1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Cereja-Pantoja KBC, de Brito Azevedo TC, Vinagre LWMS, de Moraes FCA, da Costa Nunes GG, Monte N, de Alcântara AL, Cohen-Paes A, Fernandes MR, Batista Dos Santos SE, de Assumpção PP, Ribeiro Dos Santos ÂK, Burbano RMR, Guerrero RC, Carracedo Á, Carneiro Dos Santos NP. Alterations in pharmacogenetic genes and their implications for imatinib resistance in Chronic Myeloid Leukemia patients from an admixed population. Cancer Chemother Pharmacol 2024:10.1007/s00280-024-04689-x. [PMID: 38888766 DOI: 10.1007/s00280-024-04689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Imatinib is the tyrosine kinase inhibitor used as the gold standard for the treatment of Chronic Myeloid Leukemia. However, about 30% of patients do not respond well to this therapy. Variants in drug administration, distribution, metabolism and excretion (ADME) genes play an important role in drug resistance especially in admixed populations. We investigated 129 patients diagnosed with Chronic Myeloid Leukemia treated with imatinib as first choice therapy. The participants of the study are highly admixed, populations that exhibit genetic diversity and complexity due to the contributions of multiple ancestral groups. Thus, the aim of this work was to investigate the association of 30 SNVs in genes related to response to treatment with Imatinibe in CML. Our results indicated that for the rs2290573 of the ULK3 gene, patients with the recessive AA genotype are three times more likely to develop resistance over time (secondary resistance) (p = 0.019, OR = 3.19, IC 95%= 1.21-8.36). Finally, we performed interaction analysis between the investigated variants and found several associations between SNVs and secondary resistance. We concluded that the variant rs2290573 of the ULK3 gene may be relevant for predicting treatment response of CML with imatinib, as well as possible treatment resistance. The use of predictive biomarkers is an important tool for therapeutic choice of patients, improving their quality of life and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | - Amanda Cohen-Paes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | | | | | | | | | - Raquel Cruz Guerrero
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ángel Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | |
Collapse
|
3
|
Lee CH, Hsu KW, Hsieh YY, Li WT, Long Y, Lin CY, Chen SH. Unveiling IL6R and MYC as Targeting Biomarkers in Imatinib-Resistant Chronic Myeloid Leukemia through Advanced Non-Invasive Apoptosis Detection Sensor Version 2 Detection. Cells 2024; 13:616. [PMID: 38607055 PMCID: PMC11011921 DOI: 10.3390/cells13070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
The management of chronic myelogenous leukemia (CML) has seen significant progress with the introduction of tyrosine kinase inhibitors (TKIs), particularly Imatinib. However, a notable proportion of CML patients develop resistance to Imatinib, often due to the persistence of leukemia stem cells and resistance mechanisms independent of BCR::ABL1 This study investigates the roles of IL6R, IL7R, and MYC in Imatinib resistance by employing CRISPR/Cas9 for gene editing and the Non-Invasive Apoptosis Detection Sensor version 2 (NIADS v2) for apoptosis assessment. The results indicate that Imatinib-resistant K562 cells (K562-IR) predominantly express IL6R, IL7R, and MYC, with IL6R and MYC playing crucial roles in cell survival and sensitivity to Imatinib. Conversely, IL7R does not significantly impact cytotoxicity, either alone or in combination with Imatinib. Further genetic editing experiments confirm the protective functions of IL6R and MYC in K562-IR cells, suggesting their potential as therapeutic targets for overcoming Imatinib resistance in CML. This study contributes to understanding the mechanisms of Imatinib resistance in CML, proposing IL6R and MYC as pivotal targets for therapeutic strategies. Moreover, the utilization of NIADS v2 enhances our capability to analyze apoptosis and drug responses, contributing to a deeper understanding of CML pathogenesis and treatment options.
Collapse
MESH Headings
- Humans
- Apoptosis
- Biomarkers
- Drug Resistance, Neoplasm
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Interleukin-6
- Proto-Oncogene Proteins c-myc
Collapse
Affiliation(s)
- Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan;
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan;
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City 40402, Taiwan
- Program for Cancer Biology and Drug Discovery, Drug Development Center, China Medical University, Taichung City 40402, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ting Li
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yuqing Long
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Chun-Yu Lin
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
4
|
Batar P, Alizadeh H, Rokszin G, Abonyi-Toth Z, Demeter J. Comorbidities and outcomes of patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a real-world, nationwide, retrospective study from Hungary. Pathol Oncol Res 2024; 30:1611497. [PMID: 38444749 PMCID: PMC10913892 DOI: 10.3389/pore.2024.1611497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Purpose: This study aimed to provide real-world evidence on the characteristics, treatment patterns, and outcomes of patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitor (TKI) treatment in Hungary between 2011 and 2019. Patients and methods: This nationwide, retrospective study included patients who were newly diagnosed with CML in Hungarian clinical practice between January 2011 and December 2019. The analysis was based on the reimbursed prescription claims for imatinib, bosutinib, dasatinib, nilotinib, or ponatinib with the ICD-10 code C9210 in a public pharmacy between January 2009 and December 2019 using data from the National Health Insurance Fund (NHIF) of Hungary. CML incidence and prevalence, TKI treatment patterns, comorbidities, and overall survival (OS) were examined. Results: Between 2011 and 2019, altogether 1,407 patients were diagnosed with CML, with an annual average of 156 patients. The number of patients newly initiating first-line TKI therapy for CML significantly increased between 2011 and 2019 (2011: n = 136 vs. 2019: n = 191; p = 0.0043). Nilotinib was typically prescribed for younger patients (≤64 years), while older patients (≥65 years) mostly received imatinib. The most common comorbidity of CML patients was hypertension, and the proportion of patients with other malignancies was relatively high in all treatment groups. 5-year OS was 77.1% during the whole study period. Patients initiating first-line TKI treatment for CML in 2015 had significantly better 4-year OS compared to those starting treatment in 2011 (82.4% vs. 73.5%, respectively, (HR 0.53 (95%CI 0.32-0.87) p = 0.0118). Conclusion: This study is the first to provide insights into the characteristics, treatment patterns, and outcomes of CML patients treated with TKIs in Hungarian clinical practice between 2011 and 2019. We found slightly lower OS rates compared to other European countries, however, there was a statistically significant improvement in 4-year OS during the study period. The management of CML was in line with international guidelines and recommendations.
Collapse
Affiliation(s)
- Peter Batar
- Department of Hematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Haematology, Clinical Center, Medical School, University of Pecs, Pecs, Hungary
| | | | - Zsolt Abonyi-Toth
- RxTarget Ltd., Szolnok, Hungary
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Lefebvre C, Pellizzari S, Bhat V, Jurcic K, Litchfield DW, Allan AL. Involvement of the AKT Pathway in Resistance to Erlotinib and Cabozantinib in Triple-Negative Breast Cancer Cell Lines. Biomedicines 2023; 11:2406. [PMID: 37760847 PMCID: PMC10525382 DOI: 10.3390/biomedicines11092406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.
Collapse
Affiliation(s)
- Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Sierra Pellizzari
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
| | - David W. Litchfield
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
6
|
The Application of Virtual Therapeutic Drug Monitoring to Assess the Pharmacokinetics of Imatinib in a Chinese Cancer Population Group. J Pharm Sci 2023; 112:599-609. [PMID: 36202248 DOI: 10.1016/j.xphs.2022.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Imatinib is used in gastrointestinal stromal tumours (GIST) and chronic myeloid leukaemia (CML). Oncology patients demonstrate altered physiology compared to healthy adults, e.g. reduced haematocrit, increased α-1 acid glycoprotein, decreased albumin and reduced glomerular filtration rate (GFR), which may influence imatinib pharmacokinetics. Given that Chinese cancer patients often report raised imatinib plasma concentrations and wider inter-individual variability reported in trough concentration when compared to Caucasian cancer patients, therapeutic drug monitoring (TDM) has been advocated. METHOD This study utilised a previously validated a Chinese cancer population and assessed the impact of imatinib virtual-TDM in Chinese and Caucasian cancer populations across a dosing range from 200-800 mg daily. RESULTS Staged dose titration to 800 mg daily, resulted in recapitulation to within the target therapeutic range for 50 % (Chinese) and 42.1% (Caucasian) subjects possessing plasma concentration < 550 ng/mL when dosed at 400 mg daily. For subjects with plasma concentrations >1500 ng/mL when dosed at 400 mg daily, a dose reduction to 200 mg once daily was able to recover 67 % (Chinese) and 87.4 % (Caucasian) patients to the target therapeutic range. CONCLUSION Virtual TDM highlights the benefit of pharmacokinetic modelling to optimising treatments in challenging oncology population groups.
Collapse
|
7
|
Hnatiuk AP, Bruyneel AA, Tailor D, Pandrala M, Dheeraj A, Li W, Serrano R, Feyen DA, Vu MM, Amatya P, Gupta S, Nakauchi Y, Morgado I, Wiebking V, Liao R, Porteus MH, Majeti R, Malhotra SV, Mercola M. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Res 2022; 82:2777-2791. [PMID: 35763671 PMCID: PMC9620869 DOI: 10.1158/0008-5472.can-21-3652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Cardiotoxicity/drug therapy
- Cardiotoxicity/etiology
- Cardiotoxicity/prevention & control
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imidazoles
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/adverse effects
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Anna P. Hnatiuk
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Arne A.N. Bruyneel
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dhanir Tailor
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mallesh Pandrala
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Arpit Dheeraj
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Wenqi Li
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Ricardo Serrano
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dries A.M. Feyen
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Michelle M. Vu
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Prashila Amatya
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Saloni Gupta
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Yusuke Nakauchi
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Isabel Morgado
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Volker Wiebking
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ronglih Liao
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
8
|
Réa D, Messas E, Mirault T, Nicolini FE. [French Chronic Myeloid Leukemia Intergroup 2022 recommendations for managing the risk of cardiovascular events on ponatinib in chronic myeloid leukemia]. Bull Cancer 2022; 109:862-872. [PMID: 35725593 DOI: 10.1016/j.bulcan.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Tyrosine kinase inhibitors targeting the BCR-ABL1 oncoprotein represent an outstanding progress in chronic myeloid leukemia and long-term progression-free survival has become a reality for a majority of patients. However, tyrosine kinase inhibitors may at best chronicize rather than cure the disease thus current recommendation is to pursue treatment indefinitely. As a consequence, high quality treatment and care must integrate optimal disease control and treatment tolerability. Tyrosine kinase inhibitors have an overall favorable safety profile in clinical practice since most adverse events are mild to moderate in intensity. However, recent evidence has emerged that new generation tyrosine kinase inhibitors may sometimes damage vital organs and if not adequately managed, morbidity and mortality may increase. The 3rd generation tyrosine kinase inhibitor ponatinib is licensed for the treatment of chronic, accelerated or blast phase chronic myeloid leukaemia patients who are resistant to dasatinib or nilotinib; intolerant of dasatinib or nilotinib and for whom further treatment with imatinib is not clinically appropriate; or who express the T315I mutation. Ponatinib represents an important therapeutic option but it is associated with an increased risk of cardiovascular events. The purpose of this article by the France Intergroupe des Leucémies Myéloïdes Chroniques is to provide an overview of ponatinib efficacy and cardiovascular safety profile and to propose practical recommendations with the goal to minimize the risk and severity of cardiovascular events in ponatinib-treated patients.
Collapse
Affiliation(s)
- Delphine Réa
- Hôpital Saint-Louis, DMU d'hématologie, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, Lyon, France.
| | - Emmanuel Messas
- Hôpital européen Georges-Pompidou, département HYPERVASC, DMU cardiovasculaire et transplantation, Paris, France; Université de Paris, PARCC Inserm UMR 970, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, Lyon, France
| | - Tristan Mirault
- Université de Paris, PARCC Inserm UMR 970, Paris, France; Hôpital européen Georges-Pompidou, Centre de référence des maladies vasculaires rares, département HYPERVASC, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, Lyon, France
| | - Franck Emmanuel Nicolini
- Hématologie clinique, Centre Léon Bérard, Lyon, France; Centre de Recherche de Cancérologie de Lyon, Centre Léon Bérard, Inserm U1052, Lyon, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, Lyon, France.
| |
Collapse
|
9
|
Akgun‑Cagliyan G, Cort‑Donmez A, Kilic‑Toprak E, Altintas F. Verbascoside potentiates the effect of tyrosine kinase inhibitors on the induction of apoptosis and oxidative stress via the Abl-mediated MAPK signalling pathway in chronic myeloid leukaemia. Exp Ther Med 2022; 24:514. [PMID: 35837042 PMCID: PMC9257957 DOI: 10.3892/etm.2022.11441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Verbascoside (Verb) may exhibit potential antitumour activities in leukaemia. The present study investigated the effect of Verb, in combination with imatinib (IM), dasatinib (Das), lipopolysaccharide (LPS) and TNF, on cell survival, Abl expression, apoptosis, oxidative stress and the MAPK pathway in chronic myeloid leukaemia (CML) cells. Cell viability was determined using the WST-8 assay in K562 and R-K562 cells treated with Verb and/or IM, Das, LPS and TNF. Apoptosis and DNA damage in CML cells was detected by caspase-3 and comet analysis. The protein levels of Abl (Phospho-Tyr412), and total/phosphorylated p38, JNK and ERK in CML cells were analysed using a Colorimetric Cell-Based Assay. Oxidative stress was examined using total antioxidant and oxidant status assays. Treatment with Verb and/or tyrosine kinase inhibitors (TKIs), LPS and TNF resulted in a significant decrease in the Tyr-412 phosphorylation of Abl in K562 and R-K562 cells. In addition, cotreatment with Verb and IM or Das additively induced apoptosis by activating caspase-3 levels in both cell lines. Activation of p38 and JNK can result in growth arrest and cell death, whereas ERK stimulation results in cell division and differentiation. The present study demonstrated that cotreatment with Verb and TKIs suppressed phosphorylated-ERK1/2, whereas the levels of phosphorylated-p-38 and phosphorylated-JNK were significantly elevated by Verb and/or IM, Das, LPS and TNF, thus suggesting that Abl and Src inhibition could be involved in the effects of Verb on MAPK signalling in R-K562 cells. Furthermore, Verb elevated reactive oxygen species levels additively with TKIs in both cell lines by increasing the oxidant capacity and decreasing the antioxidant capacity. In conclusion, anti-leukemic mechanisms of Verb may be mediated by Abl protein and regulation of its downstream p38-MAPK/JNK pathway, caspase-3 and oxidative stress in CML cells.
Collapse
Affiliation(s)
- Gulsum Akgun‑Cagliyan
- Department of Hematology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Aysegul Cort‑Donmez
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Emine Kilic‑Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Fatih Altintas
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| |
Collapse
|
10
|
Du Z, Huang Z, Chen X, Jiang G, Peng Y, Feng W, Huang N. Modified dendritic cell-derived exosomes activate both NK cells and T cells through the NKG2D/NKG2D-L pathway to kill CML cells with or without T315I mutation. Exp Hematol Oncol 2022; 11:36. [PMID: 35672796 PMCID: PMC9172178 DOI: 10.1186/s40164-022-00289-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors have achieved quite spectacular advances in the treatment of chronic myeloid leukemia (CML), but disease progression and drug resistance that related to the T315I mutation, remain major obstacles. Dendritic cell-derived exosomes (Dex) induce NK cell immunity, but have yet to achieve satisfactory clinical efficacy. An approach to potentiate antitumor immunity by inducing both NK- and T-cell activation is urgently needed. Retinoic acid early inducible-1γ (RAE-1γ), a major ligand of natural killer group 2 member D (NKG2D), plays an important role in NK-cell and T-lymphocyte responses. We generated RAE-1γ enriched CML-specific Dex (CML-RAE-1γ-Dex) from dendritic cells (DCs) pulsed with lysates of RAE-1γ-expressing CML cells or T315I-mutant CML cells, aiming to simultaneously activate NK cells and T lymphocytes. METHODS We generated novel CML-RAE-1γ-Dex vaccines, which expressed RAE-1γ, and were loaded with CML tumor cell lysates. NK cells or T lymphocytes were coincubated with CML-RAE-1γ-Dex vaccines. Flow cytometry was performed to evaluate the activation and proliferation of these immune cells. Cytokine production and cytotoxicity toward CML cells with or without the T315I mutation were detected by ELISPOT, ELISA and LDH assays. CML models induced by BCR-ABL or BCR-ABLT315I were used to determine the immunological function of Dex in vivo. RESULTS Herein, CML-RAE-1γ-Dex were prepared. CML-RAE-1γ-Dex effectively enhanced the proliferation and effector functions of NK cells, CD4+ T cells and CD8+ T cells, which in turn produced strong anti-CML efficacy in vitro. Moreover, CML-RAE-1γ-Dex-based immunotherapy inhibited leukemogenesis and generated durable immunological memory in CML mouse models. Similar immune responses were also observed with imatinib-resistant CML cells carrying the T315I mutation. CONCLUSIONS This approach based on CML-RAE-1γ-Dex vaccines may be a promising strategy for CML treatment, especially for cases with the T315I mutation.
Collapse
Affiliation(s)
- Zhuanyun Du
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated By Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated By Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xi Chen
- Center for Clinical Molecular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyun Jiang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated By Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yuhang Peng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated By Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated By Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Ningshu Huang
- Department of Clinical Laboratory, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
12
|
Ferrarini I, Rigo A, Visco C. The mitochondrial anti-apoptotic dependencies of hematologic malignancies: from disease biology to advances in precision medicine. Haematologica 2022; 107:790-802. [PMID: 35045693 PMCID: PMC8968907 DOI: 10.3324/haematol.2021.280201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are critical organelles in the regulation of intrinsic apoptosis. As a general feature of blood cancers, different antiapoptotic members of the BCL-2 protein family localize at the outer mitochondrial membrane to sequester variable amounts of proapoptotic activators, and hence protect cancer cells from death induction. However, the impact of distinct anti-apoptotic members on apoptosis prevention, a concept termed anti-apoptotic dependence, differs remarkably across disease entities. Over the last two decades, several genetic and functional methodologies have been established to uncover the anti-apoptotic dependencies of the majority of blood cancers, inspiring the development of a new class of small molecules called BH3 mimetics. In this review, we highlight the rationale of targeting mitochondrial apoptosis in hematology, and provide a comprehensive map of the anti-apoptotic dependencies that are currently guiding novel therapeutic strategies. Cell-extrinsic and -intrinsic mechanisms conferring resistance to BH3 mimetics are also examined, with insights on potential strategies to overcome them. Finally, we discuss how the field of mitochondrial apoptosis might be complemented with other dimensions of precision medicine for more successful treatment of 'highly complex' hematologic malignancies.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| |
Collapse
|
13
|
Liu X, Cui MM, Zhu HZ, Fu PY, Wang GC, Huang L. MiR-199a-3p Overexpression Suppressed Cell Proliferation and Sensitized Chronic Myeloid Leukaemia Cells to Imatinib by Inhibiting mTOR Signalling. Acta Haematol 2022; 145:484-498. [PMID: 35313299 DOI: 10.1159/000524158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/26/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Chronic myeloid leukaemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Drug resistance remains one of the major challenges in CML therapy. MicroRNA (miR)-199a-3p plays an important role in many tumours but has rarely been investigated in CML. We aimed to analyse the role and mechanism of miR-199a-3p in regulating imatinib resistance in CML. METHODS The expression of miR-199a-3p and mammalian target of rapamycin (mTOR) in the serum of CML patients and CML cells was examined by quantitative real-time polymerase chain reaction. The levels of apoptosis-related proteins were determined using western blot. The relative cell survival rate and cell proliferation were determined using a CCK-8 assay and a bromodeoxyuridine (BrdU) assay, respectively. Cell cycle and apoptosis were analysed using flow cytometry. Moreover, a dual-luciferase reporter assay was performed to verify the correlation between miR-199a-3p and mTOR. RESULTS MiR-199a-3p was downregulated in the serum of CML patients and in CML cells, while mTOR was upregulated. Both miR-199a-3p overexpression and mTOR silencing inhibited CML cell proliferation, promoted CML cell apoptosis, and sensitized these cells to imatinib. mTOR silencing reversed the promoting effect of miR-199a-3p inhibition on the proliferation of CML cells and the inhibitory effects on cell apoptosis and sensitivity to imatinib. MiR-199a-3p directly targeted mTOR. CONCLUSION MiR-199a-3p suppressed cell propagation, facilitated apoptosis of CML cells, and sensitized CML cells to imatinib by downregulating mTOR signalling.
Collapse
MESH Headings
- Apoptosis
- Bromodeoxyuridine/pharmacology
- Bromodeoxyuridine/therapeutic use
- Cell Line, Tumor
- Cell Proliferation
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Luciferases/pharmacology
- Luciferases/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Protein-Tyrosine Kinases
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/pharmacology
Collapse
Affiliation(s)
- Xin Liu
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Miao-Miao Cui
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, China
| | - Hai-Zhen Zhu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Pei-Yi Fu
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guo-Chuan Wang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ling Huang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
14
|
Shehata AM, Gohar SF, Muharram NM, Eldin SMK. LncRNA CCAT2 expression at diagnosis predicts imatinib response in chronic phase chronic myeloid leukemia patients. Leuk Res 2022; 116:106838. [DOI: 10.1016/j.leukres.2022.106838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 01/26/2023]
|
15
|
Hegde S, Gasilina A, Wunderlich M, Lin Y, Buchholzer M, Krumbach OHF, Akbarzadeh M, Ahmadian MR, Seibel W, Zheng Y, Perentesis JP, Mizukawa BE, Vinnedge LP, Cancelas JA, Nassar NN. Inhibition of the RacGEF VAV3 by the small molecule IODVA1 impedes RAC signaling and overcomes resistance to tyrosine kinase inhibition in acute lymphoblastic leukemia. Leukemia 2022; 36:637-647. [PMID: 34711926 PMCID: PMC8885421 DOI: 10.1038/s41375-021-01455-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023]
Abstract
Aberrant RHO guanine nucleotide exchange factor (RhoGEF) activation is chief mechanism driving abnormal activation of their GTPase targets in transformation and tumorigenesis. Consequently, a small-molecule inhibitor of RhoGEF can make an anti-cancer drug. We used cellular, mouse, and humanized models of RAC-dependent BCR-ABL1-driven and Ph-like acute lymphoblastic leukemia to identify VAV3, a tyrosine phosphorylation-dependent RacGEF, as the target of the small molecule IODVA1. We show that through binding to VAV3, IODVA1 inhibits RAC activation and signaling and increases pro-apoptotic activity in BCR-ABL1-transformed cells. Consistent with this mechanism of action, cellular and animal models of BCR-ABL1-induced leukemia in Vav3-null background do not respond to IODVA1. By durably decreasing in vivo RAC signaling, IODVA1 eradicates leukemic propagating activity of TKI-resistant BCR-ABL1(T315I) B-ALL cells after treatment withdrawal. Importantly, IODVA1 suppresses the leukemic burden in the treatment refractory pediatric Ph+ and TKI-resistant Ph+ B-ALL patient-derived xenograft models better than standard-of-care dasatinib or ponatinib and provides a more durable response after treatment withdrawal. Pediatric leukemia samples with diverse genetic lesions show high sensitivity to IODVA1 ex vivo and this sensitivity is VAV3 dependent. IODVA1 thus spearheads a novel class of drugs that inhibits a RacGEF and holds promise as an anti-tumor therapy.
Collapse
Affiliation(s)
- Shailaja Hegde
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Anjelika Gasilina
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, 40225, Germany
| | - Oliver H F Krumbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, 40225, Germany
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, 40225, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, 40225, Germany
| | - William Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Benjamin E Mizukawa
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Lisa Privette Vinnedge
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - José A Cancelas
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Nicolas N Nassar
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA.
| |
Collapse
|
16
|
Impact of Variants in the ATIC and ARID5B Genes on Therapeutic Failure with Imatinib in Patients with Chronic Myeloid Leukemia. Genes (Basel) 2022; 13:genes13020330. [PMID: 35205374 PMCID: PMC8872593 DOI: 10.3390/genes13020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm derived from the balanced reciprocal translocation of chromosomes 9 and 22 t (9q34 and 22q11), which leads to the formation of the Philadelphia chromosome and fusion of the BCR-ABL genes. The first-line treatment for CML is imatinib, a tyrosine kinase inhibitor that acts on the BCR-ABL protein. However, even though it is a target-specific drug, about 25% of patients do not respond to this treatment. The resistance mechanisms involved in this process have been investigated and studies have shown that germinal alterations can influence this mechanism. The aim of this work was to investigate 32 polymorphisms in 24 genes of carcinogenic pathway to verify the influence of these genetic variants on the response to treatment with imatinib. Our results demonstrated that individuals with the recessive GG genotype for the rs2372536 variant in the ATIC gene are approximately three times more likely to experience treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI = 0.9986–7.441), as well as individuals with the TT genotype for the rs10821936 variant in the ARID5B gene, who also have a higher risk for treatment failure with imatinib over time (p = 0.02, HR = 0.4053, IC 95% = 0.1802–0.911). In conclusion, we show that variants in the ATIC and ARIDB5 gene, never screened in previous studies, could potentially influence the therapeutic response to imatinib in patients treated for CML.
Collapse
|
17
|
Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie 2021; 77:425-443. [PMID: 34823895 DOI: 10.1016/j.therap.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/09/2023]
Abstract
Protein kinases, a class of enzymes that govern various biological phenomena at a cellular level, are responsible for signal transduction in cells that regulate cellular proliferation, differentiation, and growth. Protein kinase enzyme mutation results in abnormal cell division leading to a pathological condition like cancer. Tyrosine kinase (TK) inhibitors, which helps as a potential drug candidate for the treatment of cancer, are continuously being developed. Majority of these drug candidates are being administered as conventional oral dosage form, which provides limited safety and efficacy due to non-specific delivery and uncontrolled biodistribution resulting into the adverse effects. A controlled drug delivery approach for the delivery of TK inhibitors may be a potential strategy with significant safety and efficacy profile. Novel drug delivery strategies provide target-specific drug delivery, improved pharmacokinetic behaviour, and sustained release leading to lower doses and dosing frequency with significantly reduced side effects. Along with basic aspects of tyrosine kinase, this review discusses various aspects related to the application of tyrosine kinase inhibitors in clinical oncological setting. Furthermore, the limitations/challenges and formulation advancements related to this class of candidates particularly for cancer management have been reviewed. It is expected that innovations in drug delivery approaches for TK inhibitors using novel techniques will surely provide a new insights for improved cancer treatment and patients' life quality.
Collapse
Affiliation(s)
- Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484886, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
| |
Collapse
|
18
|
Karasu N, Akalin H, Gokce N, Yildirim A, Demir M, Kulak H, Celik S, Keklik M, Dundar M. Detection of mutations in CML patients resistant to tyrosine kinase inhibitor: imatinib mesylate therapy. Med Oncol 2021; 38:120. [PMID: 34453624 DOI: 10.1007/s12032-021-01571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Imatinib mesylate, a tyrosine kinase inhibitor, is the first choice in chronic myeloid leukemia treatment. However, resistance to imatinib may develop with time and in some cases, patients may not respond at all to imatinib. Progressive resistance to imatinib therapy is often due to mutations in the BCR/ABL region. Within the scope of our study 124 patients were evaluated via pyrosequencing between 2015 and 2020. In this regard, 32 patients who have a partial response and have no response to imatinib therapy were included in the study. In addition, next-generation sequencing (NGS) analysis was performed on 15 patients who were resistant to imatinib treatment according to the molecular follow-up reports. With pyrosequencing, 5 cases out of a total of 124 were found to be positive. This means that approximately 4.03% of the proportion is positive. But when we examined only 32 patients who have a partial response and have no response to imatinib therapy this rate is rising 15.6%. NGS analysis was performed with 15 patients who have no mutation with pyrosequencing of 32 patients and VUS (Variant of Uncertain Significance) mutation was detected in one. In this study, our aim was to determine the mutations of the BCR/ABL and to evaluate the mutations by NGS and pyrosequencing. Our study is important in terms of comparing the pyrosequencing with NGS mutation rates, drawing attention to the clinical importance of log reduction.
Collapse
Affiliation(s)
- Nilgun Karasu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abdulbaki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mikail Demir
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hande Kulak
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Serhat Celik
- Department of Hematology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Muzaffer Keklik
- Department of Hematology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
19
|
Kim HJ, Park JW, Kang JY, Seo SB. Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis. Mol Cells 2021; 44:444-457. [PMID: 34253692 PMCID: PMC8334346 DOI: 10.14348/molcells.2021.0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
20
|
Altered apoptotic protein expressions characterize the survival of Bcr-Abl-independent drug-resistant chronic myeloid leukemia cell line. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.848797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Etienne G, Rea D, Coiteux V, Guerci-Bresler A, Huguet F, Legros L, Rousselot P, Nicolini FE. Ponatinib long-term follow-up of efficacy and safety in CP-CML patients in real world settings in France: The POST-PACE study. Leuk Res 2021; 104:106541. [PMID: 33689921 DOI: 10.1016/j.leukres.2021.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Gabriel Etienne
- Institut Bergonié, Bordeaux, France; Fi-LMC, Centre Léon Bérard, Lyon, France.
| | - Delphine Rea
- Hôpital Saint Louis, Paris, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Valerie Coiteux
- CHU Lille, Hôpital Claude Huriez, Lille, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Agnès Guerci-Bresler
- CHRU Brabois, Vandoeuvre-lès-Nancy, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Françoise Huguet
- IUCT-Oncopôle, Toulouse, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Laurence Legros
- Hôpital Paul-Brousse, Villejuif, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Philippe Rousselot
- Département d'hématologie et oncologie, Centre Hospitalier de Versailles, Le Chesnay, France; Unité Mixte de Recherche (UMR) 1184, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), University of Versailles-Saint-Quentin-en-Yvelines and Paris-Saclay, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| | - Franck-Emmanuel Nicolini
- Département d'hématologie et and INSERM U1052, Centre Léon Bérard, CRCL, Lyon, France; Fi-LMC, Centre Léon Bérard, Lyon, France
| |
Collapse
|
22
|
Ammar M, Louati N, Frikha I, Medhaffar M, Ghozzi H, Elloumi M, Menif H, Zeghal K, Ben Mahmoud L. Overexpression of P-glycoprotein and resistance to Imatinib in chronic myeloid leukemia patients. J Clin Lab Anal 2020; 34:e23374. [PMID: 32715517 PMCID: PMC7521244 DOI: 10.1002/jcla.23374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The P-glycoprotein (P-gp) is one of the mechanisms of Imatinib (IM) resistance in chronic myeloid leukemia (CML). P-gp has been identified as an efflux pump involved in releasing of IM outside CML cells. To date, the P-gp involvement in the IM resistance development was not completely understood. Therefore, the present study aimed at measuring the P-gp expression level on lymphocytes from Tunisian patients with CML and correlating this level with a molecular response to IM. METHOD The expression of P-gp on peripheral blood lymphocytes from 59 Tunisian patients with CML (27 IM responder patients vs 32 IM non-responder patients) was evaluated by flow cytometry. RESULT Our finding showed significantly positive expression of P-gp in the lymphocytes from the IM non-responder group when compared to the IM-responder group (P = .001). In IM non-responder CML patients, the comparison between CCyR achievers and non-achievers showed a high mean fluorescence intensity (MFI) of P-gp expression in patients who did not achieve their CCyR (P = .001). The comparison between patients with primary and secondary resistance to IM showed an increasing MFI value in patients with primary resistance to IM (P = .001). Besides, the comparison between nilotinib-treated and dasatinib-treated patients proved a high value of MFI in nilotinib-treated patients (P = .001). CONCLUSION The overexpression of P-gp on lymphocytes has significantly correlated with the failed molecular response to IM in patients with CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Prognosis
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Mariam Ammar
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Nour Louati
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Imen Frikha
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Moez Medhaffar
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hanen Ghozzi
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Moez Elloumi
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hela Menif
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Khaled Zeghal
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Lobna Ben Mahmoud
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| |
Collapse
|
23
|
Rai S, Tanaka H, Suzuki M, Espinoza JL, Kumode T, Tanimura A, Yokota T, Oritani K, Watanabe T, Kanakura Y, Matsumura I. Chlorpromazine eliminates acute myeloid leukemia cells by perturbing subcellular localization of FLT3-ITD and KIT-D816V. Nat Commun 2020; 11:4147. [PMID: 32811837 PMCID: PMC7434901 DOI: 10.1038/s41467-020-17666-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mutated receptor tyrosine kinases (MT-RTKs) such as internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3 ITD) and a point mutation KIT D816V are driver mutations for acute myeloid leukemia (AML). Clathrin assembly lymphoid myeloid leukemia protein (CALM) regulates intracellular transport of RTKs, however, the precise role for MT-RTKs remains elusive. We here show that CALM knock down leads to severely impaired FLT3 ITD- or KIT D814V-dependent cell growth compared to marginal influence on wild-type FLT3- or KIT-mediated cell growth. An antipsychotic drug chlorpromazine (CPZ) suppresses the growth of primary AML samples, and human CD34+CD38- AML cells including AML initiating cells with MT-RTKs in vitro and in vivo. Mechanistically, CPZ reduces CALM protein at post transcriptional level and perturbs the intracellular localization of MT-RTKs, thereby blocking their signaling. Our study presents a therapeutic strategy for AML with MT-RTKs by altering the intracellular localization of MT-RTKs using CPZ.
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan.
| | - Mai Suzuki
- Division of Hematological Malignancy, National Cancer Center Research Institute, Chuo, Tokyo, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Nara, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| |
Collapse
|
24
|
Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A 2020; 117:19221-19227. [PMID: 32719139 PMCID: PMC7431045 DOI: 10.1073/pnas.1919221117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.
Collapse
Affiliation(s)
- Marc Hoemberger
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454;
- HHMI, Brandeis University, Waltham, MA 02454
| |
Collapse
|
25
|
Losson H, Gajulapalli SR, Lernoux M, Lee JY, Mazumder A, Gérard D, Seidel C, Hahn H, Christov C, Dicato M, Kirsch G, Han BW, Schnekenburger M, Diederich M. The HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia. Pharmacol Res 2020; 160:105058. [PMID: 32619722 DOI: 10.1016/j.phrs.2020.105058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity. Here, we hypothesize that the HDAC6i compound 7b can lead to BCR-ABL downregulation in CML cells and sensitize them to TKI treatment. The results showed that combination treatment with imatinib and 7b resulted in strong synergistic caspase-dependent apoptotic cell death and drastically reduced the proportion of leukemia stem cells, whereas this treatment only moderately affected healthy cells. Ultimately, the combination significantly decreased colony formation in a semisolid methylcellulose medium and tumor mass in xenografted zebrafish compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation followed by disturbance of key proteins in downstream pathways involved in CML proliferation and survival. Taken together, our results suggest that an HDAC6i potentiates the effect of imatinib and could overcome TKI resistance in CML cells.
Collapse
Affiliation(s)
- Hélène Losson
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Manon Lernoux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Carole Seidel
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Hyunggu Hahn
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, INSERM U1256 NGERE, 54000, Nancy, France
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Gilbert Kirsch
- UMR CNRS 7053 LC2M, Université de Lorraine, 57070, Metz, France
| | - Byung Woo Han
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
26
|
Haguet H, Bouvy C, Delvigne AS, Modaffari E, Wannez A, Sonveaux P, Dogné JM, Douxfils J. The Risk of Arterial Thrombosis in Patients With Chronic Myeloid Leukemia Treated With Second and Third Generation BCR-ABL Tyrosine Kinase Inhibitors May Be Explained by Their Impact on Endothelial Cells: An In-Vitro Study. Front Pharmacol 2020; 11:1007. [PMID: 32719607 PMCID: PMC7350860 DOI: 10.3389/fphar.2020.01007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia, inducing deep molecular responses, largely improving patient survival and rendering treatment-free remission possible. However, three of the five BCR-ABL TKIs, dasatinib, nilotinib, and ponatinib, increase the risk of developing arterial thrombosis. Prior investigations reported that nilotinib and ponatinib affect the endothelium, but the mechanisms by which they exert their toxic effects are still unclear. The impact of dasatinib and bosutinib on endothelial cells has been poorly investigated. Here, we aimed to provide an in vitro homogenous evaluation of the effects of BCR-ABL TKIs on the endothelium, with a special focus on the type of cell death to elucidate the mechanisms responsible for the potential cytotoxic effects of BCR-ABL TKIs nilotinib and ponatinib on endothelial cells. We tested the five BCR-ABL TKIs at three concentrations on human umbilical venous endothelial cells (HUVECs). This study highlights the endothelial toxicity of ponatinib and provides insights about the mechanisms by which it affects endothelial cell viability. Ponatinib induced apoptosis and necrosis of HUVECs after 72 h. Dasatinib affected endothelial cells in vitro by inhibiting their proliferation and decreased wound closure as soon as 24 h of treatment and even at infra-therapeutic dose (0.005 µM). Comparatively, imatinib, nilotinib, and bosutinib had little impact on endothelial cells at therapeutic concentrations. They did not induce apoptosis nor necrosis, even after 72 h of treatment but they inhibited HUVEC proliferation. Overall, this study reports various effects of BCR-ABL TKIs on endothelial cells and suggests that ponatinib and dasatinib induce arterial thrombosis through endothelial dysfunction.
Collapse
Affiliation(s)
- Hélène Haguet
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | | | | | - Adeline Wannez
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| |
Collapse
|
27
|
Limsuwanachot N, Kongruang A, Rerkamnuaychoke B, Singdong R, Niparuck P, Jootar S, Siriboonpiputtana T. Practical Laboratory Tools for Monitoring of BCR-ABL1 Transcripts and Tyrosine Kinase (TK) Domain Mutations in Chronic Myeloid Leukemia Patients Undergoing TK Inhibitor Therapy: A Single-Center Experience in Thailand. Asian Pac J Cancer Prev 2020; 21:2003-2012. [PMID: 32711426 PMCID: PMC7573403 DOI: 10.31557/apjcp.2020.21.7.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/28/2022] Open
Abstract
Objective: The genetic hallmark of CML is known as the appearance of t(9;22)(q34.1;q11.2) (BCR-ABL1) which is present in more than 95% of cases. Here, we demonstrated practical laboratory tools for monitoring of BCR-ABL1 transcripts in chronic myeloid leukemia patients undergoing TK inhibitor therapy. Methods: Real time quantitative PCR and direct sequencing were performed for monitoring of BCR-ABL1 transcripts in 245 treated CML. Results: At month 3 after first time point of monitoring, we found that 89% (218/245), 2% (5/245), and 9% (22/245) of patients are determined as optimal, warning, and failure response, respectively. The responses to TKI were slightly decreased at months 6 as following 73% optimal (180/245), 18% warning (43/245), and 9% failure response (22/245). Additionally, responses to TKI were gradually decreased at month 12 after first time point of monitoring as following 65% optimal (160/245), 13% warning (31/245), and 22% failure (54/245). We could detect 20% (49/245) of patients positive for BCR-ABL1 TKD mutations. Interestingly, one third (17 of 49) of TKD mutated cases were positive for compound/polyclonal mutation patterns. While major molecular response were observed in the majority of patients without TKD mutation, resistant to TKI were detected in patients with T315I mutation (n = 9; % mean IS = 8.1510, % median IS = 9.7000), compound/polyclonal mutations with T315I (n = 9; % mean IS = 13.0779, % median IS = 5.404), and other TKD mutations (n = 14; % mean IS = 8.1416, % median IS = 1.060), respectively. Conlusion: These practical laboratory techniques provided a more comprehensive understanding of CML progression during drug therapy and could be of benefit in earlier prognosis.
Collapse
Affiliation(s)
- Nittaya Limsuwanachot
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adcharee Kongruang
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Roongrudee Singdong
- Doctoral Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Saengsuree Jootar
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Siriboonpiputtana
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
29
|
Shiri Heris R, Safaroghli-Azar A, Yousefi AM, Hamidpour M, Bashash D. Anti-leukemic effect of PI3K inhibition on chronic myeloid leukemia (CML) cells: shedding new light on the mitigating effect of c-Myc and autophagy on BKM120 cytotoxicity. Cell Biol Int 2020; 44:1212-1223. [PMID: 32068318 DOI: 10.1002/cbin.11322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/16/2020] [Indexed: 12/15/2022]
Abstract
The success in the identification of BCR/ABL tyrosine kinase role in the pathogenesis of chronic myeloid leukemia (CML) went as far as to find a path to cure this leukemia; however, compensatory activation of leukomogenic signals get across the message that the small molecule inhibitors of oncogenic pathways, along with tyrosine kinase inhibitors, might be a beneficial approach in CML treatment. The results of the present study showed that the abrogation of the phosphoinositide 3-kinase (PI3K) pathway using pan-PI3K inhibitor BKM120 exerted a cytotoxic effect against CML-derived K562 cells through both the induction of p21-mediated G2/M arrest and the stimulation of apoptosis. Notably, the apoptotic effect of the inhibitor was further confirmed by the molecular analysis showing that BKM120 significantly increased the expression of pro-apoptotic genes. To the best of our knowledge, the involvement of autophagy in resistance to BKM120 has not been yet described and our study suggests for the first time that the elevation of autophagy-related genes might serve as a compensatory pathway to cease the anti-leukemic effect of BKM120 in K562; since we found a reinforced anti-survival event when the cells were treated with BKM120 in combination with autophagy inhibitor. In conclusion, the results of the present study showed that the abrogation of PI3K using BKM120 might be a befitting approach in CML treatment, either as a single agent or in a combined-modal strategy; however, further evaluations including clinical trials and in vivo investigations are demanded to ascertain the safety and the efficacy of the inhibitor in treatment strategies.
Collapse
Affiliation(s)
- Reza Shiri Heris
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653312, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653312, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653312, Iran
| | - Mohsen Hamidpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653312, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653312, Iran
| |
Collapse
|
30
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
31
|
HDAC6-an Emerging Target Against Chronic Myeloid Leukemia? Cancers (Basel) 2020; 12:cancers12020318. [PMID: 32013157 PMCID: PMC7072136 DOI: 10.3390/cancers12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Imatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer. This protein effectively intervenes in cellular activities by its primarily cytoplasmic localization. In this review, we will discuss the molecular characteristics of the HDAC6 protein, as well as its overexpression in CML leukemic stem cells, which make it a promising therapeutic target for the treatment of CML.
Collapse
|
32
|
Zanforlin E, Zagotto G, Ribaudo G. A Chemical Approach to Overcome Tyrosine Kinase Inhibitors Resistance: Learning from Chronic Myeloid Leukemia. Curr Med Chem 2019; 26:6033-6052. [PMID: 29874990 DOI: 10.2174/0929867325666180607092451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The possibilities of treatment for oncological diseases are growing enormously in the last decades. Unfortunately, these developments have led to the onset of resistances with regards to the new treatments. This is particularly true if we face with the therapeutic field of Tyrosine Kinase Inhibitors (TKIs). This review gives an overview of possible TKI resistances that can occur during the treatment of an oncologic diesease and available strategies that can be adopted, taking cues from a successful example such as CML. METHODS We performed a literature search for peer-reviewed articles using different databases, such as PubMed and Scopus, and exploiting different keywords and different logical operators. RESULTS 68 papers were included in the review. Twenty-four papers give an overview of the causes of TKIs resistances in the wide oncologic field. The remaining papers deal CML, deeply analysing the TKIs Resistances present in this pathology and the strategies adopted to overcome them. CONCLUSION The aim of this review is to furnish an overview and a methodological guideline for the approach and the overcoming of TKIs Resistances.
Collapse
Affiliation(s)
- Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Kurita S, Miyamoto R, Tani H, Kobayashi M, Sasaki T, Tamura K, Bonkobara M. Genetic alterations of KIT during clonal expansion and subsequent acquisition of resistance to toceranib in a canine mast cell tumor cell line. J Vet Pharmacol Ther 2019; 42:673-681. [PMID: 31553064 DOI: 10.1111/jvp.12816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
One of the potential mechanisms underlying acquired resistance to toceranib in canine mast cell tumor (MCT) is the emergence of a secondary mutation in the KIT gene. Here, genetic alterations of KIT during clonal expansion and subsequent acquisition of resistance to toceranib were investigated in the toceranib-susceptible canine MCT cell line VI-MC, which carries a KIT-activating mutation resulting in a predicted p.(Asn508Ile) amino acid change in the receptor tyrosine kinase protein KIT. Two sublines were cloned from VI-MC and toceranib-resistant sublines then were established by continuous exposure to toceranib. The mutation status of KIT in parental VI-MC and its sublines was investigated using next-generation sequencing (NGS). Additionally, effects of secondary mutations on toceranib sensitivity in p.(Asn508Ile)-mutant KIT were examined. KIT secondary mutations, including those encoding p.(Asn679Lys)-, p.(Asp819Val)-, and p.(Asp819Gly)-mutant KIT, that confer toceranib insensitivity to p.(Asn508Ile)-mutant KIT emerged only in toceranib-resistant VI-MCs. These mutations were not detected by NGS in the parental VI-MC line or in the toceranib-naive cloned VI-MCs, although the parental line and sublines exhibited genetic heterogeneity in KIT that may have been caused by genetic evolution during clonal expansion. VI-MC clones with these secondary mutations in KIT appear to have arisen from subclones during treatment with toceranib rather than being pre-existing. However, further study using a higher resolution technique will be needed to confirm the developmental mechanism of KIT secondary mutation in canine MCT cells with acquired resistance to toceranib.
Collapse
Affiliation(s)
- Sena Kurita
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ryo Miyamoto
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroyuki Tani
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masato Kobayashi
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takashi Sasaki
- Animal Research Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kyoichi Tamura
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
34
|
Liu C, Li Y, Hu R, Han W, Gao S. Knockdown of ribonucleotide reductase regulatory subunit M2 increases the drug sensitivity of chronic myeloid leukemia to imatinib‑based therapy. Oncol Rep 2019; 42:571-580. [PMID: 31233186 PMCID: PMC6610035 DOI: 10.3892/or.2019.7194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Imatinib-based targeted treatment is the standard therapy for chronic myeloid leukemia (CML); however, drug resistance is an inevitable issue for imatinib-based CML treatment. Imatinib resistance can be ascribed to Bcr-Abl-dependent and independent resistance. In the present study, peripheral blood samples were collected from imatinib-sensitive (IS) and imatinib-resistant (IR) CML patients and transcriptome sequencing was carried out. From the RNA-seq data, a significantly altered IR-related gene (IRG), ribonucleotide reductase regulatory subunit M2 (RRM2) was identified. Using real-time quantitative fluorescence PCR (qF-PCR), we found that RRM2 was elevated in both IR CML patients and an IR cell line. Using reverse-transcription PCR (RT-PCR) and western blot analysis, we indicated that imatinib can increase RRM2 level in a dose-dependent manner in IR cells. We also demonstrated that RRM2 is involved in the Bcl-2/caspase cell apoptotic pathway and in the Akt cell signaling pathway, and therefore affects the cell survival following imatinib therapy. The present study, for the first time, indicates that RRM2 is responsible for drug resistance in imatinib-based therapy. Therefore, RRM2 gene can be considered as a potential therapeutic target in the clinical treatment of CML.
Collapse
Affiliation(s)
- Chunshui Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuying Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruiping Hu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Han
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, Abdullah J, Zakaria Z. Prevalence of BCR-ABL T315I Mutation in Malaysian Patients with Imatinib-Resistant Chronic Myeloid Leukemia. Asian Pac J Cancer Prev 2018; 19:3317-3320. [PMID: 30583336 PMCID: PMC6428553 DOI: 10.31557/apjcp.2018.19.12.3317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Chronic Myeloid Leukemia (CML) is caused by a reciprocal translocation between chromosomes 9 and 22, t(9;22) (q34;q11) which encodes for the BCR-ABL fusion protein. Discovery of Imatinib Mesylate (IM) as first line therapy has brought tremendous improvement in the management of CML. However, emergence of point mutations within the BCR-ABL gene particularly T315I mutation, affects a common BCR-ABL kinase contact residue which impairs drug binding thus contribute to treatment resistance. This study aims to investigate the BCR-ABL T315I mutation in Malaysian patients with CML. Methods: A total of 285 patients diagnosed with CML were included in this study. Mutation detection was performed using qualitative real-time PCR (qPCR). Results: Fifteen out of 285 samples (5.26%) were positive for T315I mutations after amplification with real-time PCR assay. From the total number of positive samples, six patients were in accelerated phase (AP), four in chronic phase (CP) and five in blast crisis (BC). Conclusion: Mutation testing is recommended for choosing various tyrosine kinase inhibitors (TKIs) to optimize outcomes for both cases of treatment failure or suboptimal response to imatinib. Therefore, detection of T315I mutation in CML patients are clinically useful in the selection of appropriate treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Yuslina Mat Yusoff
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fachi MM, Tonin FS, Leonart LP, Aguiar KS, Lenzi L, Figueiredo BC, Fernandez-Llimos F, Pontarolo R. Comparative efficacy and safety of tyrosine kinase inhibitors for chronic myeloid leukaemia: A systematic review and network meta-analysis. Eur J Cancer 2018; 104:9-20. [DOI: 10.1016/j.ejca.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
|
37
|
Sun Y, Liu W, Wang C, Meng Q, Liu Z, Huo X, Yang X, Sun P, Sun H, Ma X, Peng J, Liu K. Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of adriamycin in K562/ADR through downregulation of SORCIN: A new strategy of inhibiting P-glycoprotein. J Cell Physiol 2018; 234:3685-3696. [PMID: 30171603 DOI: 10.1002/jcp.27141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by suppressing P-glycoprotein (P-gp) and soluble resistance-related calcium-binding protein (SORCIN) independently. To reverse MDR more effectively, a new strategy was raised, that is, circumventing MDR by the coadministration of DMY and ondansetron (OND), a common antiemetic drug, during cancer chemotherapy. Meanwhile, the interior relation between P-gp and SORCIN was also revealed. The combination of DMY and OND strongly enhanced antiproliferative efficiency of adriamycin (ADR) because of the increasing accumulation of ADR in K562/ADR-resistant cell line. DMY could downregulate the expression of SORCIN and P-gp via the ERK/Akt pathways, whereas OND could not. In addition, it was proved that SORCIN suppressed ERK and Akt to inhibit P-gp by the silence of SORCIN, however, not vice versa. Finally, the combination of DMY, OND, and ADR led to G2/M cell cycle arrest and apoptosis via resuming P53 function and restraining relevant proteins expression. These fundamental findings provided a promising approach for further treatment of MDR.
Collapse
Affiliation(s)
- Yaoting Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Wei Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaobo Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Key Laboratory for Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
38
|
Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J Genet 2018. [DOI: 10.1007/s12041-018-0978-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Park GT, Heo JR, Kim SU, Choi KC. The growth of K562 human leukemia cells was inhibited by therapeutic neural stem cells in cellular and xenograft mouse models. Cytotherapy 2018; 20:1191-1201. [PMID: 30078654 DOI: 10.1016/j.jcyt.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
To confirm the anti-tumor effect of engineered neural stem cells (NSCs) expressing cytosine deaminase (CD) and interferon-β (IFN-β) with prodrug 5-fluorocytosine (FC), K562 chronic myeloid leukemia (CML) cells were co-cultured with the neural stem cell lines HB1.F3.CD and HB1.F3.CD.IFN-β in 5-FC containing media. A significant decrease in the viability of K562 cells was observed by the treatment of the NSC lines, HB1.F3.CD and HB1.F3.CD.IFN-β, compared with the control. A modified trans-well assay showed that engineered human NSCs significantly migrated toward K562 CML cells more than human normal lung cells. In addition, the important chemoattractant factors involved in the specific migration ability of stem cells were found to be expressed in K562 CML cells. In a xenograft mouse model, NSC treatments via subcutaneous and intravenous injections resulted in significant inhibitions of tumor mass growth and extended survival dates of the mice. Taken together, these results suggest that gene therapy using genetically engineered stem cells expressing CD and IFN-β may be effective for treating CML in these mouse models.
Collapse
Affiliation(s)
- Geon-Tae Park
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea; Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
40
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Haguet H, Douxfils J, Chatelain C, Graux C, Mullier F, Dogné JM. BCR-ABL Tyrosine Kinase Inhibitors: Which Mechanism(s) May Explain the Risk of Thrombosis? TH OPEN 2018; 2:e68-e88. [PMID: 31249931 PMCID: PMC6524858 DOI: 10.1055/s-0038-1624566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Imatinib, the first-in-class BCR-ABL tyrosine kinase inhibitor (TKI), had been a revolution for the treatment of chronic myeloid leukemia (CML) and had greatly enhanced patient survival. Second- (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKIs have been developed to be effective against BCR-ABL mutations making imatinib less effective. However, these treatments have been associated with arterial occlusive events. This review gathers clinical data and experiments about the pathophysiology of these arterial occlusive events with BCR-ABL TKIs. Imatinib is associated with very low rates of thrombosis, suggesting a potentially protecting cardiovascular effect of this treatment in patients with BCR-ABL CML. This protective effect might be mediated by decreased platelet secretion and activation, decreased leukocyte recruitment, and anti-inflammatory or antifibrotic effects. Clinical data have guided mechanistic studies toward alteration of platelet functions and atherosclerosis development, which might be secondary to metabolism impairment. Dasatinib, nilotinib, and ponatinib affect endothelial cells and might induce atherogenesis through increased vascular permeability. Nilotinib also impairs platelet functions and induces hyperglycemia and dyslipidemia that might contribute to atherosclerosis development. Description of the pathophysiology of arterial thrombotic events is necessary to implement risk minimization strategies.
Collapse
Affiliation(s)
- Hélène Haguet
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jonathan Douxfils
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| | - Christian Chatelain
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| | - Carlos Graux
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - François Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| |
Collapse
|
42
|
Singh I, Singh S, Verma V, Uversky VN, Chandra R. In silico evaluation of the resistance of the T790M variant of epidermal growth factor receptor kinase to cancer drug Erlotinib. J Biomol Struct Dyn 2017; 36:4209-4219. [PMID: 29183267 DOI: 10.1080/07391102.2017.1411293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal growth factor receptor kinase is implicated in cancer development due to either overexpression or activation variants in its functional intracellular kinase domain. Threonine to methionine (Thr 790 Met) is one such variant observed commonly in patients showing resistance to kinase inhibitor drug Erlotinib. Two mechanisms for resistance have been proposed (1) steric hindrance and (2) enhanced binding to ATP. In this study, we employed molecular dynamics simulations and studied both the mechanisms. Extensive simulations and free energy of binding analyses has shown that steric hindrance does not explain appropriately the mechanism for resistance against Erlotinib therapy for this variant. It has been observed that conformational switching from an intermediate intrinsically disordered C-helix conformation is required for completion of the kinase's catalytic cycle. Our study substantiates that T790M variant has greater tendency for early transition to this intrinsically disordered C-helix intermediate state. We propose that enhanced catalytic efficiency in addition to enhanced ATP binding explains mechanism of T790M resistance to drug Erlotinib.
Collapse
Affiliation(s)
- Inderpal Singh
- a Department of Biotechnology , Shri Mata Vaishno Devi University (SMVDU) , Kakryal , Katra 182320 , Jammu and Kashmir , India.,b Bioinformatics Infrastructure Facility, Department of Biotechnology , Shri Mata Vaishno Devi University (SMVDU) , Kakryal , Katra 182320 , Jammu and Kashmir , India
| | - Shashank Singh
- c Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR-IIIM) , Canal Road, Jammu 180001 , Jammu and Kashmir , India
| | - Vijeshwar Verma
- a Department of Biotechnology , Shri Mata Vaishno Devi University (SMVDU) , Kakryal , Katra 182320 , Jammu and Kashmir , India.,b Bioinformatics Infrastructure Facility, Department of Biotechnology , Shri Mata Vaishno Devi University (SMVDU) , Kakryal , Katra 182320 , Jammu and Kashmir , India
| | - Vladimir N Uversky
- d Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida, University of South Florida , Tampa , FL , USA.,e Laboratory of New Methods in Biology, Institute for Biological Instrumentation , Russian Academy of Sciences , 142290 Pushchino , Moscow Region , Russia
| | - Ratna Chandra
- a Department of Biotechnology , Shri Mata Vaishno Devi University (SMVDU) , Kakryal , Katra 182320 , Jammu and Kashmir , India
| |
Collapse
|
43
|
Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL. Biochem J 2017; 474:4153-4170. [PMID: 29046392 DOI: 10.1042/bcj20170386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL kinase. Recent efforts focused on the development of more potent tyrosine kinase inhibitors (TKIs) that also inhibit mutant tyrosine kinases such as nilotinib and dasatinib. Although major advances in the treatment of this aggressive disease with potent inhibitors of the BCR/ABL kinases, patients in remission frequently relapse due to drug resistance possibly mediated, at least in part, by compensatory activation of growth-signaling pathways and protective feedback signaling of leukemia cells in response to TKI treatment. Continuous activation of AKT/mTOR signaling and inactivation of p53 pathway were two mechanisms of TKI resistance. Here, we reported that nutlin-3 plus tanshinone IIA significantly potentiated the cytotoxic and apoptotic induction effects of imatinib by down-regulation of the AKT/mTOR pathway and reactivating the p53 pathway deeply in Ph+ ALL cell line. In primary samples from Ph+ ALL patients, nutlin-3 plus tanshinone IIA also exhibited synergetic cytotoxic effects with imatinib. Of note, three samples from Ph+ ALL patients harboring T315I mutation also showed sensitivity to the combined treatment of imatinib, nutlin-3 plus tanshinone IIA. In Ph+ ALL mouse models, imatinib combined with nutlin-3 plus tanshinone IIA also exhibited synergetic effects on reduction in leukemia burden. These results demonstrated that nutlin-3 plus tanshinone IIA combined TKI might be a promising treatment strategy for Ph+ ALL patients.
Collapse
|
44
|
Ángeles-Velázquez JL, Hurtado-Monroy R, Vargas-Viveros P, Carrillo-Muñoz S, Candelaria-Hernández M. Imatinib Intolerance Is Associated With Blastic Phase Development in Philadelphia Chromosome-Positive Chronic Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 16 Suppl:S82-5. [PMID: 27521331 DOI: 10.1016/j.clml.2016.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Over the past years, the survival of patients with Philadelphia-positive chronic myeloid leukemia (CML Ph(+)) has increased as a result of therapy with tyrosin kinase inhibitors (TKIs). Intolerance to TKIs has been described in approximately 20% of patients receiving treatment. We studied the incidence of imatinib intolerance in patients with CML Ph(+) and their outcome in our CML reference site, as there is no information about the evolution of patients intolerant to TKIs. PATIENTS AND METHODS A group of 86 patients with CML Ph(+) receiving imatinib monotherapy who abandoned treatment were the basis for this study. We present the trends of their disease evolution. RESULTS The median of age at diagnosis was 42 years. Within a year, 19 (22%) of 86 patients developed imatinib intolerance, all of them with grade III or IV disease that required imatinib dose reduction or discontinuation. Of these patients, 16 (84%) of 19 developed transformation to blastic phase. The cumulative incidences of blastic phase development were 47% in the nonintolerant group and 84% in the intolerant group. There was a relative risk for those with imatinib intolerance to develop blastic phase of 1.78 (95% confidence interval, 1.28 to 2.42) (P < .05). CONCLUSION Most imatinib-intolerant patients develop blastic phase transformation, with a poor survival of 3 to 6 months; no effective rescue treatment is available. Future research should to determine whether the origin of this evolution is really due to the intolerance itself or whether it is due to a more aggressive form of the disease, perhaps related to genetic transformation.
Collapse
Affiliation(s)
- Jorge Luis Ángeles-Velázquez
- Resident of Internal Medicine, Mexican Faculty of Medicine, La Salle University, Hospital Angeles del Pedregal, Mexico City, Mexico
| | - Rafael Hurtado-Monroy
- Head of the Department of Hematology, Hospital Angeles del Pedregal, Mexico City, Mexico.
| | | | | | | |
Collapse
|
45
|
Abstract
Background In the last decade, the use of imatinib has brought a paradigm shift in the management of chronic myeloid leukemia (CML). In India, imatinib has been available for more than a decade and has been made accessible to all segments of the population because of patient assistance programs and cheaper generic versions. Despite improvements in survival, there are unique challenges in the Indian context. Methods We reviewed published data pertaining to CML in India for the period of 1990 to 2016, using PubMed advanced search with the terms chronic myeloid leukemia and India, and included studies that reported on epidemiology, monitoring for therapy, treatment outcomes, and resistance. Additionally, the references in retrieved articles were also reviewed. Results Thirty-seven studies were identified. The incidence of CML may be slightly lower in India than in the West, but there was only a single article reporting population-based data. Indian patients presented with more advanced disease. Most centers have access to imatinib as first-line therapy, but there is limited availability of molecular monitoring and second-line therapy. Most of the outcome data were retrospective but seemed comparable with that reported in Western centers. Drug adherence was impaired in at least one third of patients and contributed to poor survival. Conclusion Focused prospective studies and cooperative studies might improve the quality of data available. Future studies should focus on adherence, its effects on outcomes, and methods to address this problem.
Collapse
Affiliation(s)
- Prasanth Ganesan
- , Cancer Institute (WIA), Chennai; and , All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- , Cancer Institute (WIA), Chennai; and , All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Bandyopadhyay S, Li J, Traer E, Tyner JW, Zhou A, Oh ST, Cheng JX. Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One 2017; 12:e0179558. [PMID: 28719608 PMCID: PMC5515395 DOI: 10.1371/journal.pone.0179558] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Since the advent of tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, and dasatinib, chronic myelogenous leukemia (CML) prognosis has improved greatly. However, ~30-40% of patients develop resistance to imatinib therapy. Although most resistance is caused by mutations in the BCR-ABL kinase domain, 50-85% of these patients develop resistance in the absence of new mutations. In these cases, targeting other pathways may be needed to regain clinical response. Using label-free Raman spectromicroscopy, we evaluated a number of leukemia cell lines and discovered an aberrant accumulation of cholesteryl ester (CE) in CML, which was found to be a result of BCR-ABL kinase activity. CE accumulation in CML was found to be a cancer-specific phenomenon as untransformed cells did not accumulate CE. Blocking cholesterol esterification with avasimibe, a potent inhibitor of acyl-CoA cholesterol acyltransferase 1 (ACAT-1), significantly suppressed CML cell proliferation in Ba/F3 cells with the BCR-ABLT315I mutation and in K562 cells rendered imatinib resistant without mutations in the BCR-ABL kinase domain (K562R cells). Furthermore, the combination of avasimibe and imatinib caused a profound synergistic inhibition of cell proliferation in K562R cells, but not in Ba/F3T315I. This synergistic effect was confirmed in a K562R xenograft mouse model. Analysis of primary cells from a BCR-ABL mutation-independent imatinib resistant patient by mass cytometry suggested that the synergy may be due to downregulation of the MAPK pathway by avasimibe, which sensitized the CML cells to imatinib treatment. Collectively, these data demonstrate a novel strategy for overcoming BCR-ABL mutation-independent TKI resistance in CML.
Collapse
MESH Headings
- Acetamides
- Acetates/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cholesterol/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Esterification/drug effects
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/drug effects
- Mice
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Sulfonamides
- Sulfonic Acids/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
47
|
Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmgenomics Pers Med 2017; 10:169-181. [PMID: 28546766 PMCID: PMC5438075 DOI: 10.2147/pgpm.s105208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs) that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T) of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
48
|
Impact of ibrutinib dose adherence on therapeutic efficacy in patients with previously treated CLL/SLL. Blood 2017; 129:2612-2615. [PMID: 28373262 DOI: 10.1182/blood-2016-12-737346] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib, an oral inhibitor of Bruton's tyrosine kinase (BTK), at a once-daily dose of 420 mg achieved BTK active-site occupancy in patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) that was maintained at 24 hours. It is unknown if intermittent interruption of ibrutinib therapy contributes to altered clinical outcomes. We therefore evaluated the effect of ibrutinib dose adherence on patient outcomes in the phase 3 RESONATE trial. The overall mean dose intensity (DI) was 95% with median treatment duration of ∼9 months. Pharmacokinetic assessment of ibrutinib exposure at 420-mg dose suggested similar exposure regardless of patient weight or age. As assessed by independent review committee, patients with higher DI experienced longer median progression-free survival (PFS) compared with those with lower DI regardless of del17p and/or TP53 status. Of 79 patients requiring a drug hold, treatment was restarted at the original dose in 73 (92%) patients. Mean duration of a missed-dose event was 18.7 days (range, 8-56). Patients missing ≥8 consecutive days of ibrutinib had a shorter median PFS vs those missing <8 days (10.9 months vs not reached). These results support sustained adherence to once-daily ibrutinib dosing at 420 mg as clinically feasible to achieve optimal outcomes in patients with previously treated CLL. The trial was registered at www.clinicaltrials.gov as #NCT01578707.
Collapse
|
49
|
Akram AM, Iqbal Z, Akhtar T, Khalid AM, Sabar MF, Qazi MH, Aziz Z, Sajid N, Aleem A, Rasool M, Asif M, Aloraibi S, Aljamaan K, Iqbal M. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression. Cancer Biol Ther 2017; 18:214-221. [PMID: 28278078 DOI: 10.1080/15384047.2017.1294289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BCR-ABL kinase domain (KD) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-KD mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-KD. Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-KD mutation screening in late chronic phase CML patients for improved clinical management of disease.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- a Institute of Molecular Biology and Biotechnology, The University of Lahore , Lahore , Pakistan.,b Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories , Department of Zoology, University of the Punjab , Lahore , Pakistan
| | - Zafar Iqbal
- b Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories , Department of Zoology, University of the Punjab , Lahore , Pakistan.,c Cancer and Medical Genetics, CAMS-A, King Saud Bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs , Al Ahsa , Saudi Arabia
| | - Tanveer Akhtar
- b Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories , Department of Zoology, University of the Punjab , Lahore , Pakistan
| | - Ahmed Mukhtar Khalid
- a Institute of Molecular Biology and Biotechnology, The University of Lahore , Lahore , Pakistan
| | - Muhammad Farooq Sabar
- d Centre for Applied Molecular Biology (CAMB), University of the Punjab , Lahore , Pakistan
| | - Mahmood Hussain Qazi
- a Institute of Molecular Biology and Biotechnology, The University of Lahore , Lahore , Pakistan
| | - Zeba Aziz
- e Department of Oncology , Hameed Latif Hospital , Lahore , Pakistan
| | - Nadia Sajid
- f Department of Hematology and Oncology , Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Aamer Aleem
- g College of Medicine and King Khalid University Hospital, King Saud University , Riyadh , Saudi Arabia
| | - Mahmood Rasool
- h Centre of Excellence in Genomic Medicine Research, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Muhammad Asif
- i Department of Biotechnology , Office of Research Innovation and Commercialization, Balochistan University of Information Technology, Engineering and Management Sciences , Quetta , Pakistan
| | - Saleh Aloraibi
- j College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard- Health Affairs , Riyadh , Saudi Arabia
| | - Khaled Aljamaan
- k Division of Pediatric Hematology/Oncology, Department of Oncology/King Saud Bin Abdulaziz University for Health Sciences , King Abdulaziz Medical City, National Guard Health Affairs , Riyadh , Saudi Arabia
| | - Mudassar Iqbal
- b Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories , Department of Zoology, University of the Punjab , Lahore , Pakistan.,l Asian Medical Institute, Kant City, & National Surgical Centre , Bishkek , Kyrgyzstan
| |
Collapse
|
50
|
James AR, Unnikrishnan BS, Priya R, Joseph MM, Manojkumar TK, Raveendran Pillai K, Shiji R, Preethi GU, Kusumakumary P, Sreelekha TT. Computational and mechanistic studies on the effect of galactoxyloglucan: Imatinib nanoconjugate in imatinib resistant K562 cells. Tumour Biol 2017; 39:1010428317695946. [DOI: 10.1177/1010428317695946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Imatinib mesylate, a BCR/ABL fusion protein inhibitor, is the first-line treatment against chronic myelogenous leukemia. In spite of its advantageous viewpoints, imatinib still has genuine impediments like undesirable side effects and tumor resistance during chemotherapy. Nanoparticles with sustainable release profile will help in targeted delivery of anticancer drugs while minimizing deleterious side effects and drug resistance. The use of biopolymers like galactoxyloglucan (PST001) for the fabrication of imatinib mesylate nanoparticles could impart its use in overcoming multidrug resistance in chronic myelogenous leukemia patients with minimal side effects. This study involved in the synthesis of PST-Imatinib nanoconjugates with appreciable drug payload and excellent cytotoxicity against drug-resistant chronic myelogenous leukemia cell line (K562) in comparison with free drug. The use of bioinformatics tool revealed better binding affinity for the drug–polysaccharide complex than the drug alone with three proteins: 3QX3 (Topoisomerase), 1M17 (EGFR tyrosine kinase domain), and 3QRJ (ABL1 kinase domain). Assessment of the biochemical, hematological, and histopathological parameters in mice upheld the security and adequacy of the nanoconjugate compared to free drug. Although perspective investigations are warranted, in a condition like drug resistance in leukemia, this nanoconjugate would display a productive approach in cancer therapeutics.
Collapse
Affiliation(s)
- Alphy Rose James
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - BS Unnikrishnan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - R Priya
- Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram, India
| | - Manu M Joseph
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
- Chemical Sciences & Technology Division (CSTD), CSIR – National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - TK Manojkumar
- Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram, India
| | - K Raveendran Pillai
- Clinical Laboratory Services, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - R Shiji
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - GU Preethi
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - P Kusumakumary
- Division of Pediatric Oncology, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| | - TT Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, India
| |
Collapse
|