1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Wang Y, Wang Q, Xu Q, Li J, Zhao F. Single-cell RNA sequencing analysis dissected the osteo-immunology microenvironment and revealed key regulators in osteoporosis. Int Immunopharmacol 2022; 113:109302. [DOI: 10.1016/j.intimp.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
3
|
Folate Receptor β (FRβ) Expression in Tissue-Resident and Tumor-Associated Macrophages Associates with and Depends on the Expression of PU.1. Cells 2020; 9:cells9061445. [PMID: 32532019 PMCID: PMC7349916 DOI: 10.3390/cells9061445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
As macrophages exhibit a huge functional plasticity under homeostasis and pathological conditions, they have become a therapeutic target for chronic inflammatory diseases. Hence, the identification of macrophage subset-specific markers is a requisite for the development of macrophage-directed therapeutic interventions. In this regard, the macrophage-specific Folate Receptor β (FRβ, encoded by the FOLR2 gene) has been already validated as a target for molecular delivery in cancer as well as in macrophage-targeting therapeutic strategies for chronic inflammatory pathologies. We now show that the transcriptome of human macrophages from healthy and inflamed tissues (tumor; rheumatoid arthritis, RA) share a significant over-representation of the “anti-inflammatory gene set”, which defines the gene profile of M-CSF-dependent IL-10-producing human macrophages (M-MØ). More specifically, FOLR2 expression has been found to strongly correlate with the expression of M-MØ-specific genes in tissue-resident macrophages, tumor-associated macrophages (TAM) and macrophages from inflamed synovium, and also correlates with the presence of the PU.1 transcription factor. In fact, PU.1-binding elements are found upstream of the first exon of FOLR2 and most M-MØ-specific- and TAM-specific genes. The functional relevance of PU.1 binding was demonstrated through analysis of the proximal regulatory region of the FOLR2 gene, whose activity was dependent on a cluster of PU.1-binding sequences. Further, siRNA-mediated knockdown established the importance of PU.1 for FOLR2 gene expression in myeloid cells. Therefore, we provide evidence that FRβ marks tissue-resident macrophages as well as macrophages within inflamed tissues, and its expression is dependent on PU.1.
Collapse
|
4
|
Alam C, Kondo M, O'Connor DL, Bendayan R. Clinical Implications of Folate Transport in the Central Nervous System. Trends Pharmacol Sci 2020; 41:349-361. [PMID: 32200980 DOI: 10.1016/j.tips.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
5
|
Shade DC, Park HJ, Hausman DB, Hohos N, Meagher RB, Kauwell GPA, Kilaru V, Lewis RD, Smith AK, Bailey LB. DNA Methylation Changes in Whole Blood and CD16+ Neutrophils in Response to Chronic Folic Acid Supplementation in Women of Childbearing Age. INT J VITAM NUTR RES 2018; 87:271-278. [PMID: 30499755 DOI: 10.1024/0300-9831/a000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Folate, a water-soluble vitamin, is a key source of one-carbon groups for DNA methylation, but studies of the DNA methylation response to supplemental folic acid yield inconsistent results. These studies are commonly conducted using whole blood, which contains a mixed population of white blood cells that have been shown to confound results. The objective of this study was to determine if CD16+ neutrophils may provide more specific data than whole blood for identifying DNA methylation response to chronic folic acid supplementation. The study was performed in normal weight (BMI 18.5 - 24.9 kg/m2) women (18 - 35 y; n = 12), with blood samples taken before and after 8 weeks of folic acid supplementation at 800 μg/day. DNA methylation patterns from whole blood and isolated CD16+ neutrophils were measured across >485,000 CpG sites throughout the genome using the Infinium HumanMethylation450 BeadChip. Over the course of the 8-week supplementation, 6746 and 7513 CpG sites changed (p < 0.05) in whole blood and CD16+ neutrophils, respectively. DNA methylation decreased in 68.4% (whole blood) and 71.8% (CD16+ neutrophils) of these sites. There were only 182 CpG sites that changed in both the whole blood and CD16+ neutrophils, 139 of which changed in the same direction. These results suggest that the genome-wide DNA methylation response to chronic folic acid supplementation is different between whole blood and CD16+ neutrophils and that a single white blood cell type may function as a more specific epigenetic reporter of folate status than whole blood.
Collapse
Affiliation(s)
- Deanna C Shade
- a Co-first authors; these authors contributed equally.,1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Hea Jin Park
- a Co-first authors; these authors contributed equally.,1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Natalie Hohos
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | | - Gail P A Kauwell
- 3 Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Varun Kilaru
- 4 Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Richard D Lewis
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Alicia K Smith
- 4 Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lynn B Bailey
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Minami K, Hiwatashi K, Ueno S, Sakoda M, Iino S, Okumura H, Hashiguchi M, Kawasaki Y, Kurahara H, Mataki Y, Maemura K, Shinchi H, Natsugoe S. Prognostic significance of CD68, CD163 and Folate receptor-β positive macrophages in hepatocellular carcinoma. Exp Ther Med 2018; 15:4465-4476. [PMID: 29731831 PMCID: PMC5920942 DOI: 10.3892/etm.2018.5959] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cluster of differentiation (CD)68 may be used as a pan-macrophage or M1 marker, whereas CD163 may be used as an M2 marker. Furthermore, folate receptor (FR)β exhibits an M2-like functional profile. In the present study, CD68 and CD163 were used to evaluate and classify tumor-associated macrophages (TAMs). The expression of CD68, CD163 and FRβ by TAMs in hepatocellular carcinoma (HCC) Tissues was investigated. Samples from 105 patients with HCC were evaluated using immunohistochemistry. The results revealed that CD68 and CD163 overexpression was associated with a worse prognosis. The number of CD68 positive cells observed was significantly higher in patients with stage IV cancer. Furthermore, an increase in CD68 positive cells was observed in patients with median tumor size ≥3.5 cm and in patients with poorly differentiated HCC. The number of CD163 positive cells was also significantly increased in patients with median tumor size ≥3.5 cm and in those with poorly differentiated HCC. A low CD163/68 ratio was correlated with a worse outcome. The ratio was significantly lower in patients with stage IV cancer, patients with des-gamma-carboxy prothrombin abnormalities, patients with blood vessel infiltration and patients with intrahepatic metastasis. The number of FRβ positive cells was not correlated with clinicopathological features. The results of the present study indicate that overexpression of CD68 and CD163 may be associated with a worse patient outcome. The evaluation of CD68 and CD163 positive cells in a cancer microenvironment is controversial. TAMs are not simply cells with single markers or restricted M1 or M2 phenotypes; they are more diverse and heterogeneous. Further studies are required to determine the cross-interaction between diverse TAMs and the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Minami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kiyokazu Hiwatashi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shinichi Ueno
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masahiko Sakoda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Satoshi Iino
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Okumura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Motoyuki Hashiguchi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroyuki Shinchi
- Department of Health Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
7
|
Zhou Y, Unno K, Hyjek E, Liu H, Zimmerman T, Karmakar S, Putt KS, Shen J, Low PS, Wickrema A. Expression of functional folate receptors in multiple myeloma. Leuk Lymphoma 2018; 59:2982-2989. [PMID: 29616859 DOI: 10.1080/10428194.2018.1453066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Receptor-targeted delivery of imaging and therapeutic agents has emerged as an attractive strategy to diagnosis and treat many diseases including cancer. One of the most well-studied receptors for targeted therapies is the folate receptor (FR) family. FR-α and FR-β are present on many cancers with little expression in normal tissues; leading to the testing of at least six folate-targeted drugs in human clinical trials for various cancers. However, the expression of FR in blood cancers has not been fully explored with no reports of FR expression in myelomas. Herein, we report the expression of both FR-α and FR-β on CD138 + plasma cells isolated from patients with multiple myeloma. In addition, all-trans retinoic acid was shown to increase the levels of FR-α and FR-β in two myeloma cell lines. Altogether, this data suggests that folate-targeted therapies for the treatment of multiple myeloma warrants further investigation.
Collapse
Affiliation(s)
- Ying Zhou
- a Department of Medicine , University of Chicago , Chicago , IL , USA
| | - Kenji Unno
- a Department of Medicine , University of Chicago , Chicago , IL , USA
| | - Elizabeth Hyjek
- b Department of Pathology , University of Chicago , IL , USA
| | - Hui Liu
- a Department of Medicine , University of Chicago , Chicago , IL , USA
| | - Todd Zimmerman
- a Department of Medicine , University of Chicago , Chicago , IL , USA
| | | | - Karson S Putt
- c Institute for Drug Discovery Purdue University , West Lafayette , IN , USA
| | - Jiayin Shen
- d Department of Chemistry , Purdue University , West Lafayette , IN , USA
| | - Philip S Low
- c Institute for Drug Discovery Purdue University , West Lafayette , IN , USA.,d Department of Chemistry , Purdue University , West Lafayette , IN , USA
| | - Amittha Wickrema
- a Department of Medicine , University of Chicago , Chicago , IL , USA
| |
Collapse
|
8
|
Koli S, Mukherjee A, Reddy KVR. Retinoic acid triggers c-kit gene expression in spermatogonial stem cells through an enhanceosome constituted between transcription factor binding sites for retinoic acid response element (RARE), spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1) and E26 transformation-specific (ETS). Reprod Fertil Dev 2018; 29:521-543. [PMID: 28442062 DOI: 10.1071/rd15145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022] Open
Abstract
Restricted availability of retinoic acid (RA) in the testicular milieu regulates transcriptional activity of c-kit (KIT, CD117), which aids in the determination of spermatogonial stem-cell differentiation. The effect of RA on c-kit has been reported previously, but its mode of genomic action remains unresolved. We studied the molecular machinery guiding RA responsiveness to the c-kit gene using spermatogonial stem-cell line C18-4 and primary spermatogonial cells. A novel retinoic acid response element (RARE) positioned at -989 nucleotides upstream of the transcription start site (TSS) was identified, providing a binding site for a dimeric RA receptor (i.e. retinoic acid receptor gamma (RARγ) and retinoic X receptor). RA treatment influenced c-kit promoter activity, along with endogenous c-kit expression in C18-4 cells. A comprehensive promoter deletion assay using the pGL3B reporter system characterised the region spanning -271bp and -1011bp upstream of the TSS, which function as minimal promoter and maximal promoter, respectively. In silico analysis predicted that the region -1011 to +58bp comprised the distal enhancer RARE and activators such as spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1), specificity protein 1 (SP1) and four E26 transformation-specific (ETS) tandem binding sites at the proximal region. Gel retardation and chromatin immunoprecipitation (ChIP) assays showed binding for RARγ, PU.1 and SP1 to the predicted consensus binding sequences, whereas GABPα occupied only two out of four ETS binding sites within the c-kit promoter region. We propose that for RA response, an enhanceosome is orchestrated through scaffolding of a CREB-binding protein (CBP)/p300 molecule between RARE and elements in the proximal promoter region, controlling germ-line expression of the c-kit gene. This study outlines the fundamental role played by RARγ, along with other non-RAR transcription factors (PU.1, SP1 and GABPα), in the regulation of c-kit expression in spermatogonial stem cells in response to RA.
Collapse
Affiliation(s)
- Swanand Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| | - Ayan Mukherjee
- Department of Biological Science, Kent State University, Kent, OH 44240, USA
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| |
Collapse
|
9
|
SETDB1-mediated FosB regulation via ERK2 is associated with an increase in cell invasiveness during anticancer drug treatment of A549 human lung cancer cells. Biochem Biophys Res Commun 2017; 495:512-518. [PMID: 29108991 DOI: 10.1016/j.bbrc.2017.10.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023]
Abstract
We have determined a functional link to the inverse expression of SETDB1 and FosB following anticancer drug treatment. Doxorubicin treatment caused decreased SETDB1 expression and FosB overexpression both at the mRNA and protein levels. The decreased HMTase activity of SETDB1 coincided with altered occupancy across the promoter region of the FosB gene. SETDB1 overexpression decreased the luciferase reporter activity containing the FosB promoter region, but siSETDB1 increased the luciferase reporter activity, suggesting that SETDB1 directly and negatively regulated FosB expression. In addition, MEK inhibitor (PD98059) blocked the SETDB1 regulation of the FosB promoter activity via ERK2 activation during doxorubicin treatment. A microscopic analysis reveals that FosB expression was observed in living cells in spite of doxorubicin treatment. Ectopic FosB/ΔFosB expression increased the number of colonies and the migration of A549 cells compared to that in control. These results suggest that the ERK2-SETDB1-FosB signaling pathway might have an anti-therapeutic regulatory mechanism that increases the transformation and migration activity of cancer cells during anticancer drug treatment.
Collapse
|
10
|
Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, Yan Z, Yu L. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J Hematol Oncol 2017; 10:151. [PMID: 28851445 PMCID: PMC5576380 DOI: 10.1186/s13045-017-0519-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Currently, conventional therapies for acute myeloid leukemia (AML) have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR) T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.
Collapse
Affiliation(s)
- Mingxue Fan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Minghao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Lipeng Gao
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Sicong Geng
- China Novartis Institutes for Biomedical Research Co., Ltd., GDD/TRD/Chemical and Pharmaceutical Profiling, 5F, Building 3, Novartis Campus 4218 Jinke Rd, Zhangjiang Hi-Tech Park Pudong District, Shanghai, 201203, China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, NO. 3663 Zhongshan Road, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
11
|
Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood 2015; 125:3466-76. [PMID: 25887778 DOI: 10.1182/blood-2014-11-612721] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/09/2015] [Indexed: 12/20/2022] Open
Abstract
T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor β (FRβ) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRβ (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRβ as well as endogenous FRβ(+) AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRβ(+) THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRβ expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRβ expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34(+) HSCs in vitro. Our results indicate that FRβ is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA.
Collapse
|
12
|
Kesharwani P, Tekade RK, Jain NK. Generation Dependent Safety and Efficacy of Folic Acid Conjugated Dendrimer Based Anticancer Drug Formulations. Pharm Res 2014; 32:1438-50. [DOI: 10.1007/s11095-014-1549-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
|
13
|
He Y, Tsuei J, Wan YJY. Biological functional annotation of retinoic acid alpha and beta in mouse liver based on genome-wide binding. Am J Physiol Gastrointest Liver Physiol 2014; 307:G205-18. [PMID: 24833708 PMCID: PMC4101682 DOI: 10.1152/ajpgi.00105.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retinoic acid (RA) has diverse biological effects. The liver stores vitamin A, generates RA, and expresses receptors for RA. The current study examines the hepatic binding profile of two RA receptor isoforms, RARA (RARα) and RARB (RARβ), in response to RA treatment in mouse livers. Our data uncovered 35,521, and 14,968 genomic bindings for RARA and RARB, respectively. Each expressed unique and common bindings, implying their redundant and specific roles. RARB has higher RA responsiveness than RARB. RA treatment generated 18,821 novel RARB bindings but only 14,798 of RARA bindings, compared with the control group. RAR frequently bound the consensus hormone response element [HRE; (A/G)G(G/T)TCA], which often contained the motifs assigned to SP1, GABPA, and FOXA2, suggesting potential interactions between those transcriptional factors. Functional annotation coupled with principle component analysis revealed that the function of RAR target genes were motif dependent. Taken together, the cistrome of RARA and RARB revealed their extensive biological roles in the mouse liver. RAR target genes are enriched in various biological processes. The hepatic RAR genome-wide binding data can help us understand the global molecular mechanisms underlying RAR and RA-mediated gene and pathway regulation.
Collapse
Affiliation(s)
| | | | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
14
|
Petronella N, Drouin G. Purifying selection against gene conversions in the folate receptor genes of primates. Genomics 2013; 103:40-7. [PMID: 24184359 DOI: 10.1016/j.ygeno.2013.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/20/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023]
Abstract
We characterized the gene conversions between the human folate receptor (FOLR) genes and those of five other primate species. We found 26 gene conversions having an average length of 534 nucleotides. The length of these conversions is correlated with sequence similarity, converted regions have a higher GC-content and the average size of converted regions from a functional donor to another functional donor is significantly smaller than the average size from a functional donor to a pseudogene. Furthermore, the few conversions observed in the FOLR1 and FOLR2 genes did not change any amino acids in their coding regions and did not affect their promoter regions. In contrast, the promoter and coding regions of the FOLR3 gene are frequently converted and these conversions changed many amino acids in marmoset. These results suggest that purifying selection is limiting the functional impact that frequent gene conversions have on functional folate receptor genes.
Collapse
Affiliation(s)
- Nicholas Petronella
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Guy Drouin
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
15
|
Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15:183-210. [DOI: 10.1016/j.drup.2012.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023]
|
16
|
Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 2011; 117:5092-101. [PMID: 21389328 DOI: 10.1182/blood-2010-09-306993] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
M-CSF favors the generation of folate receptor β-positive (FRβ⁺), IL-10-producing, immunosuppressive, M2-polarized macrophages [M2 (M-CSF)], whereas GM-CSF promotes a proinflammatory, M1-polarized phenotype [M1 (GM-CSF)]. In the present study, we found that activin A was preferentially released by M1 (GM-CSF) macrophages, impaired the acquisition of FRβ and other M2 (M-CSF)-specific markers, down-modulated the LPS-induced release of IL-10, and mediated the tumor cell growth-inhibitory activity of M1 (GM-CSF) macrophages, in which Smad2/3 is constitutively phosphorylated. The contribution of activin A to M1 (GM-CSF) macrophage polarization was evidenced by the capacity of a blocking anti-activin A antibody to reduce M1 (GM-CSF) polarization markers expression while enhancing FRβ and other M2 (M-CSF) markers mRNA levels. Moreover, an inhibitor of activin receptor-like kinase 4/5/7 (ALK4/5/7 or SB431542) promoted M2 (M-CSF) marker expression but limited the acquisition of M1 (GM-CSF) polarization markers, suggesting a role for Smad2/3 activation in macrophage polarization. In agreement with these results, expression of activin A and M2 (M-CSF)-specific markers was oppositely regulated by tumor ascites. Therefore, activin A contributes to the proinflammatory macrophage polarization triggered by GM-CSF and limits the acquisition of the anti-inflammatory phenotype in a Smad2-dependent manner. Our results demonstrate that activin A-initiated Smad signaling skews macrophage polarization toward the acquisition of a proinflammatory phenotype.
Collapse
|
17
|
Puig-Kröger A, Sierra-Filardi E, Domínguez-Soto A, Samaniego R, Corcuera MT, Gómez-Aguado F, Ratnam M, Sánchez-Mateos P, Corbí AL. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 2010; 69:9395-403. [PMID: 19951991 DOI: 10.1158/0008-5472.can-09-2050] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage activation comprises a continuum of functional states critically determined by cytokine microenvironment. Activated macrophages have been functionally grouped according to their response to pro-Th1/proinflammatory stimuli [lipopolysaccharide, IFNgamma, granulocyte macrophage colony-stimulating factor (GM-CSF); M1] or pro-Th2/anti-inflammatory stimuli [interleukin (IL)-4, IL-10, M-CSF; M2]. We report that folate receptor beta (FRbeta), encoded by the FOLR2 gene, is a marker for macrophages generated in the presence of M-CSF (M2), but not GM-CSF (M1), and whose expression correlates with increased folate uptake ability. The acquisition of folate uptake ability by macrophages is promoted by M-CSF, maintained by IL-4, prevented by GM-CSF, and reduced by IFNgamma, indicating a link between FRbeta expression and M2 polarization. In agreement with in vitro data, FRbeta expression is detected in tumor-associated macrophages (TAM), which exhibit an M2-like functional profile and exert potent immunosuppressive functions within the tumor environment. FRbeta is expressed, and mediates folate uptake, by CD163(+) CD68(+) CD14(+) IL-10-producing TAM, and its expression is induced by tumor-derived ascitic fluid and conditioned medium from fibroblasts and tumor cell lines in an M-CSF-dependent manner. These results establish FRbeta as a marker for M2 regulatory macrophage polarization and indicate that folate conjugates of therapeutic drugs are a potential immunotherapy tool to target TAM.
Collapse
Affiliation(s)
- Amaya Puig-Kröger
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu JB, Chen K, Ou XM, Shih JC. Retinoic acid activates monoamine oxidase B promoter in human neuronal cells. J Biol Chem 2009; 284:16723-16735. [PMID: 19401466 DOI: 10.1074/jbc.m901779200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Monoamine oxidase (MAO) B deaminates a number of biogenic and dietary amines and plays an important role in many biological processes. Among hormonal regulations of MAO B, we have recently found that retinoic acid (RA) significantly activates both MAO B promoter activity and mRNA expression in a human neuroblastoma BE(2)C cell line. RA activates MAO B promoter in both concentration- and time-dependent manners, which is mediated through retinoic acid receptor alpha (RARalpha) and retinoid X receptor alpha (RXRalpha). There are four retinoic acid response elements (RAREs) as identified in the MAO B 2-kb promoter, and mutation of the third RARE reduced RA-induced MAO B promoter activation by 50%, suggesting this element is important. Electrophoretic mobility shift analysis and chromatin immunoprecipitation assay demonstrated that RARalpha specifically binds to the third RARE both in vitro and in vivo. Moreover, transient transfection and luciferase assays revealed that Sp1 enhances but not essentially required for the RA activation of MAO B through two clusters of Sp1-binding sites in the MAO B promoter. RARalpha physically interacts with Sp1 via zinc finger domains in Sp1 as determined by co-immunoprecipitation assay. Further, RARalpha was shown to be recruited by Sp1 and to form a transcriptional regulation complex with Sp1 in the Sp1-binding sites of natural MAO B promoter. Taken together, this study provides evidence for the first time showing the stimulating effect of RA on MAO B and new insight into the molecular mechanisms of MAO B regulation by hormones.
Collapse
Affiliation(s)
- Jason B Wu
- From the Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, California 90089
| | - Kevin Chen
- From the Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, California 90089
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jean C Shih
- From the Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, California 90089; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089.
| |
Collapse
|
19
|
Gene transactivation without direct DNA binding defines a novel gain-of-function for PML-RARα. Blood 2008; 111:1634-43. [DOI: 10.1182/blood-2007-04-081125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractPML-RARα is the causative oncogene in 5% to 10% of the cases of acute myeloid leukemia. At physiological concentrations of retinoic acid, PML-RARα silences RARα target genes, blocking differentiation of the cells. At high concentrations of ligand, it (re)activates the transcription of target genes, forcing terminal differentiation. The study of RARα target genes that mediate this differentiation has identified several genes that are important for proliferation and differentiation control in normal and malignant hematopoietic cells. In this paper, we show that the PML-RARα fusion protein not only interferes with the transcription of regular RARα target genes. We show that the ID1 and ID2 promoters are activated by PML-RARα but, unexpectedly, not by wild-type RARα/RXR. Our data support a model in which the PML-RARα fusion protein regulates a novel class of target genes by interaction with the Sp1 and NF-Y transcription factors, without directly binding to the DNA, defining a gain-of-function for the oncoprotein.
Collapse
|
20
|
Oh ECT, Cheng H, Hao H, Jia L, Khan NW, Swaroop A. Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. Brain Res 2008; 1236:16-29. [PMID: 18294621 DOI: 10.1016/j.brainres.2008.01.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/21/2007] [Accepted: 01/09/2008] [Indexed: 01/22/2023]
Abstract
Neural developmental programs require a high level of coordination between the decision to exit cell cycle and acquisition of cell fate. The Maf-family transcription factor NRL is essential for rod photoreceptor specification in the mammalian retina as its loss of function converts rod precursors to functional cones. Ectopic expression of NRL or a photoreceptor-specific orphan nuclear receptor NR2E3 completely suppresses cone development while concurrently directing the post-mitotic photoreceptor precursors towards rod cell fate. Given that NRL and NR2E3 have overlapping functions and NR2E3 expression is abolished in the Nrl(-/-) retina, we wanted to clarify the distinct roles of NRL and NR2E3 during retinal differentiation. Here, we demonstrate that NRL binds to a sequence element in the Nr2e3 promoter and enhances its activity synergistically with the homeodomain protein CRX. Using transgenic mice, we show that NRL can only partially suppress cone development in the absence of NR2E3. Gene profiling of retinas from transgenic mice that ectopically express NR2E3 or NRL in cone precursors reveals overlapping and unique targets of these two transcription factors. Together with previous reports, our findings establish the hierarchy of transcriptional regulators in determining rod versus cone cell fate in photoreceptor precursors during the development of mammalian retina.
Collapse
Affiliation(s)
- Edwin C T Oh
- Program in Neuroscience, University of Michigan, Ann Arbor MI, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hao H, d'Alincourt-Salazar M, Kelley KMM, Shatnawi A, Mukherjee S, Shah YM, Ratnam M. Estrogen-induced and TAFII30-mediated gene repression by direct recruitment of the estrogen receptor and co-repressors to the core promoter and its reversal by tamoxifen. Oncogene 2007; 26:7872-84. [PMID: 17599049 DOI: 10.1038/sj.onc.1210592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Estradiol (E2) acts through the estrogen receptor (ER) to downregulate many genes, and tamoxifen (Tam) largely reverses this repression but the underlying mechanisms are unclear. Repression of the folate receptor (FR)-alpha P4 core promoter by ER is enhanced by E2 and reversed by Tam. This effect was unaffected by inhibition of new protein synthesis and required the E/F and the DNA-binding domains of ER without direct binding of ER to DNA. The repression by E2/ER was not specific for either Sp1 or TATA elements but was loosely selective for the initiator and flanking sequence. Insertion of a response element or a relatively strong Sp1 cluster to recruit ER upstream of the core promoters caused a switch to activation by E2/ER that was inhibited by Tam. In nuclear extracts, association of ER with a biotinylated core promoter fragment was promoted by E2 but Tam blocked this effect. Repression/de-repression of the P4 promoter and endogenous FR-alpha expression by E2/Tam required SMRT and/or NCoR. ER associated with the chromosomal P4 promoter and SMRT and NCoR associated with it in an ER-dependent manner; these associations were favored by E2 but disrupted by Tam, in the short term, without changes in ER expression. TAFII30 was required for optimal P4 promoter activity and for the repressive association of ER. E2 may thus maintain a low transcriptional status of genes by favoring direct TAFII30-dependent association of ER with the core promoter in a co-repressor complex containing SMRT and/or NCoR; this repression is overridden in target genes containing an upstream element that strongly recruits ER. In addition to suppressing the activation of classical E2 target genes, Tam may upregulate genes by passively dissociating the ER co-repressor complex.
Collapse
Affiliation(s)
- H Hao
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
For over a decade the folate receptor has been intensively investigated as a means for tumor-specific delivery of a broad range of experimental therapies including several conceptually new treatments. Despite a few set backs in clinical trials, the literature is replete with encouraging in vitro and pre-clinical studies of gynecological and other tumors and more therapeutic approaches are ready for clinical testing. Recent studies have added myelogenous leukemias to the list of candidate cancers for FR-targeted therapies. Each approach faces unique challenges in translation that could be addressed through a mechanistic understanding of the function and expression of the receptor in the appropriate experimental systems and by improvements in the technology. This review discusses FR in the context of positive recent developments in broad areas of FR-targeted therapy and attempts to highlight its potential and the anticipated challenges.
Collapse
|
23
|
Blaser BW, Gonit M, Qi H, Shatnawi A, Guimond M, Lee RJ, Ratnam M. Induction of folate receptor type β in a bone marrow engraftment model of acute myelogenous leukemia. Leukemia 2007; 21:2233-5. [PMID: 17554378 DOI: 10.1038/sj.leu.2404786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Folate Receptors, GPI-Anchored
- Gene Expression Regulation, Leukemic
- Humans
- Inflammation
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- RNA, Messenger/metabolism
- Receptors, Cell Surface/metabolism
- Stem Cells/metabolism
Collapse
|
24
|
Giatzakis C, Batarseh A, Dettin L, Papadopoulos V. The role of Ets transcription factors in the basal transcription of the translocator protein (18 kDa). Biochemistry 2007; 46:4763-74. [PMID: 17402746 PMCID: PMC2529463 DOI: 10.1021/bi062208o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The translocator protein (18 kDa; TSPO), previously known as peripheral-type benzodiazepine receptor, is a high-affinity cholesterol- and drug-binding mitochondrial protein involved in various cell functions including steroidogenesis, apoptosis, and proliferation. TSPO is highly expressed in secretory and glandular tissues, especially in steroidogenic cells, and its expression is altered in certain pathological conditions such as cancer and neurological diseases. In this study, we characterized the regulatory elements present in the region of the TPSO promoter extending from 515 to 805 bp upstream of the transcription start site, an area previously identified as being important for transcription. Promoter fragments extending 2.7 kb and 805 bp upstream of the transcription start site were able to direct enhanced green fluorescent protein expression to Leydig cells of the testis, theca cells of the ovary, and cells of the adrenal cortex in transgenic animals. This expression pattern perfectly mimicked endogenous TSPO expression. Functional characterization of the 515-805 bp region revealed the presence of one specificity protein 1/specificity protein 3 (Sp1/Sp3) and two v-ets erythroblastosis virus E26 oncogene homologue (Ets) binding sites that are important for transcriptional activity in both MA-10 mouse Leydig tumor cells and NIH/3T3 whole mouse embryo fibroblasts. GA-binding protein alpha (GABPalpha), a member of the Ets family of transcription factors, was found to be associated with the endogenous TSPO promoter. We conclude that Sp1/Sp3 and members of the Ets family of transcription factors bind to specific binding sites in the TSPO promoter to drive basal TSPO gene transcription.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Address all correspondence and requests for reprints to: Dr. Vassilios Papadopoulos, Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057. Tel: (202) 687-8991; Fax: (202) 687-7855; e-mail:
| |
Collapse
|
25
|
Abstract
The NF-kappaB2 gene is recurrently mutated in human lymphoid malignancies. However, a causal relationship between NF-kappaB2 mutation and lymphomagenesis has not been established. It is also unclear how the mutation may lead to lymphoid malignancies. We report the generation of transgenic mice with targeted expression of p80HT, a lymphoma-associated NF-kappaB2 mutant, in lymphocytes. The transgenic mice display a marked expansion of peripheral B cell populations and develop predominantly small B cell lymphomas. p80HT expression has no apparent effect on the proliferation of B cells, but renders them specifically resistant to apoptosis induced by cytokine deprivation and mitogenic stimulation. Lymphocytes and lymphoma cells from p80HT mice express high levels of TRAF1, an antiapoptotic protein also implicated in lymphoid malignancies. p80HT binds the TRAF1 promoter in vivo and activates TRAF1 transcription. Moreover, TRAF1 knockdown abrogates the antiapoptotic activity of p80HT and TRAF1 deficiency reestablishes B cell homeostasis in p80HT mice. These findings demonstrate NF-kappaB2 mutation as an oncogenic event in vivo and suggest a molecular pathway for TRAF1 activation in the pathogenesis of lymphomas.
Collapse
Affiliation(s)
- Baochun Zhang
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
26
|
Xu J, Rogers MB. Modulation of Bone Morphogenetic Protein (BMP) 2 gene expression by Sp1 transcription factors. Gene 2007; 392:221-9. [PMID: 17317039 PMCID: PMC1934513 DOI: 10.1016/j.gene.2006.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 12/19/2022]
Abstract
Changes in Bone Morphogenetic Protein (BMP) 2 gene expression and activity have been linked to many pathological conditions including cancer, osteoarthritis, and birth defects. BMP2 gene polymorphisms have been linked to osteoporosis and osteoarthritis. Sp1 and related proteins are widely expressed regulators of gene expression whose transcription activating abilities vary in different cells and on different genes. We present data indicating that the ratio of Sp1 and Sp3 isoforms varies in cells that express or do not express BMP2. Furthermore, the orientation of Sp1 sites conserved between four orders of mammals influences BMP2 expression. Together our data indicate that the stoichiometry and orientation of Sp1 and Sp3 complexes on the BMP2 promoter influence BMP2 expression.
Collapse
Affiliation(s)
| | - Melissa B. Rogers
- *Address correspondence and requests for reprints to: Melissa B. Rogers, Ph.D., Biochemistry & Molecular Biology (MSB E627), UMDNJ - New Jersey Medical School, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07101-1709, Phone: (973) 972-2984, Fax: (973) 972-5594,
| |
Collapse
|
27
|
Qi H, Ratnam M. Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 2006; 66:5875-82. [PMID: 16740727 DOI: 10.1158/0008-5472.can-05-4048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The folate receptor (FR) type beta is a promising target for therapeutic intervention in acute myelogenous leukemia (AML), owing particularly to its selective up-regulation in the leukemic cells by all-trans retinoic acid (ATRA). Here we show, using KG-1 and MV4-11 AML cells and recombinant 293 cells, that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA), valproic acid (VPA), and FK228 potentiated ATRA induction of FR-beta gene transcription and FR-beta mRNA/protein expression. ATRA and/or TSA did not induce de novo FR synthesis in any of a variety of FR-negative cell lines tested. TSA did not alter the effect of ATRA on the expression of retinoic acid receptor (RAR) alpha, beta, or gamma. Chromatin immunoprecipitation assays indicate that HDAC inhibitors act on the FR-beta gene by enhancing RAR-associated histone acetylation to increase the association of Sp1 with the basal FR-beta promoter. Under these conditions, the expression level of Sp1 is unaltered. A decreased availability of putative repressor AP-1 proteins may also indirectly contribute to the effect of HDAC inhibitors. Finally, FR-beta selectively mediated growth inhibition by (6S) dideazatetrahydrofolate in a manner that was greatly potentiated in AML cells by ATRA and HDAC inhibition. Therefore, the combination of ATRA and innocuous HDAC inhibitors may be expected to facilitate selective FR-beta-targeted therapies in AML.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CHO Cells
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cricetinae
- Drug Synergism
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Folate Receptors, GPI-Anchored
- Folic Acid Antagonists/administration & dosage
- Folic Acid Antagonists/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/classification
- Receptors, Retinoic Acid/metabolism
- Substrate Specificity
- Tetrahydrofolates/administration & dosage
- Tetrahydrofolates/pharmacology
- Transcription Factor AP-1/metabolism
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Up-Regulation/drug effects
- Valproic Acid/administration & dosage
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Huiling Qi
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, Ohio, USA
| | | |
Collapse
|
28
|
Resendes KK, Rosmarin AG. GA-binding protein and p300 are essential components of a retinoic acid-induced enhanceosome in myeloid cells. Mol Cell Biol 2006; 26:3060-70. [PMID: 16581781 PMCID: PMC1446933 DOI: 10.1128/mcb.26.8.3060-3070.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Expression of CD18, the beta chain of the leukocyte integrins, is transcriptionally regulated by retinoic acid (RA) in myeloid cells. Full RA responsiveness of the CD18 gene requires its proximal promoter, which lacks a retinoic acid response element (RARE). Rather, RA responsiveness of the CD18 proximal promoter requires ets sites that are bound by GA-binding protein (GABP). The transcriptional coactivator, p300, further increases CD18 RA responsiveness. We demonstrate that GABPalpha, the ets DNA-binding subunit of GABP, physically interacts with p300 in myeloid cells. This interaction involves the GABPalpha pointed domain (PNT) and identifies p300 as the first known interaction partner of GABPalpha PNT. Expression of the PNT domain, alone, disrupts the GABPalpha-p300 interaction and decreases the RA responsiveness of the CD18 proximal promoter. Chromatin immunoprecipitation and chromosome conformation capture demonstrate that, in the presence of RA, GABPalpha and p300 at the proximal promoter recruit retinoic acid receptor/retinoid X receptor from a distal RARE to form an enhanceosome. A dominant negative p300 construct disrupts enhanceosome formation and reduces the RA responsiveness of CD18. Thus, proteins on the CD18 proximal promoter recruit the distal RARE in the presence of RA. This is the first description of an RA-induced enhanceosome and demonstrates that GABP and p300 are essential components of CD18 RA responsiveness in myeloid cells.
Collapse
Affiliation(s)
- Karen K Resendes
- Dept. of Molecular Biology, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | |
Collapse
|
29
|
Matlhagela K, Taub M. Regulation of the Na-K-ATPase beta(1)-subunit promoter by multiple prostaglandin-responsive elements. Am J Physiol Renal Physiol 2006; 291:F635-46. [PMID: 16478973 DOI: 10.1152/ajprenal.00452.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal prostaglandins modulate the activity of a number of the transport systems in the kidney, including the Na-K-ATPase. Not only do prostaglandins have acute affects on renal Na-K-ATPase, but in addition prostaglandins have chronic affects, which include regulation at the transcriptional level. Previously, we have presented evidence that one such prostaglandin, PGE(1), stimulates the transcription of the human Na-K-ATPase beta(1)-subunit gene in Madin-Darby canine kidney cells via cAMP- and Ca(2+)-mediated pathways (Taub M, Borsick M, Geisel J, Matlhagela K, Rajkhowa T, and Allen C. Exp Cell Res 299: 1-14, 2004; Matlhagela K, Borsick M, Rajkhowa T, and Taub M. J Biol Chem 280: 334-346, 2005). Evidence was presented indicating that PGE(1) stimulation was mediated through the binding of cAMP-regulatory element binding protein (CREB) to a prostaglandin-responsive element (PGRE) as well as Sp1 binding to an adjacent Sp1 site. In this report, we present evidence from EMSAs and DNA affinity precipitation studies that another PGRE present in the Na-K-ATPase beta(1)-subunit promoter similarly binds CREB and Sp1. The evidence that indicates a requirement for CREB as well as Sp1 for gene activation through both PGREs (PGRE1 and PGRE3) includes studies with a dominant negative CREB (KCREB), Drosophila SL2 cells, and PGRE mutants. The results of these studies are indicative of a synergism between Sp1 and CREB in mediating regulation by PGRE3; while regulation occurring through PGRE1 also involves Sp1 and CREB, the mechanism appears to be distinct.
Collapse
Affiliation(s)
- Keikantse Matlhagela
- Biochemistry Department, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
30
|
Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L, Tsutsumi-Ishii Y, Nagaoka I, Igari J, Andreeff M. Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 2005; 107:1546-54. [PMID: 16223781 PMCID: PMC1895410 DOI: 10.1182/blood-2004-10-4126] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multidrug resistance 1 (MDR1) gene product P-glycoprotein (P-gp) is frequently implicated in cross-resistance of tumors to chemotherapeutic drugs. In contrast, acute promyelocytic leukemia (APL) cells do not express MDR1 and are highly sensitive to anthracyclines. The combination of ATRA and the novel histone deacetylase inhibitor (HDACI) depsipeptide (FK228) induced P-gp expression and prevented growth inhibition and apoptosis in NB4 APL cells subsequently exposed to doxorubicin (DOX). ATRA/FK228 treatment after exposure to DOX, however, enhanced apoptosis. Both agents, ATRA or FK228, induced MDR1 mRNA. This effect was significantly enhanced by ATRA/FK228 administered in combination, due in part to increased H4 and H3-Lys9 acetylation of the MDR1 promoter and recruitment of the nuclear transcription factor Y alpha (NFYA) transcription activator to the CCAAT box. Cotreatment with specific P-gp inhibitor PSC833 reversed cytoprotective effects of ATRA/FK228. G1 cell-cycle arrest and p21 mRNA induction were also observed in response to ATRA/FK228, which may restrict DOX-induced apoptosis of cells in G2 phase. These results indicate that epigenetic mechanisms involving NF-YA transcription factor recruitment and histone acetylation are activated by ATRA and HDACI, induce MDR1 in APL cells, and point to the critical importance of mechanism-based sequential therapy in future clinical trials that combine HDAC inhibitors, ATRA, and anthracyclines.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, Unit 448, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tran T, Shatnawi A, Zheng X, Kelley KMM, Ratnam M. Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: a promising means to improved tumor detection and targeting. Cancer Res 2005; 65:4431-41. [PMID: 15899836 DOI: 10.1158/0008-5472.can-04-2890] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The utility of the folate receptor (FR) type alpha, in a broad range of targeted therapies and as a diagnostic serum marker in cancer, is confounded by its variable tumor expression levels. FR-alpha, its mRNA and its promoter activity were coordinately up-regulated by the glucocorticoid receptor (GR) agonist, dexamethasone. Optimal promoter activation which occurred at <50 nmol/L dexamethasone was inhibited by the GR antagonist, RU486, and was enhanced by coactivators, supporting GR mediation of the dexamethasone effect. The dexamethasone response of the FR-alpha promoter progressed even after dexamethasone was withdrawn, but this delayed effect required prior de novo protein synthesis indicating an indirect regulation. The dexamethasone effect was mediated by the G/C-rich (Sp1 binding) element in the core P4 promoter and was optimal in the proper initiator context without associated changes in the complement of major Sp family proteins. Histone deacetylase (HDAC) inhibitors potentiated dexamethasone induction of FR-alpha independent of changes in GR levels. Dexamethasone/HDAC inhibitor treatment did not cause de novo FR-alpha expression in a variety of receptor-negative cells. In a murine HeLa cell tumor xenograft model, dexamethasone treatment increased both tumor-associated and serum FR-alpha. The results support the concept of increasing FR-alpha expression selectively in the receptor-positive tumors by brief treatment with a nontoxic dose of a GR agonist, alone or in combination with a well-tolerated HDAC inhibitor, to increase the efficacy of various FR-alpha-dependent therapeutic and diagnostic applications. They also offer a new paradigm for cancer diagnosis and combination therapy that includes altering a marker or a target protein expression using general transcription modulators.
Collapse
Affiliation(s)
- Thuyet Tran
- Department of Biochemistry and Cancer Biology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
32
|
Ritchie HH, Park H, Liu J, Bervoets TJM, Bronckers ALJJ. Effects of dexamethasone, vitamin A and vitamin D3 on DSP-PP mRNA expression in rat tooth organ culture. ACTA ACUST UNITED AC 2004; 1679:263-71. [PMID: 15358518 DOI: 10.1016/j.bbaexp.2004.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/28/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Vitamin A, 1,25-dihydroxyvitamin D3 and dexamethasone are well-characterized hydrophobic molecules whose biological actions are mediated via different members of the nuclear hormone receptor family. We report here their actions on tooth formation at the molecular level. We have tested the effects of these compounds on osteopontin (OPN), dentin sialoprotein (DSP-PP), and collagen type I expression in pre-mineralization and mineralization stage rat tooth organ cultures which mirror in vivo developmental patterns. These proteins are all believed to participate in the mineralization of dentin. 1,25-Dihydroxyvitamin D3 up-regulated OPN, but had no effect on DSP-PP mRNA expression. Vitamin A up-regulated DSP-PP expression as did dexamethasone. Dexamethasone also up-regulated collagen type I expression. Our results suggest that 1,25-dihydroxyvitamin D3 does not modulate dentin mineralization by directly affecting DSP-PP expression. Vitamin A likely contributes to dentin mineralization by up-regulating DSP-PP expression. Finally, the up-regulation of DSP-PP expression in tooth germ cultures treated with dexamethasone suggests that its application to patient's dental pulp might promote increased extracellular matrix synthesis and mineralization in the pulp and may explain the narrowing of the dental pulp cavity in patients undergoing long-term dexamethasone administration.
Collapse
Affiliation(s)
- H H Ritchie
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | |
Collapse
|
33
|
Abrams KL, Xu J, Nativelle-Serpentini C, Dabirshahsahebi S, Rogers MB. An evolutionary and molecular analysis of Bmp2 expression. J Biol Chem 2004; 279:15916-28. [PMID: 14757762 DOI: 10.1074/jbc.m313531200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coding regions of many metazoan genes are highly similar. For example, homologs to the key developmental factor bone morphogenetic protein (BMP) 2 have been cloned by sequence identity from arthropods, mollusks, cnidarians, and nematodes. Wide conservation of protein sequences suggests that differential gene expression explains many of the vast morphological differences between species. To test the hypothesis that the regulatory mechanisms controlling this evolutionarily ancient and critical gene are conserved, we compared sequences flanking Bmp2 genes of several species. We identified numerous conserved noncoding sequences including some retained because the fish lineage separated 450 million years ago. We tested the function of some of these sequences in the F9 cell model system of Bmp2 expression. We demonstrated that both mouse and primate Bmp2 promoters drive a reporter gene in an expression pattern resembling that of the endogenous transcript in F9 cells. A conserved Sp1 site contributes to the retinoic acid responsiveness of the Bmp2 promoter, which lacks a classical retinoic acid response element. We have also discovered a sequence downstream of the stop codon whose conservation between humans, rodents, deer, chickens, frogs, and fish is striking. A fragment containing this region influences reporter gene expression in F9 cells. The conserved region contains elements that may mediate the half-life of the Bmp2 transcript. Together, our molecular and evolutionary analysis has identified new regulatory elements controlling Bmp2 expression.
Collapse
Affiliation(s)
- Kevin L Abrams
- Department of Biology, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | |
Collapse
|
34
|
Tellez C, McCarty M, Ruiz M, Bar-Eli M. Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. J Biol Chem 2003; 278:46632-42. [PMID: 12975361 DOI: 10.1074/jbc.m309159200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence implicates the protease-activated receptor-1 (PAR-1) as a contributor to tumor invasion and metastasis of human melanoma. Here we demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. We also provide evidence that an inverse correlation exists between the expression of activator protein-2alpha (AP-2) and the expression of PAR-1 in human melanoma cells. Reexpression of AP-2 in WM266-4 melanoma cells, which are AP-2-negative, resulted in decreased mRNA and protein expression of PAR-1. The promoter of the PAR-1 gene contains multiple putative consensus elements for the transcription factors AP-2 and specificity protein 1 (Sp1). Chromatin immunoprecipitation analysis of the PAR-1 promoter regions bp -365 to -329 (complex 1) and bp -206 to -180 (complex 2) demonstrated that Sp1 was predominantly bound to the PAR-1 promoter in metastatic cells, whereas AP-2 was bound to the PAR-1 promoter in nonmetastatic cells. In vitro analysis of complex 1 demonstrated that AP-2 and Sp1 bound to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic melanoma cells had increased PAR-1 promoter activity compared with low and nonmetastatic melanoma cells. Our data show that exogenous AP-2 expression decreased promoter activity, whereas transient expression of Sp1 further increased expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrated that the regulation of PAR-1 was mediated through interactions with AP-2 and Sp1. Our data suggest that loss of AP-2 in metastatic cells alters the AP-2/Sp1 ratio, resulting in overexpression of PAR-1. Taken together, our results provide strong evidence that loss of AP-2 correlates with overexpression of PAR-1, which in turn contributes to the acquisition of the malignant phenotype of human melanoma.
Collapse
Affiliation(s)
- Carmen Tellez
- Department of Cancer Biology 173, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
35
|
Kepa JK, Ross D. Differential expression of the antioxidant response element within the hNQO1 promoter in NSCLC versus SCLC. Biochem Biophys Res Commun 2003; 311:446-53. [PMID: 14592434 DOI: 10.1016/j.bbrc.2003.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To determine whether the human (h) NQO1 (NAD(P)H: quinone oxidoreductase 1) gene contains DNA sequences that directly mediate its high and low expression in non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), respectively, a series of deletion constructs spanning up to -4kb of the 5(') flanking region of hNQO1 was used in transient transfection assays. The antioxidant response element (ARE) was found to be critical to the elevated expression of NQO1 in NSCLC. However, the ability of both heterologous and deletion promoter constructs to confer ARE responsiveness demonstrated that SCLC contains the necessary program/menu of transcription factors responsible to drive hNQO1 expression via the ARE. By examining the regulatory region of the hNQO1 gene, we identified a proximal repressor region between -259 and -131. These results provide the first evidence of a proximal repressor region exerting a negative role on the regulation of the hNQO1 promoter in SCLC.
Collapse
Affiliation(s)
- Jadwiga K Kepa
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy and Cancer Center, University of Colorado Health Sciences Center, Denver, CO80262, USA
| | | |
Collapse
|
36
|
Bell SM, Schreiner CM, Waclaw RR, Campbell K, Potter SS, Scott WJ. Sp8 is crucial for limb outgrowth and neuropore closure. Proc Natl Acad Sci U S A 2003; 100:12195-200. [PMID: 14526104 PMCID: PMC218735 DOI: 10.1073/pnas.2134310100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Indexed: 11/18/2022] Open
Abstract
In this report we describe the developmental expression and function of Sp8, a member of the Sp family of zinc finger transcription factors, and provide evidence that the legless transgene insertional mutant is a hypomorphic allele of the Sp8 gene. Sp8 is expressed during embryogenesis in the forming apical ectodermal ridge (AER), restricted regions of the central nervous system, and tail bud. Targeted deletion of the Sp8 gene gives a striking phenotype, with severe truncation of both forelimbs and hindlimbs, absent tail, as well as defects in anterior and posterior neuropore closure leading to exencephaly and spina bifida. Outgrowth of the limb depends on formation of the AER, a signaling center that forms at the limb bud apex. In Sp8 mutants, the AER precursor cells are induced and initially express multiple appropriate marker genes, but expression of these genes is not maintained and progression to a mature AER is blocked. These observations indicate that Sp8 functions downstream of Wnt3, Fgf10, and Bmpr1a in the signaling cascade that mediates AER formation.
Collapse
Affiliation(s)
- Sheila M Bell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ratnam M, Hao H, Zheng X, Wang H, Qi H, Lee R, Pan X. Receptor induction and targeted drug delivery: a new antileukaemia strategy. Expert Opin Biol Ther 2003; 3:563-74. [PMID: 12831362 DOI: 10.1517/14712598.3.4.563] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Strategic modalities of drug delivery have the potential to greatly improve the therapeutic efficacy of available drugs in acute myelogenous leukaemia (AML). Folate receptor (FR) type beta is selectively expressed on the surface of approximately 70% of AMLs. Increased FR-beta expression in these cells can be induced by all-trans retinoic acid (ATRA) and other retinoid compounds in the absence of terminal differentiation or cell growth inhibition. An apparent post-transcriptional modification prevents FR-beta in normal haematopoietic cells from binding folate, in contrast to AML cells. FR-beta may, therefore, be used as a target for the selective delivery of chemotherapeutic drugs to AML cells; this treatment modality appears to be particularly efficacious when administered in conjunction with retinoid-induction of FR-beta. FR-targeted liposomal drug delivery can also bypass the P-glycoprotein (P-gp)-mediated drug efflux pump commonly associated with multiple drug resistance in AML. The rationale and merits of this novel experimental treatment for AML and the current status of this research are provided.
Collapse
Affiliation(s)
- Manohar Ratnam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Ave, Toledo, OH 43614-5804, USA.
| | | | | | | | | | | | | |
Collapse
|