronidazole are the key molecules in the management of anaerobic infections, to the detriment of clindamycin. β-lactam resistance is usually mediated by the production of β-lactamases. Metronidazole resistance remains uncommon, complex, and not fully elucidated, while metronidazole inactivation appears to be a key mechanism. The use of clindamycin, a broad-spectrum anti-anaerobic agent, is becoming problematic due to the increase in resistance rate in all anaerobic bacteria, mainly mediated by Erm-type rRNA methylases. Second-line anti-anaerobes are fluoroquinolones, tetracyclines, chloramphenicol, and linezolid. This review aims to describe the up-to-date evolution of antibiotic resistance, give an overview, and understand the main mechanisms of resistance in a wide range of anaerobes.
Collapse
Affiliation(s)
- Sophie Reissier
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Malo Penven
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - François Guérin
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, 2 Rue Henri Le Guilloux, CEDEX 9, F-35033 Rennes, France
| |
Collapse
|
4
|
Chaudhry R, Antony B, Batra P, Prakash O. Editorial on the first webinar of the Anaerobic Forum of India. Anaerobe 2022; 78:102650. [PMID: 36273718 DOI: 10.1016/j.anaerobe.2022.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/13/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Beena Antony
- Department of Microbiology, Father Muller Medical College, Manglore, India
| | - Priyam Batra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Om Prakash
- National Centre for Cell Science, Pune, India
| |
Collapse
|
5
|
Reddy P. Clinical Approach to Nosocomial Bacterial Sepsis. Cureus 2022; 14:e28601. [PMID: 36185840 PMCID: PMC9521889 DOI: 10.7759/cureus.28601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial sepsis and septic shock are associated with a high mortality, and when clinically suspected, clinicians must initiate broad-spectrum antimicrobials within the first hour of diagnosis. Thorough review of prior cultures involving multidrug-resistant (MDR) pathogens along with other likely pathogens should be performed to provide an appropriate broad-spectrum empiric antibiotic coverage. The appropriate antibiotic loading dose followed by individualized modification of maintenance dose should be implemented based on the presence of hepatic or renal dysfunction. Use of procalcitonin is no longer recommended to determine need for initial antibacterial therapy and for de-escalation. Daily reevaluation of appropriateness of treatment is necessary based on the culture results and clinical response. All positive cultures should be carefully screened for possible contamination or colonization, which may not represent the true organism causing the sepsis. Culture negative sepsis accounts for one-half of all cases, and de-escalation of initial antibiotic regimen should be done gradually in these patients with close monitoring.
Collapse
|
6
|
Satokata AAC, de Souza JH, Silva LLO, Santiago MB, Ramos SB, Assis LRD, Theodoro RDS, Oliveira LRE, Regasini LO, Martins CHG. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022; 76:102588. [PMID: 35618163 DOI: 10.1016/j.anaerobe.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 μg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 μg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.
Collapse
Affiliation(s)
- Alessandra Akemi Cury Satokata
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Jonathan Henrique de Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luana Luiza Oliveira Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Reinaldo Dos Santos Theodoro
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
7
|
Toole J, Bolt HL, Marley JJ, Patrick S, Cobb SL, Lundy FT. Peptoids with Antibiofilm Activity against the Gram Negative Obligate Anaerobe, Fusobacterium nucleatum. Molecules 2021; 26:4741. [PMID: 34443332 PMCID: PMC8398059 DOI: 10.3390/molecules26164741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.
Collapse
Affiliation(s)
- Jamie Toole
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Hannah L. Bolt
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - John J. Marley
- Department of Oral Surgery, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, UK;
| | - Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Steven L. Cobb
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| |
Collapse
|
8
|
Jiang HH, Hu SP, Bano Y, Ji LX, Zhang PF, Zhou K. Case Report: Management of Multiple Deep-Tissue Cellulitis Without Sling Removal After an Anti-incontinence Procedure in a Female With Diabetes Mellitus. Front Surg 2020; 7:600754. [PMID: 33392245 PMCID: PMC7775556 DOI: 10.3389/fsurg.2020.600754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
The transobturator suburethral tape procedure is emerging as a preferred surgical option in the management of stress urinary incontinence. This procedure, also called tension-free vaginal tape transobturator (TVT-O) procedure, has fewer risks of injury to the bladder, similar effectiveness, and shorter surgery duration compared with the older tension-free vaginal tape (TVT) procedure. In this study, we report the case of a female patient with type 2 diabetes mellitus who developed emergency ketoacidosis and severe cellulitis after a TVT-O procedure, which was successfully managed without sling removal and open drainage of abscesses after multi-point puncture drainage, guided by ultrasound and appropriate antibiotic administration. The patient showed appropriate urinary continence with controlled diabetes mellitus 24 months after treatment. In conclusion, cellulitis from the pelvic floor to the associated thigh after TVT-O procedure in a diabetic patient can be managed conservatively if no sling exposure is confirmed. However, these patients should be closely observed and followed up during the perioperative period, especially for synthetic sling use.
Collapse
Affiliation(s)
- Hai-Hong Jiang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheng-Ping Hu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yasmeen Bano
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling-Xiao Ji
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Fei Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
A Rare Paronychia with Superinfection with Prevotella bivia and Staphylococcus haemolyticus: The Importance of Early Microbiological Diagnosis. Pathogens 2020; 9:pathogens9120999. [PMID: 33260325 PMCID: PMC7761197 DOI: 10.3390/pathogens9120999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
Prevotella bivia is an anaerobic, gram-negative bacillus which naturally thrives in the human vagina, and is usually related to vaginal tract infections. However, this microorganism can also cause infections in other body locations. Infections with Prevotella bivia are frequently severe due to the risk of osteomyelitis and the lack of good protocols for adequate therapeutic management. Staphylococcus haemolyticus infection is one of the most frequent etiological factors of nosocomial infections, which hasthe ability to acquire multiple resistance against antimicrobial agents. We report a rare case of foot and hand paronychia with superinfection of Prevotella bivia and Staphylococcus haemolyticus. We highlight the importance of early microbiological diagnosis, and proper therapeutic management to avoid the risk of complications and the development of bacterial resistance to antibiotics.
Collapse
|
10
|
Aghdassi SJS, Gastmeier P, Behnke M, Hansen S, Kramer TS. Redundant Anaerobic Antimicrobial Prescriptions in German Acute Care Hospitals: Data from a National Point Prevalence Survey. Antibiotics (Basel) 2020; 9:antibiotics9060288. [PMID: 32481490 PMCID: PMC7345752 DOI: 10.3390/antibiotics9060288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Despite limited indications, redundant anaerobic antimicrobial prescriptions (RAAPs) are frequent. The objective of this study was to assess the prevalence and characteristics of RAAPs in German acute care hospitals. In a retrospective data analysis, antimicrobial prescriptions from a point prevalence survey on antimicrobial use in German acute care hospitals in 2016 were analyzed and RAAPs were identified. RAAPs were defined as a patient simultaneously receiving any of the following combinations: Penicillin/beta-lactamase inhibitor (PenBLI) plus clindamycin; PenBLI plus metronidazole; PenBLI plus moxifloxacin; PenBLI plus carbapenem; carbapenem plus clindamycin; carbapenem plus metronidazole; carbapenem plus moxifloxacin; clindamycin plus metronidazole; clindamycin plus moxifloxacin; and metronidazole plus moxifloxacin. Data from 64,412 patients in 218 hospitals were included. Overall, 4486 patients (7%) received two or more antimicrobials. In total, 441 RAAP combinations were identified. PenBLI plus metronidazole was the most common anaerobic combination (N = 166, 38%). The majority of RAAPs were for the treatment of community-acquired (N = 258, 59%) infections. Lower respiratory tract infections (N = 77; 20%) and skin/soft tissue infections (N = 76; 20%) were the most frequently recorded types of infections. RAAPs are common in German hospitals. Reducing redundant antimicrobial coverage should be a key component of future antimicrobial stewardship activities.
Collapse
Affiliation(s)
- Seven Johannes Sam Aghdassi
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203 Berlin, Germany; (P.G.); (M.B.); (S.H.); (T.S.K.)
- National Reference Center for Surveillance of Nosocomial Infections, 12203 Berlin, Germany
- Correspondence: ; Tel.: +49-304-5057-7608; Fax: +49-304-5057-7920
| | - Petra Gastmeier
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203 Berlin, Germany; (P.G.); (M.B.); (S.H.); (T.S.K.)
- National Reference Center for Surveillance of Nosocomial Infections, 12203 Berlin, Germany
| | - Michael Behnke
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203 Berlin, Germany; (P.G.); (M.B.); (S.H.); (T.S.K.)
- National Reference Center for Surveillance of Nosocomial Infections, 12203 Berlin, Germany
| | - Sonja Hansen
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203 Berlin, Germany; (P.G.); (M.B.); (S.H.); (T.S.K.)
- National Reference Center for Surveillance of Nosocomial Infections, 12203 Berlin, Germany
| | - Tobias Siegfried Kramer
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203 Berlin, Germany; (P.G.); (M.B.); (S.H.); (T.S.K.)
- National Reference Center for Surveillance of Nosocomial Infections, 12203 Berlin, Germany
| |
Collapse
|
11
|
Minami M, Takase H, Taira M, Makino T. In Vitro Effect of the Traditional Medicine Hainosan (Painongsan) on Porphyromonas gingivalis. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E58. [PMID: 31137477 PMCID: PMC6630747 DOI: 10.3390/medicines6020058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/05/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Background: Hainosan (Painongsan) is a traditional Japanese and Chinese medicine that is used to treat several purulent diseases, including gingivitis and periodontitis. This formulation contains three crude drug components: The dried immature fruit of Citrus aurantium (Aurantii Fructus Immaturus), the dried root of Paeonia lactiflora (Paeoniae Radix), and the dried root of Platycodon grandiflorum (Platycodi Radix). Here we evaluated the in vitro antibacterial effects of hainosan extract (HNS) and extracts of its three components against Porphyromonas gingivalis, one of the pathogenic bacteria that causes periodontitis. Methods: The antibacterial activities of HNS and its components were examined by counting the number of colony-forming units (CFUs) and through transmission electron microscopy. Results: We found that HNS had direct antibacterial activity against three P. gingivalis isolates (JCM12257, JCM8525, and JCM19600), with HNS-treated cells being significantly smaller than those of untreated bacteria. Extracts of Platycodi Radix and Paeoniae Radix significantly suppressed the growth of P. gingivalis in a dose-dependent manner, with Platycodi Radix extract having the greatest antibacterial effect. In addition, P. gingivalis that were treated with Platycodi Radix extract were significantly larger than those treated with Aurantii Fructus Immaturus or Paeoniae Radix extracts. Further analysis showed that platycodin D, which is one of the ingredients of Platycodi Radix, reduced bacterial growth. Conclusions: Platycodi Radix is the active component in Hainosan and may represent a useful agent for the treatment of P. gingivalis-induced gingivitis and periodontitis.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Masayo Taira
- JPS Pharmaceutical Co. Ltd., 4-42-22 Higashiyamata, Tsuzuki-ku, Yokohama 224-0023, Japan.
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
12
|
An early report: a modified porphyrin-linked metronidazole targeting intracellular Porphyromonas gingivalis in cultured oral epithelial cells. Int J Oral Sci 2018; 9:167-173. [PMID: 28960193 PMCID: PMC5709547 DOI: 10.1038/ijos.2017.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing interest is the potential problem of intracellular bacteria that are able to persist and multiply within the host cell, thereby facilitating relapse of infection. The effect of antibiotic therapy in controlling P. gingivalis is questionable. Accordingly, while metronidazole is very effective against anaerobic extracellular P. gingivalis by disrupting the DNA of anaerobic microbial cells, this antibiotic does not effectively penetrate into mammalian cells to inhibit intracellular bacteria. Therefore in the present study, a modified porphyrin-linked metronidazole adducts, developed in our laboratory, was used to kill intracellular P. gingivalis. A series of experiments were performed, including cytotoxicity assays and cellular uptake of adducts by flow cytometry coupled with live cell imaging analysis, P. gingivalis invasion and elimination assays, and the analysis of colocalization of P. gingivalis and porphyrin-linked metronidazole by confocal laser scanning microscopy. Findings indicated that P. gingivalis and porphyrin-linked metronidazole were colocalized in the cytoplasm, and this compound was able to kill P. gingivalis intracellular with a sufficient culture time. This is a novel antimicrobial approach in the elimination of P. gingivalis from the oral cavity.
Collapse
|
13
|
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol 2016; 133:4-19. [PMID: 27720719 DOI: 10.1016/j.bcp.2016.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
The introduction of antibiotics into clinical practice revolutionized the treatment and management of infectious diseases. Before the introduction of antibiotics, these diseases were the leading cause of morbidity and mortality in human populations. This review presents a brief history of discovery of the main antimicrobial classes (arsphenamines, β-lactams, sulphonamides, polypeptides, aminoglycosides, tetracyclines, amphenicols, lipopeptides, macrolides, oxazolidinones, glycopeptides, streptogramins, ansamycins, quinolones, and lincosamides) that have changed the landscape of contemporary medicine. Given within a historical timeline context, the review discusses how the introduction of certain antimicrobial classes affected the morbidity and mortality rates due to bacterial infectious diseases in human populations. Problems of resistance to antibiotics of different classes are also extensively discussed.
Collapse
Affiliation(s)
- Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|