1
|
Feige T, Bosbach A, Krott KJ, Mulorz J, Chatterjee M, Ortscheid J, Krüger E, Krüger I, Salehzadeh N, Goebel S, Ibing W, Grandoch M, Münch G, Wagenhäuser MU, Schelzig H, Elvers M. GP VI-Mediated Platelet Activation and Procoagulant Activity Aggravate Inflammation and Aortic Wall Remodeling in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2024; 44:2294-2317. [PMID: 39206542 DOI: 10.1161/atvbaha.123.320615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Platelets play an important role in cardiovascular and cerebrovascular diseases. Abdominal aortic aneurysm (AAA) is a highly lethal, atherosclerosis-related disease with characteristic features of progressive dilatation of the abdominal aorta and degradation of the vessel wall, accompanied by chronic inflammation. Platelet activation and procoagulant activity play a decisive role in the AAA pathology as they might trigger AAA development in both mice and humans. METHODS The present study investigated the impact of the major platelet collagen receptor GP (platelet glycoprotein) VI in pathophysiological processes underlying AAA initiation and progression. For experimental AAA induction in mice, PPE (porcine pancreatic elastase) and the external PPE model were used. RESULTS Genetic deletion of GP VI offered protection of mice against aortic diameter expansion in experimental AAA. Mechanistically, GP VI deficiency resulted in decreased inflammation with reduced infiltration of neutrophils and platelets into the aortic wall. Furthermore, remodeling of the aortic wall was improved in the absence of GP VI, as indicated by reduced MMP (matrix metalloproteinase)-2/9 and OPN (osteopontin) plasma levels and an enhanced α-SMA (α-smooth muscle actin) content within the aortic wall, accompanied by reduced cell apoptosis. Consequently, an elevation in intima/media thickness and elastin content was observed in GP VI-deficient PPE mice, resulting in a significantly reduced aortic diameter expansion and reduced aneurysm incidence. In patients with AAA, enhanced plasma levels of soluble GP VI and fibrin, as well as fibrin accumulation within the intraluminal thrombus might serve as new biomarkers to detect AAA early. Moreover, we hypothesize that GP VI might play a role in procoagulant activity and thrombus stabilization via binding to fibrin. CONCLUSIONS In conclusion, our results emphasize the potential need for a GP VI-targeted antiplatelet therapy to reduce AAA initiation and progression, as well as to protect patients with AAA from aortic rupture.
Collapse
Affiliation(s)
- Tobias Feige
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Agnes Bosbach
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Kim J Krott
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Joscha Mulorz
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Madhumita Chatterjee
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tuebingen, Germany (M.C.)
| | - Julia Ortscheid
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Evelyn Krüger
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Niloofar Salehzadeh
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | | | - Wiebke Ibing
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Maria Grandoch
- Institute of Translational Pharmacology (M.G.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Götz Münch
- AdvanceCOR GmbH, Martinsried, Germany (S.G., G.M.)
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| |
Collapse
|
2
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
3
|
Hosseini E, Solouki A, Haghshenas M, Ghasemzadeh M, Schoenwaelder SM. Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage. Thromb J 2022; 20:3. [PMID: 35022046 PMCID: PMC8756730 DOI: 10.1186/s12959-021-00359-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Continuous agitation during storage slows down the platelet storage lesions. However, in special circumstances, manual-mixing can be alternatively used to store products for short time periods without compromising platelet quality. Based on this finding, and given the role of shear stress in modulating receptor expression, we were interested in comparing the levels of platelet adhesion receptor, GPVI and platelet adhesion capacity under each storage condition. METHODS Platelet concentrates (PCs) were divided into three groups: continuously-agitated PCs (CAG-PCs) with or without PP2 (Src kinase inhibitor) and manually-mixed PCs (MM-PCs). Platelet count/MPV, swirling, GPVI and P-selectin expression, GPVI shedding, platelet adhesion/spreading to collagen were examined during 5 days of storage. RESULTS While MM- and CAG-PCs showed similar levels of P-selectin expression, GPVI expression was significantly elevated in MM-PCs with lower GPVI shedding/expression ratios, enhanced platelet adhesion/spreading and swirling in manually-mixed PCs. Of note, CAG-PCs treated with PP2 also demonstrated lower P-selectin expression and GPVI shedding, higher GPVI expression and attenuated swirling and spreading capability. CONCLUSION Given the comparable platelet activation state in MM and CAG-PCs as indicated by P-selectin expression, enhanced platelet adhesion/spreading in MM-PCs, along with relatively higher GPVI expression here, supports previous studies demonstrating a role for biomechanical forces in modulating GPVI-dependent function. Thus, lower GPVI expression in CAG-PCs may be due to shear forces induced by agitation, which keeps this receptor down-regulated while also attenuating platelet adhesion/spreading capacities during storage. Low platelet function in PP2-CAG-PCs also highlights the importance of Src-kinases threshold activity in maintaining platelets quality.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amin Solouki
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masood Haghshenas
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Simone M Schoenwaelder
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
4
|
Kastelowitz N, Tamura R, Onasoga A, Stalker TJ, White OR, Brown PN, Brodsky GL, Brass LF, Branchford BR, Di Paola J, Yin H. Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Sci Rep 2017; 7:4275. [PMID: 28655899 PMCID: PMC5487340 DOI: 10.1038/s41598-017-04494-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
Blood coagulation involves activation of platelets and coagulation factors. At the interface of these two processes resides the lipid phosphatidylserine. Activated platelets expose phosphatidylserine on their outer membrane leaflet and activated clotting factors assemble into enzymatically active complexes on the exposed lipid, ultimately leading to the formation of fibrin. Here, we describe how small peptide and peptidomimetic probes derived from the lipid binding domain of the protein myristoylated alanine-rich C-kinase substrate (MARCKS) bind to phosphatidylserine exposed on activated platelets and thereby inhibit fibrin formation. The MARCKS peptides antagonize the binding of factor Xa to phosphatidylserine and inhibit the enzymatic activity of prothrombinase. In whole blood under flow, the MARCKS peptides colocalize with, and inhibit fibrin cross-linking, of adherent platelets. In vivo, we find that the MARCKS peptides circulate to remote injuries and bind to activated platelets in the inner core of developing thrombi.
Collapse
Affiliation(s)
- Noah Kastelowitz
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ryo Tamura
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Abimbola Onasoga
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ormacinda R White
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Peter N Brown
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Gary L Brodsky
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian R Branchford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Hang Yin
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
5
|
Flebus L, Lombart F, Martinez-Jothar L, Sevrin C, Delierneux C, Oury C, Grandfils C. In vitro study of the specific interaction between poly(2-dimethylamino ethylmethacrylate) based polymers with platelets and red blood cells. Int J Pharm 2015; 492:55-64. [PMID: 26136199 DOI: 10.1016/j.ijpharm.2015.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 01/24/2023]
Abstract
Poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) is an attractive polycation frequently proposed as a non-viral vector for gene therapy. As expected for other cationic carriers, intravenous administration of PDMAEMA can result in its ionic complexation with various negatively charged domains found within the blood. To gain more insight into this polycation hemoreactivity, we followed the binding kinetics of a free form (FF) of fluorescein labelled PDMAEMA (Mn below 15 kDa) in normal human blood using flow cytometry. This in vitro study highlighted that platelets display higher affinity for this polycation compared to red blood cells (RBCs), with an adsorption isotherm characteristics of a specific saturable binding site. PDMAEMA (1-20 μg/mL) exerted a concentration dependent proaggregant effect with a biphasic aggregation of washed platelets. Activation of platelets was also noticed in whole blood with the expression of P-selectin and fibrinogen on platelet surface. Although additional studies would be needed in order to elucidate the mechanism of PDMAEMA mediated activation of platelets, our manuscript provides important information on the hemoreactivity of FF PDMAEMA.
Collapse
Affiliation(s)
- Luca Flebus
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - François Lombart
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Lucía Martinez-Jothar
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Chantal Sevrin
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Céline Delierneux
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Belgium.
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Belgium.
| | - Christian Grandfils
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| |
Collapse
|
6
|
Boulaftali Y, Hess PR, Kahn ML, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 2014; 114:1174-84. [PMID: 24677237 PMCID: PMC4000726 DOI: 10.1161/circresaha.114.301611] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/18/2014] [Indexed: 01/27/2023]
Abstract
Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.
Collapse
Affiliation(s)
- Yacine Boulaftali
- From the McAllister Heart Institute (Y.B., W.B.) and Department of Biochemistry and Biophysics (W.B.), University of North Carolina, Chapel Hill; and Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia (P.R.H., M.L.K.)
| | | | | | | |
Collapse
|
7
|
Liu F, Gamez G, Myers DR, Clemmons W, Lam WA, Jobe SM. Mitochondrially mediated integrin αIIbβ3 protein inactivation limits thrombus growth. J Biol Chem 2013; 288:30672-30681. [PMID: 24014035 PMCID: PMC3798537 DOI: 10.1074/jbc.m113.472688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
When platelets are strongly stimulated, a procoagulant platelet subpopulation is formed that is characterized by phosphatidylserine (PS) exposure and epitope modulation of integrin αIIbβ3 or a loss of binding of activation-dependent antibodies. Mitochondrial permeability transition pore (mPTP) formation, which is essential for the formation of procoagulant platelets, is impaired in the absence of cyclophilin D (CypD). Here we investigate the mechanisms responsible for these procoagulant platelet-associated changes in integrin αIIbβ3 and the physiologic role of procoagulant platelet formation in the regulation of platelet aggregation. Among strongly stimulated adherent platelets, integrin αIIbβ3 epitope changes, mPTP formation, PS exposure, and platelet rounding were closely associated. Furthermore, platelet mPTP formation resulted in a decreased ability to recruit additional platelets. In the absence of CypD, integrin αIIbβ3 function was accentuated in both static and flow conditions, and, in vivo, a prothrombotic phenotype occurred in mice with a platelet-specific deficiency of CypD. CypD-dependent proteolytic events, including cleavage of the integrin β3 cytoplasmic domain, coincided closely with integrin αIIbβ3 inactivation. Calpain inhibition blocked integrin β3 cleavage and inactivation but not mPTP formation or PS exposure, indicating that integrin inactivation and PS exposure are mediated by distinct pathways subsequent to mPTP formation. mPTP-dependent alkalinization occurred in procoagulant platelets, suggesting a possible alternative mechanism for enhancement of calpain activity in procoagulant platelets. Together, these results indicate that, in strongly stimulated platelets, mPTP formation initiates the calpain-dependent cleavage of integrin β3 and associated regulatory proteins, resulting in integrin αIIbβ3 inactivation, and demonstrate a novel CypD-dependent negative feedback mechanism that limits platelet aggregation and thrombotic occlusion.
Collapse
Affiliation(s)
- Fang Liu
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graciela Gamez
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David R Myers
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and
| | - Wayne Clemmons
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Wilbur A Lam
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| | - Shawn M Jobe
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
8
|
Abstract
Platelets contribute to hemostasis by forming the platelet plug and then contributing to coagulation by providing a catalytic surface where thrombin generation occurs efficiently. This catalytic activity, known as the platelet procoagulant response, is being recognized as a nuanced response. This review examines platelets’ response to strong stimuli, which results in the formation of a platelet subpopulation (superactivated platelets) with several unique properties, including enhanced procoagulant activity. These platelets contribute uniquely to thrombus architecture and seem to have thrombus regulatory activity. Superactivated platelets’ role in diseases of thrombosis and hemostasis, as either potentiating or mitigating factors, is not currently known, but may be an important pharmacological target.
Collapse
Affiliation(s)
- Marshall Mazepa
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Maureane Hoffman
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Dougald Monroe
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| |
Collapse
|
9
|
Platelet biogenesis and functions require correct protein O-glycosylation. Proc Natl Acad Sci U S A 2012; 109:16143-8. [PMID: 22988088 DOI: 10.1073/pnas.1208253109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Platelets express a variety of membrane and secreted glycoproteins, but the importance of glycosylation to platelet functions is poorly understood. To explore the importance of O-glycosylation, we generated mice with a targeted deletion of Cosmc in murine endothelial/hematopoietic cells (EHC) (EHC Cosmc(-/y)). X-linked Cosmc encodes an essential chaperone that regulates protein O-glycosylation. This targeted mutation resulted in lethal perinatal hemorrhage in the majority of mice, and the surviving mice displayed severely prolonged tail-bleeding times and macrothrombocytopenia. EHC Cosmc(-/y) platelets exhibited a marked decrease in GPIb-IX-V function and agonist-mediated integrin αIIbβ3 activation, associated with loss of interactions with von Willebrand factor and fibrinogen, respectively. Significantly, three O-glycosylated glycoproteins, GPIbα, αIIb, and GPVI normally on platelet surfaces that play essential roles in platelet functions, were partially proteolyzed in EHC Cosmc(-/y) platelets. These results demonstrate that extended O-glycans are required for normal biogenesis of the platelets as well as the expression and functions of their essential glycoproteins, and that variations in O-glycosylation may contribute to altered hemostasis.
Collapse
|
10
|
Niu H, Xu Z, Li D, Zhang L, Wang K, Taylor DB, Liu J, Gartner TK. Peptide LSARLAF induces integrin β3 dependent outside-in signaling in platelets. Thromb Res 2012; 130:203-9. [PMID: 22482832 DOI: 10.1016/j.thromres.2012.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/22/2012] [Accepted: 03/03/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Peptide LSARLAF (LSA) can bind and activate integrin αIIbβ3 in the absence of 'inside-out' signal. The active αIIbβ3 mediates 'outside-in' signaling that elicits platelet aggregation, granule secretion and TxA2 production. Here we identify the membrane glycoproteins which mediate LSA-induced platelet activation other than αIIbβ3, and determine the roles of Src, PLCγ2, FcRγ-chain, and SLP-76 in LSA-induced platelet activation. METHOD Ligand-receptor binding assay was performed to study the effect of peptide LSA or its control peptide FRALASL (FRA) on integrins binding to their ligands. Spreading of CHO cells expressing αIIbβ3 or αVβ3 on immobilized fibrinogen was measured in the presence of LSA or FRA. Washed β3, Src, FcRγ-chain, LAT and SLP-76 deficient platelets aggregation and secretion were tested in response to LSA. RESULTS Ligand-receptor binding assay indicated that LSA promoted the binding of multiple ligands to αIIbβ3 or αVβ3. LSA also enhanced CHO cells with αIIbβ3 or αVβ3 expression spreading on immobilized fibrinogen. β3 deficient platelets failed to aggregate and secrete in response to LSA. The phosphorylation of PLCγ2 and Syk was also β3 dependent. Src, FcRγ-chain, LAT and SLP-76 deficient platelets did not aggregate, secrete ATP or produce TxA2 in response to LSA. CONCLUSION LSA-induced platelet activation is β3 dependent, and signaling molecules Src, FcRγ-chain, SLP-76 and LAT play crucial roles in LSA-induced β3 mediated signaling.
Collapse
Affiliation(s)
- Haixia Niu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbα N-terminal extracellular domain. Blood 2010; 116:1157-64. [DOI: 10.1182/blood-2010-01-266080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Activated platelets become procoagulant and efficiently promote the conversion of prothrombin to thrombin. A role of the GPIb-V-IX complex has long been postulated in view of the decreased prothrombin consumption in Bernard-Soulier patients. We evaluated the impact of GPIb-V-IX deficiency and the requirement for the GPIbα extracellular domain. In GPIbβ−/− mice, thrombin generation was profoundly decreased in tissue factor– or collagen-related peptide (CRP)–activated platelet-rich plasma and in washed platelets supplemented with normal plasma or with FVa, FXa, and prothrombin. Phosphatidylserine (PS) exposure was similarly decreased in response to thrombin, CRP, or CRP + PAR4 peptide despite a normal platelet phospholipid composition. The hypothesis that these defects originate from lack of the GPIbα N-terminal domain was evaluated after its removal from normal mouse and human platelets with Nk protease or O-sialoglycoprotein endopeptidase. Unexpectedly, the treated platelets exhibited normal thrombin generation and PS exposure, indicating that GPIb-V-IX regulates procoagulant activity independently of its GPIbα-binding region. These results suggested a more general structuring role through intracellular cytoskeleton-anchoring portions regulating responses leading to PS exposure. This hypothesis was supported by the decreased calcium mobilization observed in GPIbβ−/− platelets in response to several agonists, some acting independently of GPIb, in contrast to the normal calcium responses in Nk protease–treated platelets.
Collapse
|
12
|
Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 2008; 111:1257-65. [PMID: 17989312 PMCID: PMC2214770 DOI: 10.1182/blood-2007-05-092684] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/27/2007] [Indexed: 02/02/2023] Open
Abstract
Many of the cellular responses that occur in activated platelets resemble events that take place following activation of cell-death pathways in nucleated cells. We tested the hypothesis that formation of the mitochondrial permeability transition pore (MPTP), a key signaling event during cell death, also plays a critical role in platelet activation. Stimulation of murine platelets with thrombin plus the glycoprotein VI agonist convulxin resulted in a rapid loss of mitochondrial transmembrane potential (Deltapsi(m)) in a subpopulation of activated platelets. In the absence of cyclophilin D (CypD), an essential regulator of MPTP formation, murine platelet activation responses were altered. CypD-deficient platelets exhibited defects in phosphatidylserine externalization, high-level surface fibrinogen retention, membrane vesiculation, and procoagulant activity. Also, in CypD-deficient platelet-rich plasma, clot retraction was altered. Stimulation with thrombin plus H(2)O(2), a known activator of MPTP formation, also increased high-level surface fibrinogen retention, phosphatidylserine externalization, and platelet procoagulant activity in a CypD-dependent manner. In a model of carotid artery photochemical injury, thrombosis was markedly accelerated in CypD-deficient mice. These results implicate CypD and the MPTP as critical regulators of platelet activation and suggest a novel CypD-dependent negative-feedback mechanism regulating arterial thrombosis.
Collapse
Affiliation(s)
- Shawn M Jobe
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dayal S, Wilson KM, Leo L, Arning E, Bottiglieri T, Lentz SR. Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 2006; 108:2237-43. [PMID: 16804115 PMCID: PMC1895559 DOI: 10.1182/blood-2006-02-005991] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperhomocysteinemia is a risk factor for thrombosis, but the mechanisms are not well defined. We tested the hypothesis that hyperhomocysteinemia accelerates arterial thrombosis in mice. Mice heterozygous for a targeted disruption of the cystathionine beta-synthase gene (Cbs+/-) and wild-type littermates (Cbs+/+) were fed either a control diet or a high methionine/low folate (HM/LF) diet for 6 to 8 months to produce graded hyperhomocysteinemia. The time to occlusion of the carotid artery after photochemical injury was shortened by more than 50% in Cbs+/+ or Cbs+/- mice fed the HM/LF diet (P < .001 versus control diet). Carotid artery thrombosis was not accelerated in mice deficient in endothelial nitric oxide synthase (Nos3), which suggests that decreased endothelium-derived nitric oxide is not a sufficient mechanism for enhancement of thrombosis. Cbs+/+ and Cbs+/- mice fed the HM/LF diet had elevated levels of reactive oxygen species in the carotid artery, increased aortic expression of the NADPH oxidase catalytic subunit, Nox4, and decreased activation of anticoagulant protein C in the aorta (P < .05 versus control diet). We conclude that hyperhomocysteinemia enhances susceptibility to arterial thrombosis through a mechanism that is not caused by loss of endothelium-derived nitric oxide but may involve oxidative stress and impairment of the protein C anticoagulant pathway.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, C32 GH, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yen A, Varvayanis S, Smith JL, Lamkin TJ. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells. Eur J Cell Biol 2005; 85:117-32. [PMID: 16439309 DOI: 10.1016/j.ejcb.2005.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Differentiation/drug effects
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/physiology
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- Immunoprecipitation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/physiopathology
- Mutation
- Paxillin/genetics
- Paxillin/physiology
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphorylation
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/physiology
- Receptors, Antigen, T-Cell/physiology
- Resting Phase, Cell Cycle/drug effects
- Signal Transduction
- Superoxides/metabolism
- Transfection
- Tretinoin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Andrew Yen
- Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Coated-platelets, formerly known as COAT-platelets, represent a subpopulation of cells observed after dual agonist stimulation of platelets with collagen and thrombin. This class of platelets retains on its surface high levels of several procoagulant proteins, including fibrinogen, von Willebrand factor, fibronectin, factor V and thrombospondin. Coated-platelets also express surface phosphatidylserine and strongly support prothrombinase activity. Retention of alpha-granule proteins on the surface of coated-platelets involves an unexpected derivatization of these proteins with serotonin and an interaction of serotonin-conjugated proteins with serotonin binding sites on fibrinogen and thrombospondin. This review will also detail experimental systems where coated-platelets are generated as a result of other agonist(s). Finally, the putative physiological consequences of coated-platelet formation will be discussed.
Collapse
Affiliation(s)
- G L Dale
- W.K. Warren Medical Research Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Jobe SM, Leo L, Eastvold JS, Dickneite G, Ratliff TL, Lentz SR, Di Paola J. Role of FcRgamma and factor XIIIA in coated platelet formation. Blood 2005; 106:4146-51. [PMID: 16105983 PMCID: PMC1895237 DOI: 10.1182/blood-2005-03-1223] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet activation in response to dual stimulation with collagen and thrombin results in the formation of a subpopulation of activated platelets known as coated platelets. Coated platelets are characterized by high surface levels of alpha-granule proteins and phosphatidylserine, which support the assembly of procoagulant protein complexes. Using murine models, we tested the hypothesis that the collagen receptor-associated molecule FcRgamma and the transglutaminase factor XIIIA are required for the formation of coated platelets. Following dual stimulation with the collagen receptor agonist convulxin and thrombin, 68% of platelets from C57BL/6 mice acquired the coated platelet phenotype, defined by high surface levels of fibrinogen and von Willebrand factor and decreased binding of the alphaIIbbeta3 activation-dependent antibody PE-JON/A. In FcRgamma-/- mice, only 10% of platelets became "coated" after dual stimulation with convulxin plus thrombin (P < .05 vs C57BL/6 platelets). Decreased coated platelet formation in FcRgamma-/- platelets was accompanied by decreased annexin V binding (P < .01) and decreased platelet procoagulant activity (P < .05). Platelets from FXIIIA-/- mice did not differ from control platelets in coated platelet formation or annexin V binding. We conclude that FcRgamma, but not factor XIIIA, is essential for formation of highly procoagulant coated platelets following dual stimulation with collagen and thrombin.
Collapse
Affiliation(s)
- Shawn M Jobe
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Keuren JFW, Wielders SJH, Ulrichts H, Hackeng T, Heemskerk JWM, Deckmyn H, Bevers EM, Lindhout T. Synergistic Effect of Thrombin on Collagen-Induced Platelet Procoagulant Activity Is Mediated Through Protease-Activated Receptor-1. Arterioscler Thromb Vasc Biol 2005; 25:1499-505. [PMID: 15845904 DOI: 10.1161/01.atv.0000167526.31611.f6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In the blood coagulation process, the rate of thrombin formation is critically dependent on phosphatidylserine (PtdSer) at the surface of activated platelets. Thrombin synergistically enhances the collagen-induced platelet procoagulant response. The objective of this study is to elucidate the mechanism of this synergistic action with a focus on the intracellular Ca2+ concentration ([Ca2+]i) and the various platelet receptors for thrombin. METHODS AND RESULTS We demonstrate that procoagulant activity is related to a sustained increased [Ca2+]i, which in turn depends on extracellular Ca2+ influx. Increased PtdSer exposure coincides with increased [Ca2+]i and was observed in a subpopulation (approximately 14%) of the platelets after stimulation with thrombin plus collagen. 2D2-Fab fragments against the thrombin binding site on GPIbalpha made clear that this receptor did not signal for platelet procoagulant activity. Inhibition of protease-activated receptor 1 (PAR-1) and PAR-4 by selective intracellular inhibitors and selective desensitization of these receptors revealed that PAR-1, but not PAR-4, activation is a prerequisite for both sustained elevations in [Ca2+]i and procoagulant activity induced by collagen plus thrombin. CONCLUSIONS The interaction of thrombin with PAR-1 mediates a synergistic effect on collagen-induced procoagulant activity by inducing a sustained elevation in [Ca2+]i in a subpopulation of platelets.
Collapse
|
18
|
Abstract
Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.
Collapse
Affiliation(s)
- Jonathan M Gibbins
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK.
| |
Collapse
|
19
|
Fry MM, Walker NJ, Blevins GM, Magdesian K, Tablin F. Platelet Function Defect in a Thoroughbred Filly. J Vet Intern Med 2005. [DOI: 10.1111/j.1939-1676.2005.tb02709.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Abstract
OBJECTIVE Previous work has shown that platelets stimulated with the combination of thrombin and convulxin, a glycoprotein VI agonist, develop 2 populations with different levels of alpha-granule factor V bound to the platelet surface. To evaluate whether this phenomenon is restricted to alpha-granule components or is a feature that can be generalized to other coagulation factors, we studied the binding of factors V, VIII, IX, and X on the surface of platelets stimulated by convulxin and thrombin. METHODS AND RESULTS The relative amount of factors V, VIII, IX, and X on the surface of platelets stimulated with thrombin or convulxin plus thrombin was measured using flow cytometry. Simultaneous measurements of factor Xa and thrombin generation were obtained and correlated with the binding of coagulation factors on the platelet surface. The binding of factors V, VIII, IX, and X all increased on a subpopulation of platelets when stimulated with the combined agonists. The development of this platelet subpopulation is dependent on convulxin concentration and correlates with increases in factor Xa and thrombin generation. CONCLUSIONS The development of increased coagulation factor binding to a subpopulation of platelets is not limited to alpha-granule components. Convulxin-induced increases in thrombin generation are regulated by the proportion of platelets with increased coagulation factor binding.
Collapse
|
21
|
Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2005; 53:210-30. [PMID: 15647627 DOI: 10.2302/kjm.53.210] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of circulating cell-derived microparticles (MP) is becoming more refined and clinically useful. This review, stemming from lectures given at Tokyo late 2003, does not repeat prior reviews but focuses on new horizons. A major theme is the rising recognition of platelets and their MP (PMP) as key mediators of inflammation/immunity. Among the major concepts developed are that (i) many so-called soluble markers of inflammation are in reality MP-bound; (ii) PMP and other MP appear to serve important signaling and immune functions including antigen presentation. In conclusion, MP analysis is poised to enter the mainstream of clinical testing, measuring specific antigens rather than gross levels. However, more research is needed to decisively establish their functions, and international standards are needed to allow comparing results from different laboratories.
Collapse
Affiliation(s)
- Lawrence L Horstman
- The Wallace H Coulter Platelet Laboratory, University of Miami Medical Center, FL 33136, USA
| | | | | | | | | |
Collapse
|