1
|
Li J, Deng G, Li X, Yin L, Yuan C, Shao W, Chen Y, Yao J, Yan J. An innovative electrical neurostimulation approach to mimic reflexive urination control in spinal cord injury models. Sci Rep 2024; 14:25305. [PMID: 39455718 PMCID: PMC11511940 DOI: 10.1038/s41598-024-76499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Neurogenic lower urinary tract dysfunction (NLUTD) is a frequent consequence of spinal cord injury (SCI), leading to symptoms that significantly impact quality of life. Although many life-saving techniques are available, current treatment strategies for managing NLUTD still exhibit limitations and drawbacks. Here, we introduce a new electrical neuromodulation strategy involving electrical stimulation of the major pelvic ganglion (MPG) to initiate bladder contraction, in conjunction with innovative programmable (IPG) electrical stimulation on the pudendal nerve (PN) to induce external urethral sphincter (EUS) relaxation in freely moving or anesthetized SCI mice. Furthermore, we conducted the void spot assay, and cystometry coupled with EUS electromyography (EMG) recordings to evaluate voiding function, and monitor bladder pressure and EUS activity. Our findings demonstrate that our novel electrical neuromodulation approach effectively triggers coordinated bladder muscle contraction and EUS relaxation, effectively counteracting SCI-induced NLUTD. Additionally, this electrical neuromodulation method enhances voiding efficiency, closely resembling natural reflexive urination in SCI mice. Thus, our study offers a promising electrical neurostimulation approach aimed at restoring physiological coordination and potentially offering personalized treatment for improving voiding efficiency in individuals with SCI-associated NLUTD.
Collapse
Affiliation(s)
- Jun Li
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoxian Deng
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Xianping Li
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Lingxuan Yin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Chunhui Yuan
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Wei Shao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Yuangui Chen
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China.
| | - Jiwei Yao
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China.
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Junan Yan
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China.
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China.
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Li J, Deng G, Li X, Yin L, Yuan C, Shao W, Xia X, Yan J, Yao J. A wireless, battery-free device for electrical neuromodulation of bladder contractions. Mater Today Bio 2024; 28:101233. [PMID: 39318375 PMCID: PMC11420504 DOI: 10.1016/j.mtbio.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
Lower urinary tract dysfunction (LUTD) is a prevalent condition characterized by symptoms such as urinary frequency, urgency, incontinence, and difficulty in urination, which can significantly impair patient's quality of life and lead to severe physiological complications. Despite the availability of diverse treatment options, including pharmaceutical and behavioral therapies, these approaches are not without challenges. The objective of this study was to enhance treatment options for LUTD by developing a wireless, battery-free device for managing bladder contractions. We designed and validated a compact, fully implantable, battery-free pulse generator using the magnetic induction coupling mechanism of wireless power transmission. Weighing less than 0.2 g and with a volume of less than 0.1 cubic centimeters, this device enables precise stimulation of muscles or neurons at voltages ranging from 0 to 10 V. Wireless technology allows real-time adjustment of key stimulation parameters such as voltage, duration, frequency, pulse width, and pulse interval. Our findings demonstrate that the device effectively controlled bladder contractions in mice when used to stimulate the Major Pelvic Ganglion (MPG). Additionally, the device successfully managed micturition in mice with bilateral transection of the pudendal nerve. In conclusion, the development of this innovative wireless pulse generator provides a safer and more cost-effective alternative to conventional battery-powered neurostimulators for bladder control, addressing the limitations of such devices. We anticipate that this novel technology will play a pivotal role in the future of electrical stimulation therapies for voiding dysfunctions.
Collapse
Affiliation(s)
- Jun Li
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Guoxian Deng
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Xianping Li
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Lingxuan Yin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Chunhui Yuan
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Wei Shao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xiaowen Xia
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Junan Yan
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jiwei Yao
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Wilkins NL, Medina-Aguiñaga D, Hoey RF, Fell J, Harkema SJ, Hubscher CH. Bladder Responses to Thoracolumbar Epidural Stimulation in Female Urethane-Anesthetized Rats with Graded Contusion Spinal Cord Injuries. J Neurotrauma 2024. [PMID: 39264865 DOI: 10.1089/neu.2024.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Spinal cord epidural stimulation (scES) is a therapeutic option that promotes functional improvements in sensory, motor, and autonomic functions following spinal cord injury (SCI). Previous scES mapping studies targeting the lower urinary tract (LUT) in rats demonstrated functional response variability based upon lumbosacral level, parameters used, extent of injury (spinally intact vs. chronic anatomically complete spinal transections), and sex. In the current study, female rats with clinically relevant graded incomplete T9 contusion injuries were mapped with scES at 60 days post-injury at three spinal levels (T13, L3, L6) with a novel miniature 15-electrode array designed to deliver optimal specificity. The results obtained during bladder fill and void cycles conducted under urethane anesthesia indicate frequency dependent sub-motor threshold effects on LUT function with a single row of electrodes positioned across the full medio-lateral extent of the dorsal cord. The findings of improved storage and emptying, represented by significantly longer inter-contractile intervals with T13 scES and L3 scES and by a significantly increased estimated void efficiency with L6 scES, respectively, are consistent with previous studies using intact and chronic complete transected male and female rats. The data support the efficacy of selective spinal network stimulation to drive functionally relevant networks for storage versus emptying phases of the urinary cycle. The current findings further demonstrate the translational promise of scES for SCI individuals with LUT dysfunctions, regardless of injury severity.
Collapse
Affiliation(s)
- Natasha L Wilkins
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Physical Medicine and Rehabilitation Department, MetroHealth Rehabilitation Institute of Ohio, Cleveland, Ohio, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Sahu S, Venkataraman S, Chanu AR, Singh U. Transcutaneous neuromodulation versus oxybutynin for neurogenic detrusor overactivity in persons with spinal cord injury: A randomized, investigator blinded, parallel group, non-inferiority controlled trial. J Spinal Cord Med 2024:1-8. [PMID: 38958641 DOI: 10.1080/10790268.2024.2370099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
STUDY DESIGN This study is a randomized, investigator-blinded, controlled trial with a non-inferiority design. OBJECTIVE To investigate the effectiveness of neuromodulation by transcutaneous electrical stimulation of the somatic afferent nerves of the foot in neurogenic detrusor overactivity (NDO) in persons with spinal cord injury (SCI) and compare its effectiveness with oral oxybutynin. SETTING The study was conducted in a rehabilitation in-patient ward of a tertiary care hospital. METHODS Twenty-nine persons with SCI with NDO, either sex, aged 18 years and above were randomized into two groups, one group receiving oral oxybutynin (5 mg thrice a day for two weeks) and the other transcutaneous electrical stimulation (5 Hz, 200 µs pulse, biphasic, amplitude up to 60 mA, 30 min/day for two weeks). Bladder capacity was evaluated by clinical bladder evaluation (i.e. bladder capacity measured by adding leak volume, voiding volume if any, and post-void residue using a catheter) and cystometric bladder capacity by one-channel cystometry. Maximum cystometric pressure was evaluated by one-channel water cystometry. Data were analyzed with Fisher's Exact, t-test, and Wilcoxon rank sum tests. RESULTS Bladder capacity improved significantly in the oxybutynin and neuromodulation groups as measured by one-channel water cystometry (136 ml vs. 120.57 ml) and clinical evaluation (138.93 ml vs. 112 ml). The increase in the neuromodulation group achieved the pre-decided non-inferiority margin of 30 ml over the oxybutynin group when measured by one-channel water cystometry but not by clinical evaluation. Maximum cystometric pressure did not significantly improve in either group when compared with the baseline. CONCLUSION Transcutaneous neuromodulation and oxybutynin effectively increased bladder capacity in persons with SCI with NDO. Neuromodulation by once-a-day transcutaneous electrical stimulation was non-inferior to thrice-a-day oxybutynin when evaluated by one-channel water cystometry.Trial registration: Clinical Trials Registry India identifier: CTRI/2018/05/013735.
Collapse
Affiliation(s)
- Samantak Sahu
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Srikumar Venkataraman
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India
| | - Asem Rangita Chanu
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India
| | - U Singh
- Department of Physical Medicine and Rehabilitation, Mahatma Gandhi Medical College and Hospitals, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Fardadi M, Leiter JC, Lu DC, Iwasaki T. Model-based analysis of the acute effects of transcutaneous magnetic spinal cord stimulation on micturition after spinal cord injury in humans. PLoS Comput Biol 2024; 20:e1012237. [PMID: 38950067 PMCID: PMC11244836 DOI: 10.1371/journal.pcbi.1012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
AIM After spinal cord injuries (SCIs), patients may develop either detrusor-sphincter dyssynergia (DSD) or urinary incontinence, depending on the level of the spinal injury. DSD and incontinence reflect the loss of coordinated neural control among the detrusor muscle, which increases bladder pressure to facilitate urination, and urethral sphincters and pelvic floor muscles, which control the bladder outlet to restrict or permit bladder emptying. Transcutaneous magnetic stimulation (TMS) applied to the spinal cord after SCI reduced DSD and incontinence. We defined, within a mathematical model, the minimum neuronal elements necessary to replicate neurogenic dysfunction of the bladder after a SCI and incorporated into this model the minimum additional neurophysiological features sufficient to replicate the improvements in bladder function associated with lumbar TMS of the spine in patients with SCI. METHODS We created a computational model of the neural circuit of micturition based on Hodgkin-Huxley equations that replicated normal bladder function. We added interneurons and increased network complexity to reproduce dysfunctional micturition after SCI, and we increased the density and complexity of interactions of both inhibitory and excitatory lumbar spinal interneurons responsive to TMS to provide a more diverse set of spinal responses to intrinsic and extrinsic activation of spinal interneurons that remains after SCI. RESULTS The model reproduced the re-emergence of a spinal voiding reflex after SCI. When we investigated the effect of monophasic and biphasic TMS at two frequencies applied at or below T10, the model replicated the improved coordination between detrusor and external urethral sphincter activity that has been observed clinically: low-frequency TMS (1 Hz) within the model normalized control of voiding after SCI, whereas high-frequency TMS (30 Hz) enhanced urine storage. CONCLUSION Neuroplasticity and increased complexity of interactions among lumbar interneurons, beyond what is necessary to simulate normal bladder function, must be present in order to replicate the effects of SCI on control of micturition, and both neuronal and network modifications of lumbar interneurons are essential to understand the mechanisms whereby TMS reduced bladder dysfunction after SCI.
Collapse
Affiliation(s)
- Mahshid Fardadi
- Department of Mechanical Engineering, University of California, Los Angeles, California, United States of America
| | - J. C. Leiter
- White River Junction VA Medical Center, White River Junction, Vermont, United States of America
| | - Daniel C. Lu
- Department of Neurosurgery, University of California, Los Angeles, California, United States of America
| | - Tetsuya Iwasaki
- Department of Mechanical Engineering, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Wu X, Xi X, Xu M, Gao M, Liang Y, Sun M, Hu X, Mao L, Liu X, Zhao C, Sun X, Yuan H. Prediction of early bladder outcomes after spinal cord injury: The HALT score. CNS Neurosci Ther 2024; 30:e14628. [PMID: 38421138 PMCID: PMC10850821 DOI: 10.1111/cns.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
AIMS Neurogenic bladder (NB) is a prevalent and debilitating consequence of spinal cord injury (SCI). Indeed, the accurate prognostication of early bladder outcomes is crucial for patient counseling, rehabilitation goal setting, and personalized intervention planning. METHODS A retrospective exploratory analysis was conducted on a cohort of consecutive SCI patients admitted to a rehabilitation facility in China from May 2016 to December 2022. Demographic, clinical, and electrophysiological data were collected within 40 days post-SCI, with bladder outcomes assessed at 3 months following SCI onset. RESULTS The present study enrolled 202 SCI patients with a mean age of 40.3 ± 12.3 years. At 3 months post-SCI, 79 participants exhibited complete bladder emptying. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analyses identified the H-reflex of the soleus muscle, the American Spinal Injury Association Lower Extremity Motor Score (ASIA-LEMS), and the time from lesion to rehabilitation facility (TLRF) as significant independent predictors for bladder emptying. A scoring system named HALT was developed, yielding a strong discriminatory performance with an area under the receiver operating characteristics curve (aROC) of 0.878 (95% CI: 0.823-0.933). A simplified model utilizing only the H-reflex exhibited excellent discriminatory ability with an aROC of 0.824 (95% CI: 0.766-0.881). Both models demonstrated good calibration via the Hosmer-Lemeshow test and favorable clinical net benefits through decision curve analysis (DCA). In comparison to ASIA-LEMS, both the HALT score and H-reflex showed superior predictive accuracy for bladder outcome. Notably, in individuals with incomplete injuries, the HALT score (aROC = 0.973, 95% CI: 0.940-1.000) and the H-reflex (aROC = 0.888, 95% CI: 0.807-0.970) displayed enhanced performance. CONCLUSION Two reliable models, the HALT score and the H-reflex, were developed to predict bladder outcomes as early as 3 months after SCI onset. Importantly, this study provides hitherto undocumented evidence regarding the predictive significance of the soleus H-reflex in relation to bladder outcomes in SCI patients.
Collapse
Affiliation(s)
- Xiangbo Wu
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Xiao Xi
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Mulan Xu
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
- Department of Rehabilitation Medicine, Shenshan Medical Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityShanweiGuangdongChina
| | - Ming Gao
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Ying Liang
- Department of Health StatisticsAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Miaoqiao Sun
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Xu Hu
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Li Mao
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Xingkai Liu
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Chenguang Zhao
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Xiaolong Sun
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing HospitalAir Force Medical University (Fourth Military Medical University)Xi'anChina
| |
Collapse
|
7
|
Kuo CC, Tsai ST, Huang XL, Chen YC. Potential benefits of spinal cord stimulation treatment on quality of life for paralyzed patients with spinal cord injury. Tzu Chi Med J 2023. [DOI: 10.4103/tcmj.tcmj_102_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
8
|
Vaginal Lubrication and Pressure Increase Induced by Pudendal Nerve Stimulation in Cats. J Sex Med 2022; 19:1517-1523. [PMID: 36057523 DOI: 10.1016/j.jsxm.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vaginal lubrication and contractions are among the top difficulties affecting sexual intercourse in women after spinal cord injury. AIM This study aimed at determining if pudendal nerve stimulation (PNS) can improve vaginal lubrication and induce increases in vaginal pressure. METHODS In anesthetized cats, a small piece of cotton was inserted into the vagina for 10 minutes with or without PNS to measure vaginal wetness by the weight increase of the vaginal cotton. Then, a small balloon catheter was inserted into the vagina to measure the pressure increase induced by PNS. Intensity response of the vagina to PNS (30 Hz, 0.2 ms, 5 seconds) was determined at 1-4 times of intensity threshold (T) for PNS to induce an observable vaginal pressure increase. Frequency response was determined at 2T intensity in a range of PNS frequencies (5-50 Hz). Finally, fatigue in vaginal pressure was determined by applying PNS (30 Hz, 2T) either continuously or intermittently (5 seconds on and 5 seconds off) for 4 minutes. OUTCOMES The effectiveness of PNS in increasing vaginal wetness and pressure is evaluated. RESULTS PNS significantly (P = .0327) increased the measurement of vaginal wetness from 15.8 ± 3.8 mg during control without stimulation to 32.4 ± 4.7 mg after stimulation. Vaginal pressure increased as PNS intensity or frequency increased. PNS (30 Hz, 2T) induced vaginal pressure increase ≥80% of the maximal response. Intermittent PNS induced significantly (P = .0354) smaller fatigue (45.6 ± 3.7%) in vaginal pressure than continuous PNS (69.1 ± 3.0%) during the 4-minute stimulation. CLINICAL TRANSLATION This study raises the possibility of developing a novel pudendal neuromodulation device to improve female sexual function after spinal cord injury. STRENGTHS & LIMITATIONS This study provides preclinical data supporting the development of a novel pudendal neuromodulation device. The limitation includes the lack of chemical analysis of the vaginal secretion. CONCLUSION PNS can improve vaginal lubrication and induce increases in vaginal pressure.
Collapse
|
9
|
Rapeaux A, Constandinou TG. HFAC Dose Repetition and Accumulation Leads to Progressively Longer Block Carryover Effect in Rat Sciatic Nerve. Front Neurosci 2022; 16:852166. [PMID: 35712453 PMCID: PMC9197154 DOI: 10.3389/fnins.2022.852166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
This paper describes high-frequency nerve block experiments carried out on rat sciatic nerves to measure the speed of recovery of A fibres from block carryover. Block carryover is the process by which nerve excitability remains suppressed temporarily after High Frequency Alternative (HFAC) block is turned off following its application. In this series of experiments 5 rat sciatic nerves were extracted and prepared for ex-vivo stimulation and recording in a specially designed perfusion chamber. For each nerve repeated HFAC block and concurrent stimulation trials were carried out to observe block carryover after signal shutoff. The nerve was allowed to recover fully between each trial. Time to recovery from block was measured by monitoring for when relative nerve activity returned to within 90% of baseline levels measured at the start of each trial. HFAC block carryover duration was found to be dependent on accumulated dose by statistical test for two different HFAC durations. The carryover property of HFAC block on A fibres could enable selective stimulation of autonomic nerve fibres such as C fibres for the duration of carryover. Block carryover is particularly relevant to potential chronic clinical applications of block as it reduces power requirements for stimulation to provide the blocking effect. This work characterizes this process toward the creation of a model describing its behavior.
Collapse
Affiliation(s)
- Adrien Rapeaux
- Next Generation Neural Interfaces Lab, Centre for Bioinspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom.,Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Timothy G Constandinou
- Next Generation Neural Interfaces Lab, Centre for Bioinspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom.,Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
10
|
Rahman MA, Tharu NS, Gustin SM, Zheng YP, Alam M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J Clin Med 2022; 11:1550. [PMID: 35329875 PMCID: PMC8954138 DOI: 10.3390/jcm11061550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating injuries in the world. Complications after SCI, such as respiratory issues, bowel/bladder incontinency, pressure ulcers, autonomic dysreflexia, spasticity, pain, etc., lead to immense suffering, a remarkable reduction in life expectancy, and even premature death. Traditional rehabilitations for people with SCI are often insignificant or ineffective due to the severity and complexity of the injury. However, the recent development of noninvasive electrical neuromodulation treatments to the spinal cord have shed a ray of hope for these individuals to regain some of their lost functions, a reduction in secondary complications, and an improvement in their life quality. For this review, 250 articles were screened and about 150 were included to summarize the two most promising noninvasive spinal cord electrical stimulation methods of SCI rehabilitation treatment, namely, trans-spinal direct current stimulation (tsDCS) and trans-spinal pulsed current stimulation (tsPCS). Both treatments have demonstrated good success in not only improving the sensorimotor function, but also autonomic functions. Due to the noninvasive nature and lower costs of these treatments, in the coming years, we expect these treatments to be integrated into regular rehabilitation therapies worldwide.
Collapse
Affiliation(s)
- Md. Akhlasur Rahman
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- Centre for the Rehabilitation of the Paralysed (CRP), Savar Union 1343, Bangladesh
| | - Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| |
Collapse
|
11
|
Hoey RF, Medina-Aguiñaga D, Khalifa F, Ugiliweneza B, Wang D, Zdunowski S, Fell J, Naglah A, El-Baz AS, Herrity AN, Harkema SJ, Hubscher CH. Thoracolumbar epidural stimulation effects on bladder and bowel function in uninjured and chronic transected anesthetized rats. Sci Rep 2022; 12:2137. [PMID: 35136100 PMCID: PMC8826941 DOI: 10.1038/s41598-022-06011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Pre-clinical studies have shown that spinal cord epidural stimulation (scES) at the level of pelvic and pudendal nerve inputs/outputs (L5-S1) alters storage and/or emptying functions of both the bladder and bowel. The current mapping experiments were conducted to investigate scES efficacy at the level of hypogastric nerve inputs/outputs (T13-L2) in male and female rats under urethane anesthesia. As found with L5-S1 scES, T13-L2 scES at select frequencies and intensities of stimulation produced an increase in inter-contraction interval (ICI) in non-injured female rats but a short-latency void in chronic T9 transected rats, as well as reduced rectal activity in all groups. However, the detrusor pressure during the lengthened ICI (i.e., urinary hold) remained at a low pressure and was not elevated as seen with L5-S1 scES, an effect that's critical for translation to the clinic as high fill pressures can damage the kidneys. Furthermore, T13-L2 scES was shown to stimulate voiding post-transection by increasing bladder activity while also directly inhibiting the external urethral sphincter, a pattern necessary to overcome detrusor-sphincter dyssynergia. Additionally, select scES parameters at T13-L2 also increased distal colon activity in all groups. Together, the current findings suggest that optimization of scES for bladder and bowel will likely require multiple electrode cohorts at different locations that target circuitries coordinating sympathetic, parasympathetic and somatic outputs.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA.,Physical Medicine and Rehabilitation Department, MetroHealth Rehabilitation Institute of Ohio, Cleveland, OH, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Science, School of Public Health and Information Science, University of Louisville, Louisville, KY, USA
| | - Dengzhi Wang
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Sharon Zdunowski
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ahmed Naglah
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Ayman S El-Baz
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - April N Herrity
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA. .,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
12
|
Majerus SJA, Offutt SJ, Brink TS, Vasoli V, Mcadams I, Damaser MS, Zirpel L. Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2067-2075. [PMID: 34606460 PMCID: PMC9359615 DOI: 10.1109/tnsre.2021.3117518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Continuous sacral neuromodulation (SNM) is used to treat overactive bladder, reducing urine leakage and increasing capacity. Conditional SNM applies stimulation in response to changing bladder conditions, and is an opportunity to study neuromodulation effects in various disease states. A key advantage of this approach is saving power consumed by stimulation pulses. This study demonstrated feasibility of automatically applying neuromodulation using a wireless bladder pressure sensor, a real-time control algorithm, and the Medtronic Summit™ RC+S neurostimulation research system. This study tested feasibility of four conditional SNM paradigms over five days in 4 female sheep. Primary outcomes assessed proof of concept of closed-loop system function. While the bladder pressure sensor correlated only weakly to simultaneous catheter-based pressure measurement (correlation 0.26-0.89, median r=0.52), the sensor and algorithm were accurate enough to automatically trigger SNM appropriately. The neurostimulator executed 98.5% of transmitted stimulation commands with a median latency of 72 ms (n=1,206), suggesting that rapid decision-making and control is feasible with this platform. On average, bladder capacity increased for continuous SNM and algorithm-controlled paradigms. Some animals responded more strongly to conditional SNM, suggesting that treatment could be individualized. Future research in conditional SNM may elucidate the physiologic underpinnings of differential response and enable clinical translation.
Collapse
|
13
|
Karnup S. Spinal interneurons of the lower urinary tract circuits. Auton Neurosci 2021; 235:102861. [PMID: 34391124 DOI: 10.1016/j.autneu.2021.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The storage and elimination of urine requires coordinated activity between muscles of the bladder and the urethra. This coordination is orchestrated by a complex system containing spinal, midbrain and forebrain networks. Normally there is a reciprocity between patterns of activity in urinary bladder sacral parasympathetic efferents and somatic motoneurons innervating the striatal external urethral sphincter muscle. At the spinal level this reciprocity is mediated by ensembles of excitatory and inhibitory interneurons located in the lumbar-sacral segments. In this review I will present an overview of currently identified spinal interneurons and circuits relevant to the lower urinary tract and will discuss their established or hypothetical roles in the cycle of micturition. In addition, a recently discovered auxiliary spinal neuronal ensemble named lumbar spinal coordinating center will be described. Sexual dimorphism and developmental features of the lower urinary tract which may play a significant role in designing treatments for patients with urine storage and voiding dysfunctions are also considered. Spinal cord injuries seriously damage or even eliminate the ability to urinate. Treatment of this abnormality requires detailed knowledge of supporting neural mechanisms, therefore various experiments in normal and spinalized animals will be discussed. Finally, a possible intraspinal mechanism will be proposed for organization of external urethral sphincter (EUS) bursting which represents a form of intermittent EUS relaxation in rats and mice.
Collapse
Affiliation(s)
- Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop St. BST, R.1303, Pittsburgh, 15213, PA, United States.
| |
Collapse
|
14
|
Parittotokkaporn S, Varghese C, O'Grady G, Lawrence A, Svirskis D, O'Carroll SJ. Transcutaneous Electrical Stimulation for Neurogenic Bladder Dysfunction Following Spinal Cord Injury: Meta-Analysis of Randomized Controlled Trials. Neuromodulation 2021; 24:1237-1246. [PMID: 34013608 DOI: 10.1111/ner.13459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To assess the efficacy of transcutaneous electrical nerve stimulation (TENS) for neurogenic bladder dysfunction secondary to spinal cord injury (SCI). MATERIALS AND METHODS A systematic search of MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane libraries up to February 2021 was performed using PRISMA methodology. All randomized controlled trials (RCTs) that studied TENS for neurogenic bladder in a SCI population were included. The primary outcomes of interest were maximum cystometric capacity (MCC) and maximum detrusor pressure (Pdet). Meta-analysis was conducted with RevMan v5.3. RESULTS Six RCTs involving 353 participants were included. Meta-analysis showed that TENS significantly increased MCC (standardized mean difference 1.11, 95% confidence interval [CI] 0.08-2.14, p = 0.03, I2 = 54%) in acute SCI. No benefits were seen for maximum Pdet. TENS was associated with no major adverse events. CONCLUSIONS TENS may be an effective, safe intervention for neurogenic bladder dysfunction following SCI. Further studies are essential to confirm these results and more work is required to determine optimal stimulation parameters and duration of the treatment.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and the Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gregory O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Anna Lawrence
- Auckland Spinal Rehabilitation Unit (ASRU), Counties Manukau Health, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and the Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Morse LR, Field-Fote EC, Contreras-Vidal J, Noble-Haeusslein LJ, Rodreick M, Shields RK, Sofroniew M, Wudlick R, Zanca JM. Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. J Neurotrauma 2021; 38:1251-1266. [PMID: 33353467 DOI: 10.1089/neu.2020.7174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The spinal cord injury (SCI) research community has experienced great advances in discovery research, technology development, and promising clinical interventions in the past decade. To build upon these advances and maximize the benefit to persons with SCI, the National Institutes of Health (NIH) hosted a conference February 12-13, 2019 titled "SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research." The purpose of the conference was to bring together a broad range of stakeholders, including researchers, clinicians and healthcare professionals, persons with SCI, industry partners, regulators, and funding agency representatives to break down existing communication silos. Invited speakers were asked to summarize the state of the science, assess areas of technological and community readiness, and build collaborations that could change the trajectory of research and clinical options for people with SCI. In this report, we summarize the state of the science in each of five key domains and identify the gaps in the scientific literature that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Edelle C Field-Fote
- Shepherd Center, Atlanta, Georgia, USA.,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Contreras-Vidal
- Laboratory for Non-Invasive Brain Machine Interfaces, NSF IUCRC BRAIN, Cullen College of Engineering, University of Houston, Houston, Texas, USA
| | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael Sofroniew
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Robert Wudlick
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Jeanne M Zanca
- Spinal Cord Injury Research, Kessler Foundation, West Orange, New Jersey, USA.,Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
16
|
Hoey RF, Medina-Aguiñaga D, Khalifa F, Ugiliweneza B, Zdunowski S, Fell J, Naglah A, El-Baz AS, Herrity AN, Harkema SJ, Hubscher CH. Bladder and bowel responses to lumbosacral epidural stimulation in uninjured and transected anesthetized rats. Sci Rep 2021; 11:3268. [PMID: 33558526 PMCID: PMC7870824 DOI: 10.1038/s41598-021-81822-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023] Open
Abstract
Spinal cord epidural stimulation (scES) mapping at L5-S1 was performed to identify parameters for bladder and bowel inhibition and/or contraction. Using spinally intact and chronic transected rats of both sexes in acute urethane-anesthetized terminal preparations, scES was systematically applied using a modified Specify 5-6-5 (Medtronic) electrode during bladder filling/emptying cycles while recording bladder and colorectal pressures and external urethral and anal sphincter electromyography activity. The results indicate frequency-dependent effects on void volume, micturition, bowel peristalsis, and sphincter activity just above visualized movement threshold intensities that differed depending upon neurological intactness, with some sex-dependent differences. Thereafter, a custom-designed miniature 15-electrode array designed for greater selectivity was tested and exhibited the same frequency-dependent urinary effects over a much smaller surface area without any concurrent movements. Thus, select activation of autonomic nervous system circuitries with scES is a promising neuromodulation approach for expedient translation to individuals with SCI and potentially other neurologic disorders.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Sharon Zdunowski
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Ahmed Naglah
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Ayman S El-Baz
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - April N Herrity
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
17
|
Donovan J, Forrest G, Linsenmeyer T, Kirshblum S. Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-020-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Herrity AN, Aslan SC, Ugiliweneza B, Mohamed AZ, Hubscher CH, Harkema SJ. Improvements in Bladder Function Following Activity-Based Recovery Training With Epidural Stimulation After Chronic Spinal Cord Injury. Front Syst Neurosci 2021; 14:614691. [PMID: 33469421 PMCID: PMC7813989 DOI: 10.3389/fnsys.2020.614691] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) results in profound neurologic impairment with widespread deficits in sensorimotor and autonomic systems. Voluntary and autonomic control of bladder function is disrupted resulting in possible detrusor overactivity, low compliance, and uncoordinated bladder and external urethral sphincter contractions impairing storage and/or voiding. Conservative treatments managing neurogenic bladder post-injury, such as oral pharmacotherapy and catheterization, are important components of urological surveillance and clinical care. However, as urinary complications continue to impact long-term morbidity in this population, additional therapeutic and rehabilitative approaches are needed that aim to improve function by targeting the recovery of underlying impairments. Several human and animal studies, including our previously published reports, have documented gains in bladder function due to activity-based recovery strategies, such as locomotor training. Furthermore, epidural stimulation of the spinal cord (scES) combined with intense activity-based recovery training has been shown to produce volitional lower extremity movement, standing, as well as improve the regulation of cardiovascular function. In our center, several participants anecdotally reported improvements in bladder function as a result of training with epidural stimulation configured for motor systems. Thus, in this study, the effects of activity-based recovery training in combination with scES were tested on bladder function, resulting in improvements in overall bladder storage parameters relative to a control cohort (no intervention). However, elevated blood pressure elicited during bladder distention, characteristic of autonomic dysreflexia, was not attenuated with training. We then examined, in a separate, large cross-sectional cohort, the interaction between detrusor pressure and blood pressure at maximum capacity, and found that the functional relationship between urinary bladder distention and blood pressure regulation is disrupted. Regardless of one’s bladder emptying method (indwelling suprapubic catheter vs. intermittent catheterization), autonomic instability can play a critical role in the ability to improve bladder storage, with SCI enhancing the vesico-vascular reflex. These results support the role of intersystem stimulation, integrating scES for both bladder and cardiovascular function to further improve bladder storage.
Collapse
Affiliation(s)
- April N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Sevda C Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Ahmad Z Mohamed
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Charles H Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
19
|
Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020; 6:23. [PMID: 33292861 PMCID: PMC7706233 DOI: 10.1186/s42234-020-00059-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 11/23/2022] Open
Abstract
Modulation of the peripheral nervous system (PNS) has a great potential for therapeutic intervention as well as restore bodily functions. Recent interest has focused on autonomic nerves, as they regulate extensive functions implicated in organ physiology, chronic disease state and appear tractable to targeted modulation of discrete nerve units. Therapeutic interventions based on specific bioelectronic neuromodulation depend on reliable neural interface to stimulate and record autonomic nerves. Furthermore, the function of stimulation and recording requires energy which should be delivered to the interface. Due to the physiological and anatomical challenges of autonomic nerves, various forms of this active neural interface need to be developed to achieve next generation of neural interface for bioelectronic medicine. In this article, we present an overview of the state-of-the-art for peripheral neural interface technology in relation to autonomic nerves. Also, we reveal the current status of wireless neural interface for peripheral nerve applications. Recent studies of a novel concept of self-sustainable neural interface without battery and electronic components are presented. Finally, the recent results of non-invasive stimulation such as ultrasound and magnetic stimulation are covered and the perspective of the future research direction is provided.
Collapse
Affiliation(s)
- Youngjun Cho
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Jaeu Park
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Chengkuo Lee
- Electrical & Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore. .,NUS Graduate School for Integrated Science and Engineering (NGS), National University of Singapore, Singapore, 117456, Singapore.
| | - Sanghoon Lee
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea.
| |
Collapse
|
20
|
Pikov V, McCreery DB, Han M. Intraspinal stimulation with a silicon-based 3D chronic microelectrode array for bladder voiding in cats. J Neural Eng 2020; 17. [PMID: 33181490 PMCID: PMC8113353 DOI: 10.1088/1741-2552/abca13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Objective. Bladder dysfunction is a significant and largely unaddressed problem for people living with spinal cord injury (SCI). Intermittent catheterization does not provide volitional control of micturition and has numerous side effects. Targeted electrical microstimulation of the spinal cord has been previously explored for restoring such volitional control in the animal model of experimental SCI. Here, we continue the development of the intraspinal microstimulation array technology to evaluate its ability to provide more focused and reliable bladder control in the feline animal model. Approach. For the first time, a mechanically robust intraspinal multisite silicon array was built using novel microfabrication processes to provide custom-designed tip geometry and 3D electrode distribution. Long-term implantation was performed in eight spinally intact animals for a period up to 6 months, targeting the dorsal gray commissure area in the S2 sacral cord that is known to be involved in the coordination between the bladder detrusor and the external urethral sphincter. Main results. About one third of the electrode sites in the that area produced micturition-related responses. The effectiveness of stimulation was further evaluated in one of eight animals after spinal cord transection (SCT). We observed increased bladder responsiveness to stimulation starting at 1 month post-transection, possibly due to supraspinal disinhibition of the spinal circuitry and/or hypertrophy and hyperexcitability of the spinal bladder afferents. Significance. 3D intraspinal microstimulation arrays can be chronically implanted and provide a beneficial effect on the bladder voiding in the intact spinal cord and after SCT. However, further studies are required to assess longer-term reliability and safety of the developed intraspinal microstimulation array prior to eventual human translation.
Collapse
Affiliation(s)
- Victor Pikov
- Medipace Inc, Pasadena, California, UNITED STATES
| | - Douglas B McCreery
- Neural Engineeiring Laboratory, Huntington Medical Research Institute, 734 Fairmount Avenue, Pasadena CA 91105, USA, Pasadena, California, 91105, UNITED STATES
| | - Martin Han
- Biomedical Engineering, University of Connecticut at Storrs , 260 Glenbrook Rd., Unit 3247, Storrs, Connecticut, 06269-3247, UNITED STATES
| |
Collapse
|
21
|
Granger N, Olby NJ, Nout-Lomas YS. Bladder and Bowel Management in Dogs With Spinal Cord Injury. Front Vet Sci 2020; 7:583342. [PMID: 33263015 PMCID: PMC7686579 DOI: 10.3389/fvets.2020.583342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury in companion dogs can lead to urinary and fecal incontinence or retention, depending on the severity, and localization of the lesion along the canine nervous system. The bladder and gastrointestinal dysfunction caused by lesions of the autonomic system can be difficult to recognize, interpret and are easily overlooked. Nevertheless, it is crucial to maintain a high degree of awareness of the impact of micturition and defecation disturbances on the animal's condition, welfare and on the owner. The management of these disabilities is all the more challenging that the autonomic nervous system physiology is a complex topic. In this review, we propose to briefly remind the reader the physiology of micturition and defecation in dogs. We then present the bladder and gastrointestinal clinical signs associated with sacral lesions (i.e., the L7-S3 spinal cord segments and nerves) and supra-sacral lesions (i.e., cranial to the L7 spinal cord segment), largely in the context of intervertebral disc herniation. We summarize what is known about the natural recovery of urinary and fecal continence in dogs after spinal cord injury. In particular we review the incidence of urinary tract infection after injury. We finally explore the past and recent literature describing management of urinary and fecal dysfunction in the acute and chronic phase of spinal cord injury. This comprises medical therapies but importantly a number of surgical options, some known for decades such as sacral nerve stimulation, that might spark some interest in the field of spinal cord injury in companion dogs.
Collapse
Affiliation(s)
- Nicolas Granger
- The Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| | - Yvette S Nout-Lomas
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | | |
Collapse
|
22
|
Spinal cord stimulation and rehabilitation in an individual with chronic complete L1 paraplegia due to a conus medullaris injury: motor and functional outcomes at 18 months. Spinal Cord Ser Cases 2020; 6:96. [PMID: 33067413 DOI: 10.1038/s41394-020-00345-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Epidural electrical stimulation of the conus medullaris has helped facilitate native motor recovery in individuals with complete cervicothoracic spinal cord injuries (SCI). A theorized mechanism of clinical improvement includes supporting central pattern generators intrinsic to the conus medullaris. Because spinal cord stimulators (SCS) are approved for the treatment of neuropathic pain, we were able to test this experimental therapy in a subject with complete L1 paraplegia and neuropathic genital pain due to a traumatic conus injury. CASE PRESENTATION An otherwise healthy 48-year-old male with chronic complete L1 paraplegia with no zones of partial preservation (ZPP) and intractable neuropathic genital pain presented to our group seeking nonmedical pain relief and any possible help with functional restoration. After extensive evaluation, discussion, and consent, we proceeded with SCS implantation at the conus and an intensive outpatient physical therapy regimen consistent with the recent SCI rehabilitation literature. DISCUSSION Intraoperatively, no electromyography (EMG) could be elicited with epidural conus stimulation. At 18 months after implantation, his motor ZPPs had advanced from L1 to L5 on the left and from L1 to L3 on the right. Qualitative increases in lower extremity resting state EMG amplitudes were noted, although there was no consistent evidence of voluntary EMG or rhythmic locomotive leg movements. Three validated functional and quality of life (QoL) surveys demonstrated substantial improvements. The modest motor response compared to the literature suggests likely critical differences in the anatomy of such a low injury. However, the change in ZPPs and QoL suggest potential for neuroplasticity even in this patient population.
Collapse
|
23
|
YANG (杨振杰) ZJ, BU (步华磊) HL, XIAO (肖学伟) XW, DU (杜广中) GZ, ZHANG (张友忠) YZ. Clinical study on bladder function recovery of 360 cases after radical hysterectomy treated by acupuncture 针刺对360例子宫全切术后患者膀胱功能影响分析. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020. [DOI: 10.1016/j.wjam.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study. SENSORS 2020; 20:s20164610. [PMID: 32824415 PMCID: PMC7472397 DOI: 10.3390/s20164610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022]
Abstract
Many mini-implantable devices have been developed and fabricated for diagnostic and treatment purposes. Wireless implantable biomicrosystems provide a desirable approach for long-term physiological signal monitoring. In this study, we implemented a wireless implantable biomicrosystem for bladder-cavity pressure measurements in a freely moving rabbit. To manage the power more effectively, a magnetic reed switch was applied to turn on/off the implantable module using a neodymium-iron-boron (NdFeB) magnet. The measured bladder pressure signal was wirelessly transmitted from the implantable module to a host unit. Our results indicated that the implantable biomicrosystem exhibited satisfactory performance and safety, as evidenced by an error percentage of less than ±1% for pressure measurements and less than 2 °C of a temperature rise under normal operation. The wireless biomicrosystem was implanted into the bladder cavity of a rabbit. Bladder pressure was simultaneously measured by both the biomicrosystem and conventional cystometry in the animal. The two signals were similar during the voiding phase, with a correlation coefficient of 0.885. Additionally, the biomicrosystem coated with polydimethylsiloxane in this study showed no cytotoxicity, which confirmed its biocompatibility. In conclusion, we demonstrated a good biocompatible wireless biomicrosystem which showed good reproducibility with respect to pressure monitoring by conventional cystometry. Further studies are needed to confirm the results of this preliminary feasibility study for actual clinical applications.
Collapse
|
25
|
Non-invasive neuromodulation for bowel, bladder and sexual restoration following spinal cord injury: A systematic review. Clin Neurol Neurosurg 2020; 194:105822. [DOI: 10.1016/j.clineuro.2020.105822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023]
|
26
|
Abstract
PURPOSE OF REVIEW The present review highlights regenerative electrical stimulation (RES) as potential future treatment options for patients with nerve injuries leading to urological dysfunction, such as urinary incontinence, voiding dysfunction or erectile dysfunction. Additionally, it will highlight the mechanism of nerve injury and regeneration as well as similarities and differences between RES and current electrical stimulation treatments in urology, functional electrical stimulation (FES) and neuromodulation. RECENT FINDINGS It has been demonstrated that RES upregulates brain-derived neurotrophic factor (BDNF) and its receptor to facilitate neuroregeneration, facilitating accurate reinnervation of muscles by motoneurons. Further, RES upregulates growth factors in glial cells. Within the past 2 years, RES of the pudendal nerve upregulated BDNF in Onuf's nucleus, the cell bodies of motoneurons that course through the pudendal nerve and accelerated functional recovery in an animal model of stress urinary incontinence. Additionally, electrical stimulation of the vaginal tissue in an animal model of stress urinary incontinence accelerated functional recovery. SUMMARY RES has great potential but future research is needed to expand the potential beneficial effects of RES in the field of urology.
Collapse
|
27
|
Soltanzadeh R, Afsharipour E, Shafai C. Investigation of transcutaneous electrical nerve stimulation improvements with microneedle array electrodes based on multiphysics simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3318. [PMID: 32017406 DOI: 10.1002/cnm.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This paper investigates microneedle array electrodes for transcutaneous electrical nerve stimulation, and compares their performance with conventional surface electrodes. A three-dimensional model of tissue was developed for finite element multiphysics simulations. Investigations included current density in different depths of a tissue, space constant under electrodes, specific absorption ratio of tissue, selectivity of stimulation, temperature rise, and blood flow. Results showed that microneedle electrodes have up to 10% higher selectivity than the surface electrodes. Furthermore, it was found that stimulation using microneedle electrodes provides more robust current density at different tissue depths compared to the surface electrode stimulation. Microneedle electrodes showed enhanced stimulation parameters, particularly for targeting a specific nerve in a specific depth of a tissue.
Collapse
Affiliation(s)
- Ramin Soltanzadeh
- Biomedical Engineering Graduate Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elnaz Afsharipour
- Electrical and Computer Engineering Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cyrus Shafai
- Electrical and Computer Engineering Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Cha M, Lee KH, Lee BH. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep 2020; 10:943. [PMID: 31969638 PMCID: PMC6976635 DOI: 10.1038/s41598-020-57797-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Although astrocytes are known to regulate synaptic transmission and affect new memory formation by influencing long-term potentiation and functional synaptic plasticity, their role in pain modulation is poorly understood. Motor cortex stimulation (MCS) has been used to reduce neuropathic pain through the incertothalamic pathway, including the primary motor cortex (M1) and the zona incerta (ZI). However, there has been no in-depth study of these modulatory effects and region-specific changes in neural plasticity. In this study, we investigated the effects of MCS-induced pain modulation as well as the relationship between the ZI neuroplasticity and MCS-induced pain alleviation in neuropathic pain (NP). MCS-induced threshold changes were evaluated after daily MCS. Then, the morphological changes of glial cells were compared by tissue staining. In order to quantify the neuroplasticity, MAP2, PSD95, and synapsin in the ZI and M1 were measured and analyzed with western blot. In behavioral test, repetitive MCS reduced NP in nerve-injured rats. We also observed recovered GFAP expression in the NP with MCS rats. In the NP with sham MCS rats, increased CD68 level was observed. In the NP with MCS group, increased mGluR1 expression was observed. Analysis of synaptogenesis-related molecules in the M1 and ZI revealed that synaptic changes occured in the M1, and increased astrocytes in the ZI were more closely associated with pain alleviation after MCS. Our findings suggest that MCS may modulate the astrocyte activities in the ZI and synaptic changes in the M1. Our results may provide new insight into the important and numerous roles of astrocytes in the formation and function.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
29
|
Estimation of Bladder Pressure and Volume from the Neural Activity of Lumbosacral Dorsal Horn Using a Long-Short-Term-Memory-based Deep Neural Network. Sci Rep 2019; 9:18128. [PMID: 31792247 PMCID: PMC6889392 DOI: 10.1038/s41598-019-54144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/09/2019] [Indexed: 12/30/2022] Open
Abstract
In this paper, we propose a deep recurrent neural network (DRNN) for the estimation of bladder pressure and volume from neural activity recorded directly from spinal cord gray matter neurons. The model was based on the Long Short-Term Memory (LSTM) architecture, which has emerged as a general and effective model for capturing long-term temporal dependencies with good generalization performance. In this way, training the network with the data recorded from one rat could lead to estimating the bladder status of different rats. We combined modeling of spiking and local field potential (LFP) activity into a unified framework to estimate the pressure and volume of the bladder. Moreover, we investigated the effect of two-electrode recording on decoding performance. The results show that the two-electrode recordings significantly improve the decoding performance compared to single-electrode recordings. The proposed framework could estimate bladder pressure and volume with an average normalized root-mean-squared (NRMS) error of 14.9 ± 4.8% and 19.7 ± 4.7% and a correlation coefficient (CC) of 83.2 ± 3.2% and 74.2 ± 6.2%, respectively. This work represents a promising approach to the real-time estimation of bladder pressure/volume in the closed-loop control of bladder function using functional electrical stimulation.
Collapse
|
30
|
Savenkova AA, Sarana AM, Shcherbak SG, Gerasimenko YP, Moshonkina TR. [Noninvasive spinal cord electrical stimulation in the complex rehabilitation of patients with spinal cord injury]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2019; 96:11-18. [PMID: 31626155 DOI: 10.17116/kurort20199605111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Spinal cord injury causes significant impairments of both motor and pelvic organ functions. Latest studies have shown impressive potentials for using transcutaneous spinal cord electrical stimulation (TcSCES) in the late period of injury to restore motor functions. All results were obtained in a limited number of patients in the specific conditions of a physiological experiment. It remains unclear how effective a TcSCES cycle is in restoring motor activity in patients after spinal cord injury in real clinical conditions. AIM The main objective of this investigation was to study the effectiveness of TcSCES in combination with the standard rehabilitation of patients after a spinal cord injury. An additional objective was to evaluate the effect of TcSCES to excretory functions in patients with spinal cord injury. SUBJECTS AND METHODS The studies were conducted at Saint Petersburg City Hospital Forty, which included 15 patients with thoracic spinal injury at 2.4±2.06 years after injury; the severity of the latter was American Spinal Injury Association (ASIA) Grades B and C. All the patients underwent a 2-week standard cycle of rehabilitation treatment; of them 7 patients (a study group) received additionally TcSCES. Standard scales were used to assess neurological status and muscle strength and sensitivity. The patients filled out a urinary diary; residual urine volume was monitored using bladder catheterization or ultrasound. RESULTS An increase in muscle strength was recorded in 6 patients of the study group and in 1 patient of the control one. The end of the treatment cycle was marked by a 1-score spasticity increase in 1 patient of the study group and in 2 patients in the control one. In the study group, the level of anesthesia decreased per segment in 1 patient; an improvement in deep and proprioceptive sensitivity was recorded in 2 patients; no change in sensitivity was observed in the control group. In the study group, 2 patients showed a reduction in the severity of injury from ASIA Grade B to ASIA Grade C. In three patients of the study group, the residual urine volume decreased and control and a sensation of urgency to urinate appeared; in the control group, these parameters remained unchanged after the treatment cycle. DISCUSSION The main result of the study is evidence for the efficiency of using TcSCES in the complex therapy of motor neurorehabilitation. The performed cycle of TcSCES in patients was noted to result in better motor and excretory functions. CONCLUSION The use of a short-term TcSCES cycle in the motor rehabilitation program for patients with spinal cord injury contributes to recovery of severe motor disorders and is accompanied by an improvement in urinary functions.
Collapse
Affiliation(s)
| | - A M Sarana
- City Hospital Forty, Saint Petersburg, Russia; Saint Petersburg State University, Saint Petersburg, Russia
| | - S G Shcherbak
- City Hospital Forty, Saint Petersburg, Russia; Saint Petersburg State University, Saint Petersburg, Russia
| | - Yu P Gerasimenko
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - T R Moshonkina
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
31
|
Effects of Genital Nerve Stimulation Amplitude on Bladder Capacity in Spinal Cord Injured Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1248342. [PMID: 31341487 PMCID: PMC6612956 DOI: 10.1155/2019/1248342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/27/2019] [Accepted: 06/09/2019] [Indexed: 12/05/2022]
Abstract
Background/Purpose Few studies have investigated the effects of changing the amplitude of dorsal genital nerve stimulation (GNS) on the inhibition of neurogenic detrusor overactivity in individuals with spinal cord injury (SCI). The present study determined the acute effects of changes in GNS amplitude on bladder capacity gain in individuals with SCI and neurogenic detrusor overactivity. Methods Cystometry was used to assess the effects of continuous GNS on bladder capacity during bladder filling. The cystometric trials were conducted in a randomized sequence of cystometric fills with continuous GNS at stimulation amplitudes ranging from 1 to 4 times of threshold (T) required to elicit the genitoanal reflex. Results The bladder capacity increased minimally and maximally by approximately 34% and 77%, respectively, of the baseline bladder capacity at 1.5 T and 3.2 T, respectively. Stimulation amplitude and bladder capacity were significantly correlated (R = 0.55, P = 0.01). Conclusion This study demonstrates a linear correlation between the stimulation amplitude ranging from 1 to 4T and bladder capacity gain in individuals with SCI in acute GNS experiments. However, GNS amplitude out of the range of 1-4T might not be exactly a linear relationship due to subthreshold or saturation factors. Thus, further research is needed to examine this issue. Nevertheless, these results may be critical in laying the groundwork for understanding the effectiveness of acute GNS in the treatment of neurogenic detrusor overactivity.
Collapse
|
32
|
Lucas E. Medical Management of Neurogenic Bladder for Children and Adults: A Review. Top Spinal Cord Inj Rehabil 2019; 25:195-204. [PMID: 31548786 PMCID: PMC6743750 DOI: 10.1310/sci2503-195] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurogenic bladder is a chronic condition affecting patients of all ages with significant medical and quality of life implications. Goals of treatment consist of protection of the upper urinary tract and promotion of reliable urinary continence. Successful management involves medications and most often bladder drainage via clean intermittent catheterization. This article reviews current literature on medical management to achieve goals of treatment.
Collapse
|
33
|
|
34
|
Weledji EP, Eyongeta D, Ngounou E. The anatomy of urination: What every physician should know. Clin Anat 2018; 32:60-67. [PMID: 30303589 DOI: 10.1002/ca.23296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Normal voiding needs a coordinated, sustained bladder contraction of adequate size and duration. It requires a decrease in resistance of the bladder neck and urethra and no obstruction. Voiding problems can arise from abnormal storage of urine or problems with urinary control. The aim of this article was to review the functional anatomy and physiology of urinary control and micturition and the pathophysiology of urinary control problems. The Medline (PubMed) database, Cochrane Library, and Science Citation Index were searched electronically to identify original published studies on bladder anatomy, function and urinary control. References were searched from relevant chapters in specialized texts and all were included. Voiding problems are the most common presenting urological symptoms in general medical practice. Urinary incontinence occurs when the normal process of storing and passing urine is disrupted. A history of coexisting fecal incontinence suggests a neuropathic etiology. A better understanding of the physiology of urinary control could lead to preventive measures for postoperative urinary retention and incontinence such as fluid restriction and to appropriate anesthesia/analgesia, autonomic nerve preservation, total mesorectal excision (TME) for rectal cancer, and biofeedback exercises. It could also suggest appropriate therapeutic measures for established urinary incontinence. Clin. Anat., 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elroy P Weledji
- Departments of Anatomy and Surgery, Faculty of Health Sciences, University of Buea, Gastrointestinal Surgeon, Regional Hospital Limbe, Limbe, Cameroon
| | - Divine Eyongeta
- Departments of Anatomy and Surgery, Faculty of Health Sciences, University of Buea, Urologist, Regional Hospital, Limbe, Cameroon
| | - Eleanor Ngounou
- Department of Anatomy, Faculty of Health Sciences, University of Buea, Limbe, Cameroon
| |
Collapse
|
35
|
Wang Z, Feng Z, Wei X. Axonal Stimulations With a Higher Frequency Generate More Randomness in Neuronal Firing Rather Than Increase Firing Rates in Rat Hippocampus. Front Neurosci 2018; 12:783. [PMID: 30459545 PMCID: PMC6232943 DOI: 10.3389/fnins.2018.00783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) has been used for treating many brain disorders. Clinical applications of DBS commonly require high-frequency stimulations (HFS, ∼100 Hz) of electrical pulses to obtain therapeutic efficacy. It is not clear whether the electrical energy of HFS functions other than generating firing of action potentials in neuronal elements. To address the question, we investigated the reactions of downstream neurons to pulse sequences with a frequency in the range 50-200 Hz at afferent axon fibers in the hippocampal CA1 region of anesthetized rats. The results show that the mean rates of neuronal firing induced by axonal HFS were similar even for an up to fourfold difference (200:50) in the number and thereby in the energy of electrical pulses delivered. However, HFS with a higher pulse frequency (100 or 200 Hz) generated more randomness in the firing pattern of neurons than a lower pulse frequency (50 Hz), which were quantitatively evaluated by the significant changes of two indexes, namely, the peak coefficients and the duty ratios of excitatory phase of neuronal firing, induced by different frequencies (50-200 Hz). The findings indicate that a large portion of the HFS energy might function to generate a desynchronization effect through a possible mechanism of intermittent depolarization block of neuronal membranes. The present study addresses the demand of high frequency for generating HFS-induced desynchronization in neuronal activity, which may play important roles in DBS therapy.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
36
|
Peh WYX, Raczkowska MN, Teh Y, Alam M, Thakor NV, Yen SC. Closed-loop stimulation of the pelvic nerve for optimal micturition. J Neural Eng 2018; 15:066009. [PMID: 30181427 DOI: 10.1088/1741-2552/aadee9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neural stimulation to restore bladder function has traditionally relied on open-loop approaches that used pre-set parameters, which do not adapt to suboptimal outcomes. The goal of this study was to examine the effectiveness of a novel closed-loop stimulation paradigm for improving micturition or bladder voiding. APPROACH We compared the voiding efficiency obtained with this closed-loop framework against open-loop stimulation paradigms in anesthetized rats. The bladder pressures that preceded voiding, and the minimum current amplitudes for stimulating the pelvic nerves to evoke bladder contractions, were first calibrated for each animal. An automated closed-loop system was used to initiate voiding upon bladder fullness, adapt the stimulation current by using real-time bladder pressure changes to classify voiding outcomes, and halt stimulation when the bladder had been emptied or when the safe stimulation limit was reached. MAIN RESULTS In vivo testing demonstrated that the closed-loop system achieved high voiding efficiency or VE (75.7% ± 3.07%, mean ± standard error of the mean) and outperformed open-loop systems with either conserved number of stimulation epochs (63.2% ± 4.90% VE) or conserved charge injected (32.0% ± 1.70% VE). Post-hoc analyses suggest that the classification algorithm can be further improved with data from additional closed-loop experiments. SIGNIFICANCE This novel approach may be applied to an implantable device for treating underactive bladder (<60% VE), especially in cases where under- or over-stimulation of the nerve is a concern.
Collapse
Affiliation(s)
- Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Drive, #05-02, Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018; 8:8688. [PMID: 29875362 PMCID: PMC5989228 DOI: 10.1038/s41598-018-26602-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Deficits in urologic function after spinal cord injury (SCI) manifest both as a failure to store and empty, greatly impacting daily life. While current management strategies are necessary for urological maintenance, they oftentimes are associated with life-long side effects. Our objective was to investigate the efficacy of spinal cord epidural stimulation (scES) as a promising therapy to improve bladder control after SCI. A bladder mapping study was undertaken for sixteen sessions over the course of four months in an individual with chronic, motor complete SCI. Varying combinations of stimulating cathode electrodes were initially tested during filling cystometry resulting in the identification of an effective configuration for reflexive bladder emptying at the caudal end of the electrode array. Subsequent systematic testing of different frequencies at a fixed stimulus intensity and pulse width yielded lowest post-void residual volumes at 30 Hz. These stimulation parameters were then tested in four additional research participants and found to also improve reflexive voiding efficiency. Taken together with SCI studies on step, stand, voluntary motor control and cardiovascular regulation, these findings further corroborate that scES has an all-encompassing potential to increase the central state of excitability, allowing for the control of multiple body functions, including the urological system.
Collapse
Affiliation(s)
- A N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - C S Williams
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - C A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - S J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - C H Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA. .,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
38
|
Wheeler TL, de Groat W, Eisner K, Emmanuel A, French J, Grill W, Kennelly MJ, Krassioukov A, Gallo Santacruz B, Biering-Sørensen F, Kleitman N. Translating promising strategies for bowel and bladder management in spinal cord injury. Exp Neurol 2018; 306:169-176. [PMID: 29753647 PMCID: PMC8117184 DOI: 10.1016/j.expneurol.2018.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
Loss of control over voiding following spinal cord injury (SCI) impacts autonomy, participation and dignity, and can cause life-threatening complications. The importance of SCI bowel and bladder dysfunction warrants significantly more attention from researchers in the field. To address this gap, key SCI clinicians, researchers, government and private funding organizations met to share knowledge and examine emerging approaches. This report reviews recommendations from this effort to identify and prioritize near-term treatment, investigational and translational approaches to addressing the pressing needs of people with SCI.
Collapse
Affiliation(s)
- Tracey L Wheeler
- Craig H. Neilsen Foundation, 16830 Ventura Blvd, Suite 352, Encino, CA 91436, United States.
| | - William de Groat
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, W-1352 Starzl Biomedical Science Tower, University of Pittsburgh Medical School, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| | - Kymberly Eisner
- Craig H. Neilsen Foundation, 16830 Ventura Blvd, Suite 352, Encino, CA 91436, United States
| | - Anton Emmanuel
- GI Physiology Unit, University College Hospital, London NW1 2BU, UK.
| | - Jennifer French
- Neurotech Network, PO Box 16776, Saint Petersburg, FL 33733, United States.
| | - Warren Grill
- Duke University, Department of Biomedical Engineering, Fitzpatrick CIEMAS, Room 1427, Box 90281, Durham, NC 27708-0281, United States.
| | - Michael J Kennelly
- Carolinas HealthCare System, McKay Urology, 1023 Edgehill Road South, Charlotte, NC 28207, United States.
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | | | - Fin Biering-Sørensen
- Rigshospitalet (2081), Blegdamsvej 9, DK-2100 Copenhagen, Denmark; University of Copenhagen, Clinic for Spinal Cord Injuries, NeuroScience Centre Havnevej 25, DK-3100 Hornbæk, Denmark
| | - Naomi Kleitman
- Craig H. Neilsen Foundation, 16830 Ventura Blvd, Suite 352, Encino, CA 91436, United States
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The diagnosis and evaluation of bladder outlet obstruction (BOO) in women remains a challenging topic. The goal of this study is to review recent literature and summarize the diagnosis and management of BOO with special focus on recent progress. RECENT FINDINGS In recent years, numerous advances in the area of female BOO have taken place including a movement towards unified diagnostic criteria, summary of functional and anatomic causes, and exploration of potential diagnostic options. SUMMARY This review discusses the known diagnosis and management of female bladder outlet obstruction, yet highlights specific functional causes, new criteria available for diagnosis, and long-term results of treatment options.
Collapse
|
40
|
Peh WYX, Mogan R, Thow XY, Chua SM, Rusly A, Thakor NV, Yen SC. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia. Front Neurosci 2018; 12:186. [PMID: 29618971 PMCID: PMC5871706 DOI: 10.3389/fnins.2018.00186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia.
Collapse
Affiliation(s)
- Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Roshini Mogan
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Xin Yuan Thow
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Soo Min Chua
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Astrid Rusly
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shih-Cheng Yen
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Hubscher CH, Herrity AN, Williams CS, Montgomery LR, Willhite AM, Angeli CA, Harkema SJ. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury. PLoS One 2018; 13:e0190998. [PMID: 29385166 PMCID: PMC5791974 DOI: 10.1371/journal.pone.0190998] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). STUDY DESIGN Prospective cohort study; pilot trial with small sample size. METHODS Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. RESULTS Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. CONCLUSIONS These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions. TRIAL REGISTRATION ClinicalTrials.gov NCT03036527.
Collapse
Affiliation(s)
- Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Carolyn S. Williams
- Department of Urology, University of Louisville, Louisville, Kentucky, United States of America
| | - Lynnette R. Montgomery
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Andrea M. Willhite
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehabilitation Institute, Louisville, Kentucky, United States of America
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehabilitation Institute, Louisville, Kentucky, United States of America
| |
Collapse
|
42
|
Ahmed S, Yearwood T, De Ridder D, Vanneste S. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices 2017; 15:61-70. [PMID: 29249191 DOI: 10.1080/17434440.2018.1418662] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Paresthesia-free spinal cord stimulation (SCS) techniques, such as burst and high-frequency (HF) SCS, have been developed and demonstrated to be successful for treating chronic pain, albeit via different mechanisms of action. The goal of this review is to discuss the mechanisms of action for pain suppression at both the cellular and systems levels for burst and HF SCS. In addition, we also discuss the neuromodulation devices that mimic these paradigms. AREAS COVERED The authors performed a literature review to unravel the mechanisms of action for burst and HF SCS coupled with booklets and user manuals from neuromodulation companies to understand the programmable parameters and operating ranges. Burst SCS modulates the medial pathway to suppress pain. On cellular level, burst SCS is independent on activation of γ-aminobutyric acid (GABA) receptors to inhibit neuronal firing. HF SCS blocks large-diameter fibers from producing action potentials with little influence on smaller fibers, increasing pain suppression as frequency increases. EXPERT COMMENTARY The neuromodulation industry is in a phase of intense innovation characterized by adaptive stimulation to improve patients' experience and experiment with alternative frequencies and novel stimulation targets.
Collapse
Affiliation(s)
- Shaheen Ahmed
- a Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences , The University of Texas at Dallas , Dallas , TX , USA
| | | | - Dirk De Ridder
- c Department of Surgical Sciences, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | - Sven Vanneste
- a Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences , The University of Texas at Dallas , Dallas , TX , USA
| |
Collapse
|
43
|
Hassani FA, Peh WYX, Gammad GGL, Mogan RP, Ng TK, Kuo TLC, Ng LG, Luu P, Yen S, Lee C. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700143. [PMID: 29201606 PMCID: PMC5700638 DOI: 10.1002/advs.201700143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Indexed: 05/08/2023]
Abstract
Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.
Collapse
Affiliation(s)
- Faezeh Arab Hassani
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART)Yong Loo Lin School of MedicineNational University of Singapore14 Medical Drive #14‐01Singapore117599Singapore
| | - Wendy Yen Xian Peh
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Gil Gerald Lasam Gammad
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Roshini Priya Mogan
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Tze Kiat Ng
- Raffles Hospital585 North Bridge RoadSingapore188770Singapore
| | | | - Lay Guat Ng
- Singapore General HospitalOutram RoadSingapore169608Singapore
| | - Percy Luu
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Shih‐Cheng Yen
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART)Yong Loo Lin School of MedicineNational University of Singapore14 Medical Drive #14‐01Singapore117599Singapore
| |
Collapse
|
44
|
Cai Z, Feng Z, Guo Z, Zhou W, Wang Z, Wei X. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus. Front Neurosci 2017; 11:563. [PMID: 29066946 PMCID: PMC5641334 DOI: 10.3389/fnins.2017.00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms.
Collapse
Affiliation(s)
- Ziyan Cai
- Ministry of Education Key Lab of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Ministry of Education Key Lab of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zheshan Guo
- Ministry of Education Key Lab of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wenjie Zhou
- Ministry of Education Key Lab of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Ministry of Education Key Lab of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
45
|
Prochazka A. Neurophysiology and neural engineering: a review. J Neurophysiol 2017; 118:1292-1309. [PMID: 28566462 PMCID: PMC5558026 DOI: 10.1152/jn.00149.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight.
Collapse
Affiliation(s)
- Arthur Prochazka
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review aims to analyze and discuss all recently published articles associated with neurogenic voiding discussion providing readers with the most updated knowledge and trigger for further research. RECENT FINDINGS They include the proposal of a novel classification system for the pathophysiology of neurogenic lower urinary tract dysfunction (NLUTD) which combines neurological defect in a distinct anatomic location, and data on bowel dysfunction, autonomic dysreflexia and urine biomarkers; review of patient-reported outcome measures in NLUTD; review of the criteria for the diagnosis of clinically significant urinary infections; novel research findings on the pathophysiology of NLUTD; and review of data on minimally and more invasive treatments. SUMMARY Despite the extended evidence base on NLUTD, there is a paucity of high-quality new research concerning voiding dysfunction as opposed to storage problems. The update aims to inform clinicians about new developments in clinical practice, as well as ignite discussion for further clinical and basic research in the aforementioned areas of NLUTD.
Collapse
|
47
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
48
|
Abstract
Neuromodulation approaches to treating lower urinary tract dysfunction could be substantially improved by a sensor able to detect when the bladder is full. A number of approaches to this problem have been proposed, but none has been found entirely satisfactory. Electrical plethysmography approaches attempt to relate the electrical impedance of the bladder to its volume, but have previously focused only on the amplitudes of the measured signals. We investigated whether the phase relationships between sinusoidal currents applied through a pair of stimulating electrodes and measured through a pair of recording electrodes could provide information about bladder volume. Acute experiments in a rabbit model were used to investigate how phase-to-volume or amplitude-to-volume regression models could be used to predict bladder volumes in future recordings, with and without changes to the saline conductivity. Volume prediction errors were found to be 6.63 ± 1.12 mL using the phase information and 8.32 ± 3.88 mL using the amplitude information (p = 0.44 when comparing the phase and amplitude results, n = 6), where the volume of the filled bladder was about 25 mL. When a full/empty binary decision rule was applied based on the regression model, the difference between the actual threshold that would result from this rule and the desired threshold was found to be 4.24 ± 0.65 mL using the phase information and 106.92 ± 189.82 mL using the amplitude information (p = 0.03, n = 6). Our results suggest that phase information can form the basis for more effective and robust electrical plethysmography approaches to bladder volume measurement.
Collapse
|
49
|
McGee MJ, Grill WM. Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation. Neurourol Urodyn 2015; 35:882-887. [PMID: 26147580 DOI: 10.1002/nau.22822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 11/08/2022]
Abstract
AIMS Reflex bladder activation and inhibition by electrical stimulation of pudendal nerve (PN) afferents is a promising approach to restore control of bladder function in persons with lower urinary tract dysfunction caused by disease or injury. The objective of this work was to determine whether bladder activation evoked by pudendal afferent stimulation was dependent on the temporal pattern of stimulation, and whether specific temporal patterns of stimulation produced larger bladder contractions than constant frequency stimulation. METHODS The mean and maximum contraction pressures evoked by different temporal patterns of stimulation of the dorsal genital branch of the pudendal nerve were measured under isovolumetric conditions in α-chloralose anesthetized cats. A computational model of the spinal neural network mediating the pudendo-vesical reflex was used to understand the mechanisms of different bladder responses to patterned stimulation. RESULTS The pattern of stimulation significantly affected the magnitude of evoked bladder contractions; several temporal patterns were as effective as regular stimulation, but no pattern evoked larger bladder contractions. Random patterns and patterns with pauses, burst-like activity, or high frequency components evoked significantly smaller bladder contractions, supporting the use of regular frequency stimulation in the development of neural prosthetic approaches for bladder control. CONCLUSIONS These results reveal that the bladder response to pudendal afferent stimulation is dependent on the pattern, as well as the frequency, of stimulation. The computational model revealed that the effects of patterned pudendal afferent stimulation were determined by the dynamic properties of excitatory and inhibitory interneurons in the lumbosacral spinal cord. Neurourol. Urodynam. 35:882-887, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meredith J McGee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina. .,Department of Neurobiology, Duke University, Durham, North Carolina. .,Department of Surgery, Duke University, Durham, North Carolina. .,Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
50
|
de Groat WC, Tai C. Impact of Bioelectronic Medicine on the Neural Regulation of Pelvic Visceral Function. Bioelectron Med 2015; 2015:25-36. [PMID: 26491706 PMCID: PMC4610375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Neuromodulation elicited by electrical stimulation of peripheral or spinal nerves is a U.S. Food and Drug Administered (FDA)-approved therapy for treating disorders of the pelvic viscera, including urinary urgency, urgency-frequency, nonobstructive urinary retention and fecal incontinence. The technique is also being tested experimentally for its efficacy in treating interstitial cystitis, chronic constipation and pelvic pain. The goal of neuromodulation is to suppress abnormal visceral sensations and involuntary reflexes and restore voluntary control. Although detailed mechanisms underlying the effects of neuromodulation are still to be elucidated, it is generally believed that effects are due to stimulation of action potentials in somatic afferent nerves. Afferent nerves project to the lumbosacral spinal cord, where they release excitatory neurotransmitters that activate ascending pathways to the brain or spinal circuits that modulate visceral sensory and involuntary motor mechanisms. Studies in animals revealed that different types of neuromodulation (for example, stimulation of a sacral spinal root, pudendal nerve or posterior tibial nerve) act by releasing different inhibitory and excitatory neurotransmitters in the central nervous system. In addition, certain types of neuromodulation inhibit visceral smooth muscle by initiating reflex firing in peripheral autonomic nerves or excite striated sphincter muscles by initiating reflex firing in somatic efferent nerves. This report will provide a brief summary of (a) neural control of the lower urinary tract and distal bowel, (b) clinical use of neuromodulation in the treatment of bladder and bowel dysfunctions,
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Changfeng Tai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Urology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|