1
|
Filaferro L, Zaccarelli F, Niccolini GF, Colizza A, Zoccali F, Grasso M, Fusconi M. Are statins onco- suppressive agents for every type of tumor? A systematic review of literature. Expert Rev Anticancer Ther 2024; 24:435-445. [PMID: 38609343 DOI: 10.1080/14737140.2024.2343338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION Statins, in the role of anti-cancer agents, have been used in many types of cancers with results in some cases promising while, in others, disappointing. AREAS COVERED The purpose of this review is to identify and highlight data from literature on the successes or failure of using statins as anti-cancer agents. We asked ourselves the following two questions:1. Could statins, which are taken mostly to reduce cardiovascular risk, guarantee a lower incidence or a better cancer disease prognosis, concerning local recurrence, metastasis or mortality?2. Does statins intake (before and/or after cancer diagnosis) improve the prognosis or increase the chemotherapeutic action when combined with other anticancer therapies? For the first question twenty-seven manuscripts have been selected, for the second one, twenty-eight. EXPERT OPINION There are data which correlate statins with a possible tumor suppressive action among the following cancers: breast, lung, prostate and head and neck. Lastly, for gastric cancer and colorectal there is no evidence of a correlation. The onco-suppressive efficacy of statins is mainly related to the histopathological and/or molecular characteristics of the tumor cells, which have different characteristics.
Collapse
Affiliation(s)
- Luca Filaferro
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Andrea Colizza
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Massimo Fusconi
- Department of Sense Organs, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Juarez D, Buono R, Matulis SM, Gupta VA, Duong M, Yudiono J, Paul M, Mallya S, Diep G, Hsin P, Lu A, Suh SM, Dong VM, Roberts AW, Leverson JD, Jalaluddin M, Liu Z, Bueno OF, Boise LH, Fruman DA. Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2497-2509. [PMID: 37956312 PMCID: PMC10704957 DOI: 10.1158/2767-9764.crc-23-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells. In addition, statins sensitize to apoptosis induced by MCL-1 inhibitor, S63845. In retrospective analysis of venetoclax clinical studies in multiple myeloma, background statin use was associated with a significantly enhanced rate of stringent complete response and absence of progressive disease. Statins sensitize multiple myeloma cells to venetoclax by upregulating two proapoptotic proteins: PUMA via a p53-independent mechanism and NOXA via the integrated stress response. These findings provide rationale for prospective testing of statins with venetoclax regimens in multiple myeloma. SIGNIFICANCE BH3 mimetics including venetoclax hold promise for treatment of multiple myeloma but rational combinations are needed to broaden efficacy. This study presents mechanistic and clinical data to support addition of pitavastatin to venetoclax regimens in myeloma. The results open a new avenue for repurposing statins in blood cancer.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Madeleine Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Jacob Yudiono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Grace Diep
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Peter Hsin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California
| | - Sang Mi Suh
- Department of Chemistry, University of California, Irvine, California
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California
| | | | | | | | | | | | - Lawrence H. Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
3
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Rebelo A, Kleeff J, Sunami Y. Cholesterol Metabolism in Pancreatic Cancer. Cancers (Basel) 2023; 15:5177. [PMID: 37958351 PMCID: PMC10650553 DOI: 10.3390/cancers15215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer's substantial impact on cancer-related mortality, responsible for 8% of cancer deaths and ranking fourth in the US, persists despite advancements, with a five-year relative survival rate of only 11%. Forecasts predict a 70% surge in new cases and a 72% increase in global pancreatic cancer-related deaths by 2040. This review explores the intrinsic metabolic reprogramming of pancreatic cancer, focusing on the mevalonate pathway, including cholesterol biosynthesis, transportation, targeting strategies, and clinical studies. The mevalonate pathway, central to cellular metabolism, significantly shapes pancreatic cancer progression. Acetyl coenzyme A (Acetyl-CoA) serves a dual role in fatty acid and cholesterol biosynthesis, fueling acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) development. Enzymes, including acetoacetyl-CoA thiolase, 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) synthase, and HMG-CoA reductase, are key enzymes in pancreatic cancer. Inhibiting HMG-CoA reductase, e.g., by using statins, shows promise in delaying PanIN progression and impeding pancreatic cancer. Dysregulation of cholesterol modification, uptake, and transport significantly impacts tumor progression, with Sterol O-acyltransferase 1 (SOAT1) driving cholesterol ester (CE) accumulation and disrupted low-density lipoprotein receptor (LDLR) expression contributing to cancer recurrence. Apolipoprotein E (ApoE) expression in tumor stroma influences immune suppression. Clinical trials targeting cholesterol metabolism, including statins and SOAT1 inhibitors, exhibit potential anti-tumor effects, and combination therapies enhance efficacy. This review provides insights into cholesterol metabolism's convergence with pancreatic cancer, shedding light on therapeutic avenues and ongoing clinical investigations.
Collapse
Affiliation(s)
| | | | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; (A.R.); (J.K.)
| |
Collapse
|
5
|
Haney SL, Holstein SA. Targeting the Isoprenoid Biosynthetic Pathway in Multiple Myeloma. Int J Mol Sci 2022; 24:ijms24010111. [PMID: 36613550 PMCID: PMC9820492 DOI: 10.3390/ijms24010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy for which there is currently no cure. While treatment options for MM have expanded over the last two decades, all patients will eventually become resistant to current therapies. Thus, there is an urgent need for novel therapeutic strategies to treat MM. The isoprenoid biosynthetic pathway (IBP) is responsible for the post-translational modification of proteins belonging to the Ras small GTPase superfamily, such as Ras, Rho and Rab family members. Given the important roles these GTPase proteins play in various cellular processes, there is significant interest in the development of inhibitors that disturb their prenylation and consequently their activity in MM cells. Numerous preclinical studies have demonstrated that IBP inhibitors have anti-MM effects, including the induction of apoptosis in MM cells and inhibition of osteoclast activity. Some IBP inhibitors have made their way into the clinic. For instance, nitrogenous bisphosphonates are routinely prescribed for the management MM bone disease. Other IBP inhibitors, including statins and farnesyltransferase inhibitors, have been evaluated in clinical trials for MM, while there is substantial preclinical investigation into geranylgeranyl diphosphate synthase inhibitors. Here we discuss recent advances in the development of IBP inhibitors, assess their mechanism of action and evaluate their potential as anti-MM agents.
Collapse
|
6
|
Lo Presti E, D’Orsi L, De Gaetano A. A Mathematical Model of In Vitro Cellular Uptake of Zoledronic Acid and Isopentenyl Pyrophosphate Accumulation. Pharmaceutics 2022; 14:pharmaceutics14061262. [PMID: 35745834 PMCID: PMC9227399 DOI: 10.3390/pharmaceutics14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The mevalonate pathway is an attractive target for many areas of research, such as autoimmune disorders, atherosclerosis, Alzheimer’s disease and cancer. Indeed, manipulating this pathway results in the alteration of malignant cell growth with promising therapeutic potential. There are several pharmacological options to block the mevalonate pathway in cancer cells, one of which is zoledronic acid (ZA) (an N-bisphosphonate (N-BP)), which inhibits the farnesyl pyrophosphate (FPP) synthase enzyme, inducing cell cycle arrest, apoptosis, inhibition of protein prenylation, and cholesterol reduction, as well as leading to the accumulation of isopentenyl pyrophosphate (IPP). We extrapolated the data based on two independently published papers that provide numerical data on the uptake of zoledronic acid (ZA) and the accumulation of IPP (Ag) and its isomer over time by using in vitro human cell line models. Two different mathematical models for IPP kinetics are proposed. The first model (Model 1) is a simpler ordinary differential equation (ODE) compartmental system composed of 3 equations with 10 parameters; the second model (Model 2) is a differential algebraic equation (DAE) system with 4 differential equations, 1 algebraic equation and 13 parameters incorporating the formation of the ZA+enzyme+Ag complex. Each of the two models aims to describe two different experimental situations (continuous and pulse experiments) with the same ZA kinetics. Both models fit the collected data very well. With Model 1, we obtained a prevision accumulation of IPP after 24 h of 169.6 pmol/mgprot/h with an IPP decreasing rate per (pmol/mgprot) of ZA (kXGZ) equal to 13.24/h. With Model 2, we have comprehensive kinetics of IPP upon ZA treatment. We calculate that the IPP concentration was equal to 141.6 pmol/mgprot/h with a decreasing rate/percentage of 0.051 (kXGU). The present study is the first to quantify the influence of ZA on the pharmacodynamics of IPP. While still incorporating a small number of parameters, Model 2 better represents the complexity of the biological behaviour for calculating the IPP produced in different situations, such as studies on γδ T cell-based immunotherapy. In the future, additional clinical studies are warranted to further evaluate and fine-tune dosing approaches.
Collapse
Affiliation(s)
- Elena Lo Presti
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Correspondence: (E.L.P.); (A.D.G.)
| | - Laura D’Orsi
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
| | - Andrea De Gaetano
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
- Correspondence: (E.L.P.); (A.D.G.)
| |
Collapse
|
7
|
Statins and prostate cancer-hype or hope? The biological perspective. Prostate Cancer Prostatic Dis 2022; 25:650-656. [PMID: 35768578 DOI: 10.1038/s41391-022-00557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
Growing evidence suggests that men prescribed a statin for cholesterol control have a lower risk of advanced prostate cancer (PCa) and improved treatment outcomes; however, the mechanism by which statins elicit their anti-neoplastic effects is not well understood and is likely multifaceted. Statins are potent and specific inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme of the mevalonate (MVA) metabolic pathway. This two-part series is a review of the observational and experimental data on statins as anti-cancer agents in PCa. In this article, we describe the functional role that deregulated MVA metabolism plays in PCa progression and summarize the biological evidence and rationale for targeting the MVA pathway, with statins and other agents, for the treatment of PCa.
Collapse
|
8
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
9
|
Cholesterol-lowering drug pitavastatin targets lung cancer and angiogenesis via suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Anticancer Drugs 2021; 31:377-384. [PMID: 32011362 DOI: 10.1097/cad.0000000000000885] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic agents that target both tumor cell and vascular endothelial cell may achieve additional anti-tumor efficacy, particularly in lung cancer due to the critical roles of angiogenesis during lung cancer progression and metastasis. In this work, we showed that pitavastatin, a novel cholesterol-lowering drug, potently inhibited lung cancer cells and angiogenesis. This was achieved by the induction of apoptosis and inhibition of proliferation of lung cancer cells and human lung tumor-associated endothelial cell. Pitavastatin was not only effective to chemo-sensitive but also chemo-resistant lung cancer cells. This was also consistent with the finding that pitavastatin significantly enhanced cisplatin's efficacy in lung cancer xenograft model without causing toxicity in mice. We further showed that pitavastatin inhibited lung tumor angiogenesis in vitro and in vivo through suppressing human lung tumor-associated endothelial cell migration and morphogenesis without affecting adhesion. Mechanistically, we showed that pitavastatin acted on lung cancer cells and human lung tumor-associated endothelial cell through suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Our work is the first to demonstrate the inhibitory effects of pitavastatin on Ras-mediated signaling. Our findings provide pre-clinical evidence to repurpose pitavastatin for the treatment of lung cancer.
Collapse
|
10
|
Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res 2020; 26:5791-5800. [PMID: 32887721 DOI: 10.1158/1078-0432.ccr-20-1967] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed cholesterol-lowering drugs that inhibit HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate metabolic pathway. Multiple lines of evidence indicate that certain cancers depend on the mevalonate pathway for growth and survival, and, therefore, are vulnerable to statin therapy. However, these immediately available, well-tolerated, and inexpensive drugs have yet to be successfully repurposed and integrated into cancer patient care. In this review, we highlight recent advances and outline important considerations for advancing statins to clinical trials in oncology.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jenna E van Leeuwen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mohamad Elbaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Branchard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia 2020; 35:796-808. [PMID: 32665698 PMCID: PMC7359767 DOI: 10.1038/s41375-020-0962-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is often driven by chromosomal translocations. In particular, patients with t(4;14)-positive disease have worse prognosis compared to other MM subtypes. Herein, we demonstrated that t(4;14)-positive cells are highly dependent on the mevalonate (MVA) pathway for survival. Moreover, we showed that this metabolic vulnerability is immediately actionable, as inhibiting the MVA pathway with a statin preferentially induced apoptosis in t(4;14)-positive cells. In response to statin treatment, t(4;14)-positive cells activated the integrated stress response (ISR), which was augmented by co-treatment with bortezomib, a proteasome inhibitor. We identified that t(4;14)-positive cells depend on the MVA pathway for the synthesis of geranylgeranyl pyrophosphate (GGPP), as exogenous GGPP fully rescued statin-induced ISR activation and apoptosis. Inhibiting protein geranylgeranylation similarly induced the ISR in t(4;14)-positive cells, suggesting that this subtype of MM depends on GGPP, at least in part, for protein geranylgeranylation. Notably, fluvastatin treatment synergized with bortezomib to induce apoptosis in t(4;14)-positive cells and potentiated the anti-tumor activity of bortezomib in vivo. Our data implicate the t(4;14) translocation as a biomarker of statin sensitivity and warrant further clinical evaluation of a statin in combination with bortezomib for the treatment of t(4;14)-positive disease.
Collapse
|
12
|
Ponvilawan B, Charoenngam N, Rittiphairoj T, Ungprasert P. Receipt of Statins Is Associated With Lower Risk of Multiple Myeloma: Systematic Review and Meta-analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e399-e413. [PMID: 32199765 DOI: 10.1016/j.clml.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Studies on receipt of statins and risk of multiple myeloma (MM) yielded conflicting results. This systematic review and meta-analysis was conducted in order to comprehensively investigate the relationship between receipt of statins and risk of MM. PATIENTS AND METHODS Potentially eligible studies that compared the risk of MM between statin recipients and those who did not receive statins were identified from Medline and Embase databases from inception to August 2019 using a search strategy that comprised terms for "statin" and "multiple myeloma." To be eligible, cohort studies must have recruited 2 groups of participants, statin recipients and nonrecipients, and followed their participants for incident MM. Eligible case-control studies must have recruited cases of MM and controls without MM, and must have explored the history of receipt of statins. Relative risk, hazard risk ratio, standardized incidence ratio, or odds ratio (OR) of this association must be reported. Relative risk and standard error from each study were extracted and combined using random-effect generic inverse variance. Relative risk of cohort study was used as an estimate for OR to calculate the pooled effect estimate along with the OR of the case-control studies. RESULTS A total of 1744 articles were identified using the search strategy, and 10 studies were included in the meta-analysis. The odds of MM were significantly lower among statin recipients than nonrecipients, with a pooled OR of 0.80 (95% confidence interval, 0.68-0.93; I2 72%). The funnel plot was relatively symmetrical and did not suggest publication bias. CONCLUSION Receipt of statins is associated with a significant 20% reduction in the odds of MM.
Collapse
Affiliation(s)
- Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Nipith Charoenngam
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Patompong Ungprasert
- Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
14
|
Wang C, Liu X, He R, Li J, Pan R. Prenylation-dependent Ras inhibition by pamidronate inhibits pediatric acute myeloid leukemia stem and differentiated cell growth and survival. Biochem Biophys Res Commun 2019; 517:439-444. [DOI: 10.1016/j.bbrc.2019.07.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 11/25/2022]
|
15
|
Hu K, Wan Q. Biphasic influence of pravastatin on human cardiac microvascular endothelial cell functions under pathological and physiological conditions. Biochem Biophys Res Commun 2019; 511:476-481. [PMID: 30803760 DOI: 10.1016/j.bbrc.2019.02.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 01/24/2023]
Abstract
HMG-CoA reductase inhibitor statins are used to treat patients with hypercholesterolemia. The pleiotropic effects of statins have been recently extended to the regulation of angiogenesis. However, the observations on the effects of statins on endothelial cells seem to be contradictory. In this work, we systematically analysed the effects of pravastatin at concentrations covering 10,000-fold range on the functions of human cardiac microvascular endothelial cells (HMVEC-C) under H2O2-induced oxidative stress and normal physiological conditions. We observed the biphasic effects of pravastatin in protecting HMVEC-C dysfunctions induced by H2O2: pravastatin at low concentrations significantly enhanced vascular network formation, growth, migration and survival under H2O2-induced oxidative stress condition whereas this effect disappeared at higher concentrations. Interestingly, pravastatin at low concentrations did not affect HMVEC-C functions but at high concentrations significantly inhibited HMVEC-C vascular network formation, growth, migration and survival in a dose-dependent manner. We further demonstrated the different molecular mechanisms of the action of pravastatin at low and high concentrations on HMVEC-C: pravastatin at low concentrations alleviates H2O2-induced oxidative stress and damage and at high concentrations inhibits prenylation. Our work provides better understanding on the multiple differential effects and the underlying mechanisms of pravastatin on HMVEC-C, which may be of relevance to the influence of statins in cardiovascular system.
Collapse
Affiliation(s)
- Kun Hu
- Department of Vascular Surgery, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, People's Republic of China.
| | - Qian Wan
- Department of Thoracic Surgery, Xiantao First People's Hospital, Xiantao, People's Republic of China
| |
Collapse
|
16
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
18
|
Alqudah MAY, Mansour HT, Mhaidat N. Simvastatin enhances irinotecan-induced apoptosis in prostate cancer via inhibition of MCL-1. Saudi Pharm J 2017; 26:191-197. [PMID: 30166915 PMCID: PMC6111232 DOI: 10.1016/j.jsps.2017.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors around the world. Hyperlipidemia is considered as one of the most important risk factors for the development of prostate cancer. Simvastatin is widely used for the treatment of hyperlipidemia and was previously shown to induce apoptosis in several cancer types including lung, colon, pancreas, breast, and prostate cancer. In this study we aimed to explore the potential role of simvastatin in enhancing irinotecan-induced apoptosis in prostate cancer cells. In addition, the underlying molecular mechanisms driving this potential effect of simvastatin were also explored. PC3 cells were treated with simvastatin, irinotecan or combination. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay. Flow cytometry technique was used to analyze apoptosis and cell cycle progression. Western blot was used for detection of protein expression. Results showed that simvastatin has a significant anti-proliferative activity on PC3 cells. Combined treatment of simvastatin with irinotecan exhibited a significant inhibition of PC3 cell growth compared to each treatment alone. Flow cytometry analysis showed that PC3 cell treatment with simvastatin and irinotecan combination demonstrated a remarkable increase in the percentage of apoptotic cells and those accumulated at G0/G1 phase when compared to each treatment alone. Moreover, induction of apoptosis was caspase-independent. Western blot showed that apoptosis was accompanied by upregulation of GRP-78 level and downregulation of Mcl-1 levels in a time-dependent manner. The results of this study demonstrated that combined treatment of simvastatin with chemotherapeutic agents such as irinotecan resulted in enhancement of growth inhibition and induction of prostate cancer cell apoptosis.
Collapse
Affiliation(s)
- Mohammad A Y Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hebah T Mansour
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
19
|
Gruenbacher G, Thurnher M. Mevalonate Metabolism in Immuno-Oncology. Front Immunol 2017; 8:1714. [PMID: 29250078 PMCID: PMC5717006 DOI: 10.3389/fimmu.2017.01714] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Immuno-oncology not only refers to the multifaceted relationship between our immune system and a developing cancer but also includes therapeutic approaches that harness the body's immune system to fight cancer. The recognition that metabolic reprogramming governs immunity was a key finding with important implications for immuno-oncology. In this review, we want to explore how activation and differentiation-induced metabolic reprogramming affects the mevalonate pathway for cholesterol biosynthesis in immune and cancer cells. Glycolysis-fueled mevalonate metabolism is a critical pathway in immune effector cells, which may, however, be shared by cancer stem cells, complicating the development of therapeutic strategies. Additional engagement of fatty acidy oxidation, as it occurs in regulatory immune cells as well as in certain tumor types, may influence mevalonate pathway activity. Transcellular mevalonate metabolism may play an as yet unanticipated role in the crosstalk between the various cell types and may add another level of complexity. In humans, a subset of γδ T cells is specifically adapted to perform surveillance of mevalonate pathway dysregulation. While the mevalonate pathway remains an important target in immuno-oncology, in terms of personalized medicine, it may be the type or stage of a malignant disease that determines whether mevalonate metabolism requires training or attenuation.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Huang J, Yang X, Peng X, Huang W. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis. Biochem Biophys Res Commun 2017; 493:921-927. [DOI: 10.1016/j.bbrc.2017.09.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
|
21
|
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells. Sci Rep 2017; 7:44841. [PMID: 28344327 PMCID: PMC5366866 DOI: 10.1038/srep44841] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.
Collapse
|
22
|
Sanfilippo KM, Keller J, Gage BF, Luo S, Wang TF, Moskowitz G, Gumbel J, Blue B, O'Brian K, Carson KR. Statins Are Associated With Reduced Mortality in Multiple Myeloma. J Clin Oncol 2016; 34:4008-4014. [PMID: 27646948 DOI: 10.1200/jco.2016.68.3482] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) have activity in one of the pathways influenced by nitrogen-containing bisphosphonates, which are associated with improved survival in multiple myeloma (MM). To understand the benefit of statins in MM, we evaluated the association between statin use and mortality in a large cohort of patients with MM. Patients and Methods From the Veterans Administration Central Cancer Registry, we identified patients diagnosed with MM between 1999 and 2013. We defined statin use as the presence of any prescription for a statin within 3 months before or any time after MM diagnosis. Cox proportional hazards regression assessed the association of statin use with mortality, while controlling for known MM prognostic factors. Results We identified a cohort of 4,957 patients, of whom 2,294 received statin therapy. Statin use was associated with a 21% decrease in all-cause mortality (adjusted hazard ratio, 0.79; 95% CI, 0.73 to 0.86; P < .001) as well as a 24% decrease in MM-specific mortality (adjusted hazard ratio, 0.76; 95% CI, 0.67 to 0.86; P < .001). This association remained significant across all sensitivity analyses. In addition to reductions in mortality, statin use was associated with a 31% decreased risk of developing a skeletal-related event. Conclusion In this cohort study of US veterans with MM, statin therapy was associated with a reduced risk of both all-cause and MM-specific mortality. Our findings suggest a potential role for statin therapy in patients with MM. The putative benefit of statin therapy in MM should be corroborated in prospective studies.
Collapse
Affiliation(s)
- Kristen Marie Sanfilippo
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jesse Keller
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Brian F Gage
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Suhong Luo
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Tzu-Fei Wang
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Gerald Moskowitz
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jason Gumbel
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Brandon Blue
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Katiuscia O'Brian
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Kenneth R Carson
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
23
|
Agabiti SS, Liang Y, Wiemer AJ. Molecular mechanisms linking geranylgeranyl diphosphate synthase to cell survival and proliferation. Mol Membr Biol 2016; 33:1-11. [PMID: 27537059 DOI: 10.1080/09687688.2016.1213432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Geranylgeranyl diphosphate is a 20-carbon isoprenoid phospholipid whose lipid moiety can be post-translationally incorporated into proteins to promote membrane association. The process of geranylgeranylation has been implicated in anti-proliferative effects of clinical agents that inhibit enzymes of the mevalonate pathway (i.e. statins and nitrogenous bisphosphonates) as well as experimental agents that deplete geranylgeranyl diphosphate. Inhibitors of geranylgeranyl diphosphate synthase are an attractive way to block geranylgeranylation because they possess a calcium-chelating substructure to allow localization to bone and take advantage of a unique position of the enzyme within the biosynthetic pathway. Here, we describe recent advances in geranylgeranyl diphosphate synthase expression and inhibitor development with a particular focus on the molecular mechanisms that link geranylgeranyl diphosphate to cell proliferation via geranylgeranylated small GTPases.
Collapse
Affiliation(s)
- Sherry S Agabiti
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Yilan Liang
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Andrew J Wiemer
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA.,b Institute for Systems Genomics, University of Connecticut , Storrs , CT , USA
| |
Collapse
|
24
|
Göbel A, Thiele S, Browne AJ, Rauner M, Zinna VM, Hofbauer LC, Rachner TD. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells. Cancer Lett 2016; 375:162-171. [DOI: 10.1016/j.canlet.2016.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
|
25
|
Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther 2015; 158:24-40. [PMID: 26617219 DOI: 10.1016/j.pharmthera.2015.11.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of evidence points toward an important anti-cancer effect of bisphosphonates, a group of inexpensive, safe, potent, and long-term stable pharmacologicals that are widely used as osteoporosis drugs. To date, they are already used in the prevention of complications of bone metastases. Because the bisphosphonates can also reduce mortality in among other multiple myeloma, breast, and prostate cancer patients, they are now thoroughly studied in oncology. In particular, the more potent nitrogen-containing bisphosphonates have the potential to improve prognosis. The first part of this review will elaborate on the direct and indirect anti-tumoral effects of bisphosphonates, including induction of tumor cell apoptosis, inhibition of tumor cell adhesion and invasion, anti-angiogenesis, synergism with anti-neoplastic drugs, and enhancement of immune surveillance (e.g., through activation of γδ T cells and targeting macrophages). In the second part, we shed light on the current clinical position of bisphosphonates in the treatment of hematological and solid malignancies, as well as on ongoing and completed clinical trials investigating the therapeutic effect of bisphosphonates in cancer. Based on these recent data, the role of bisphosphonates is expected to further expand in the near future outside the field of osteoporosis and to open up new avenues in the treatment of malignancies.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation. Biochem Biophys Res Commun 2015; 467:664-9. [DOI: 10.1016/j.bbrc.2015.10.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/18/2015] [Indexed: 11/21/2022]
|
27
|
Göbel A, Browne AJ, Thiele S, Rauner M, Hofbauer LC, Rachner TD. Potentiated suppression of Dickkopf-1 in breast cancer by combined administration of the mevalonate pathway inhibitors zoledronic acid and statins. Breast Cancer Res Treat 2015; 154:623-31. [DOI: 10.1007/s10549-015-3624-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
|
28
|
Vilimanovich U, Bosnjak M, Bogdanovic A, Markovic I, Isakovic A, Kravic-Stevovic T, Mircic A, Trajkovic V, Bumbasirevic V. Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol 2015; 765:415-28. [PMID: 26358205 DOI: 10.1016/j.ejphar.2015.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Abstract
Statins exhibit anti-leukemic properties due to suppression of the mevalonate pathway by the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and subsequent depletion of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate. We investigated the role of autophagy, a controlled intracellular self-digestion, in the anti-leukemic action of statins. Treatment with low concentrations (≤6 µM) of statins, cholesterol depletion, and specific inhibition of cholesterol synthesis and protein farnesylation or geranylgeranylation, all inhibited proliferation of leukemic cell lines and primary leukemic cells without inducing overt cell death. Statins and agents that selectively reduce intracellular cholesterol levels, but not the inhibition of protein farnesylation or geranylgeranylation, induced autophagy in leukemic cells. The observed autophagic response was associated with the reduction of phosphorylated Akt levels in the lipid rafts, accompanied by a decrease in the activation of the main autophagy suppressor mammalian target of rapamycin (mTOR) and its substrate ribosomal p70S6 kinase (p70S6K). No significant autophagy induction and downregulation of mTOR/p70S6K activation were observed in normal leukocytes. Autophagy suppression by bafilomycin A1 or RNA interference-mediated knockdown of beclin-1 and microtubule-associated protein 1 light chain 3B induced apoptotic death in statin-treated leukemic cells, an effect attenuated by the addition of mevalonate or squalene, but not farnesylpyrophosphate or geranylgeranylpyrophosphate. Therefore, while the inhibition of cholesterol synthesis, protein farnesylation, and geranylgeranylation all contributed to anti-leukemic effects of statins, the inhibition of cholesterol synthesis was solely responsible for the induction of cytoprotective autophagy. These data indicate that combined treatment with statins and autophagy inhibitors might be potentially useful in anti-leukemic therapy.
Collapse
Affiliation(s)
- Urosh Vilimanovich
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivanka Markovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia.
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia.
| |
Collapse
|
29
|
Bockorny B, Dasanu CA. HMG-CoA reductase inhibitors as adjuvant treatment for hematologic malignancies: what is the current evidence? Ann Hematol 2014; 94:1-12. [PMID: 25416152 DOI: 10.1007/s00277-014-2236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Statins have been shown to possess properties that go beyond their lipid-lowering effects. These agents act on the mevalonate pathway and inhibit synthesis of cholesterol, geranylgeranyl pyrophosphate, and farnesyl pyrophosphate, which are necessary for posttranslational modification of the Rho, Rac, and Ras superfamily of proteins. Early phase studies have demonstrated that this modulation of cellular signaling can ultimately exert pro-apoptotic, anti-angiogenic, and immunomodulatory effects, and might even restore chemosensitivity in several hematologic cancers. Nonetheless, these promising preclinical results have not yet migrated from the bench to the bedside as their effectiveness as adjuvant agents in hematologic malignancies is currently uncertain. In the present review, we summarize the existing evidence stemming from preclinical and clinical studies pertaining to the use of statins as adjuvant therapies in hematologic malignancies, and discuss the new insights gained from the ongoing translational research.
Collapse
Affiliation(s)
- Bruno Bockorny
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center-Harvard School of Medicine, 330 Brookline Avenue, Boston, MA, 02215, USA,
| | | |
Collapse
|
30
|
Mevalonate metabolism in cancer. Cancer Lett 2014; 356:192-6. [PMID: 24467965 DOI: 10.1016/j.canlet.2014.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Cancer cells are characterized by sustained proliferative signaling, insensitivity to growth suppressors and resistance to apoptosis as well as by replicative immortality, the capacity to induce angiogenesis and to perform invasive growth. Additional hallmarks of cancer cells include the reprogramming of energy metabolism as well as the ability to evade immune surveillance. The current review focuses on the metabolic reprogramming of cancer cells and on the immune system's capacity to detect such changes in cancer cell metabolism. Specifically, we focus on mevalonate metabolism, which is a target for drug and immune based cancer treatment.
Collapse
|
31
|
Corso A, Ferretti E, Lazzarino M. Zoledronic acid exerts its antitumor effect in multiple myeloma interfering with the bone marrow microenvironment. Hematology 2013; 10:215-24. [PMID: 16019470 DOI: 10.1080/10245330500094714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by an excess of monotypic plasma cells which localize almost exclusively in the bone marrow provoking bone destruction via the activation of the osteoclasts. The bone marrow microenvironment, mainly through stromal cells, is strictly involved in the evolution of the disease supporting MM cell growth and survival [1]. MM plasma cells reside in the bone marrow by binding to adhesion molecule of extracellular matrix (ECM) and stromal cells. The activation of some signaling pathways within the stromal cells increases the production of several cytokines which in turn favors the myeloma cell proliferation and survival [2-6], and enhance the drug resistance by anti-apoptotic mechanisms [1,7-9]. Novel therapeutic agents target not only the myeloma cells but also the interaction between MM cells and the bone marrow microenvironment [8]. Bisphosphonates (Bps) interfere as well with bone microenvironment inhibiting the survival of stromal cells and hampering the contact between plasma and stromal cells. In this review we will revise preclinical evidences, and the potential mechanisms of the antitumor activity of zoledronic acid.
Collapse
Affiliation(s)
- Alessandro Corso
- Division of Hematology, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | | | | |
Collapse
|
32
|
Zhu Y, Casey PJ, Kumar AP, Pervaiz S. Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell Death Dis 2013; 4:e568. [PMID: 23559002 PMCID: PMC3641326 DOI: 10.1038/cddis.2013.103] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although statins are known to inhibit proliferation and induce death in a number of cancer cell types, the mechanisms through which downregulation of the mevalonate (MVA) pathway activates death signaling remain poorly understood. Here we set out to unravel the signaling networks downstream of the MVA pathway that mediate the death-inducing activity of simvastatin. Consistent with previous reports, exogenously added geranylgeranylpyrophosphate, but not farnesylpyrophosphate, prevented simvastatin's growth-inhibitory effect, thereby suggesting the involvement of geranylgeranylated proteins such as Rho GTPases in the anticancer activity of simvastatin. Indeed, simvastatin treatment led to increased levels of unprenylated Ras homolog gene family, member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). Intriguingly, instead of inhibiting the functions of Rho GTPases as was expected with loss of prenylation, simvastatin caused a paradoxical increase in the GTP-bound forms of RhoA, Rac1 and Cdc42. Furthermore, simvastatin disrupted the binding of Rho GTPases with the cytosolic inhibitor Rho GDIα, which provides a potential mechanism for GTP loading of the cytosolic Rho GTPases. We also show that the unprenylated RhoA- and Rac1-GTP retained at least part of their functional activities, as evidenced by the increase in intracellular superoxide production and JNK activation in response to simvastatin. Notably, blocking superoxide production attenuated JNK activation as well as cell death induced by simvastatin. Finally, we provide evidence for the involvement of the B-cell lymphoma protein 2 family, Bcl-2-interacting mediator (Bim), in a JNK-dependent manner, in the apoptosis-inducing activity of simvastatin. Taken together, our data highlight the critical role of non-canonical regulation of Rho GTPases and involvement of downstream superoxide-mediated activation of JNK pathway in the anticancer activity of simvastatin, which would have potential clinical implications.
Collapse
Affiliation(s)
- Y Zhu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Sassano A, Altman JK, Gordon LI, Platanias LC. Statin-dependent activation of protein kinase Cδ in acute promyelocytic leukemia cells and induction of leukemic cell differentiation. Leuk Lymphoma 2012; 53:1779-84. [PMID: 22356114 DOI: 10.3109/10428194.2012.668287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Statins are HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase inhibitors, which block the conversion of HMG-CoA to mevalonate and have potent cholesterol lowering properties. Beyond their importance in the generation of lipid lowering effects, the regulatory effects of statins on the mevalonate pathway have a significant impact on multiple other cellular functions. There is now extensive evidence that statins have anti-inflammatory and anti-neoplastic properties, but the precise mechanisms by which such responses are generated are not well understood. In the present study we demonstrate that statins engage a member of the protein kinase C (PKC) family of proteins, PKCδ, in acute promyelocytic leukemia (APL) cells. Our study shows that atorvastatin and fluvastatin induce proteolytic activation of PKCδ in the APL NB4 cell line, which expresses the t(15;17) translocation. Such engagement of PKCδ results in induction of its kinase domain and downstream regulation of pathways important for statin-dependent leukemia cell differentiation. Our research shows that the function of PKCδ is essential for statin-induced leukemic cell differentiation, as demonstrated by studies involving selective targeting of PKCδ using siRNAs. We also demonstrate that the potent enhancing effects of statins on all-trans retinoic acid (ATRA)-induced gene expression for CCL3 and CCL4 requires the function of PKCδ, suggesting a mechanism by which statins may promote ATRA-induced antileukemic responses. Altogether, our data establish a novel function for PKCδ as a mediator of statin-induced differentiation of APL cells and antileukemic effects.
Collapse
Affiliation(s)
- Antonella Sassano
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology and Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
34
|
van der Weide K, de Jonge-Peeters S, Huls G, Fehrmann RSN, Schuringa JJ, Kuipers F, de Vries EGE, Vellenga E. Treatment with high-dose simvastatin inhibits geranylgeranylation in AML blast cells in a subset of AML patients. Exp Hematol 2011; 40:177-186.e6. [PMID: 22120639 DOI: 10.1016/j.exphem.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/26/2011] [Accepted: 11/22/2011] [Indexed: 01/09/2023]
Abstract
It is currently unknown whether the in vitro effects observed with statins in acute myeloid leukemia (AML) cells, including lowering of cholesterol, inhibition of isoprenylation, and sensitization to chemotherapy, also occur in vivo. Therefore, AML mononuclear cells (MNCs) were isolated from 12 patients before and after 7 days of high-dose (7.5-15 mg/kg/day) simvastatin treatment. Parallel mouse studies were performed to have, in addition to AML cells, access to liver tissue, a major target of statins. Serum cholesterol levels were lowered by simvastatin in all patients, however, only limited changes in the messenger RNA expression of cholesterol metabolism genes were seen in patient and mouse MNCs compared to murine liver cells. Still, two out of seven patients displayed an increased in vitro chemosensitivity of their AML cells upon simvastatin treatment. Gene set enrichment analysis on microarray data of AML patient cells and Western blot analysis for the isoprenylated proteins DnaJ and Rap1 on murine and AML patient MNCs demonstrated that in vivo simvastatin treatment resulted in inhibition of geranylgeranylation in murine MNCs and in a subset of patient AML MNCs. In summary, our data demonstrate that simvastatin treatment results in chemosensitization and inhibition of geranylgeranylation in AML cells of a subset of patients.
Collapse
Affiliation(s)
- Karen van der Weide
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wiemer AJ, Wiemer DF, Hohl RJ. Geranylgeranyl diphosphate synthase: an emerging therapeutic target. Clin Pharmacol Ther 2011; 90:804-12. [PMID: 22048229 DOI: 10.1038/clpt.2011.215] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteins modified post-translationally by geranylgeranylation have been implicated in numerous cellular processes related to human disease. In recent years, the study of protein geranylgeranylation has advanced tremendously in both cellular and animal models. The advances in our understanding of the biological roles of geranylgeranylated proteins have been paralleled by advances in the medicinal chemistry of geranylgeranylation inhibitors such as those that target geranylgeranyl transferases I and II and geranylgeranyl diphosphate synthase (GGDPS). Although these findings provide the rationale for further development of geranylgeranylation as a therapeutic target, more advanced studies on the efficacy of this approach in various disease models will be required to support translation to clinical studies. This article attempts to describe the advances in (and the challenges of) validation of GGDPS as a novel therapeutic target and assesses the advantages of targeting GGDPS relative to other enzymes involved in geranylgeranylation.
Collapse
Affiliation(s)
- A J Wiemer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
36
|
Edwards DC, McKinnon KM, Fenizia C, Jung KJ, Brady JN, Pise-Masison CA. Inhibition of geranylgeranyl transferase-I decreases cell viability of HTLV-1-transformed cells. Viruses 2011; 3:1815-35. [PMID: 22069517 PMCID: PMC3205383 DOI: 10.3390/v3101815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL), an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Dustin C. Edwards
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Katherine M. McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Claudio Fenizia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.M.M.); (C.F.)
| | - Kyung-Jin Jung
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - John N. Brady
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
| | - Cynthia A. Pise-Masison
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (D.C.E.); (K.-J.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-435-2499; Fax: +1-301-496-4951
| |
Collapse
|
37
|
Heterogeneity in simvastatin-induced cytotoxicity in AML is caused by differences in Ras-isoprenylation. Leukemia 2011; 26:845-8. [DOI: 10.1038/leu.2011.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
The backbone of progress--preclinical studies and innovations with zoledronic acid. Crit Rev Oncol Hematol 2011; 77 Suppl 1:S3-S12. [PMID: 21353178 DOI: 10.1016/s1040-8428(11)70003-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphosphonates (BPs) are antiresorptive agents that block pathologic bone resorption by inhibiting osteoclast function and later inducing osteoclast apoptosis. These agents localize to bone and break the vicious cycle of bone resorption that results from cross-stimulation between cancer cells and the bone remodeling cells, thereby reducing cancer-induced osteolysis and the tumor burden in bone. Thus nitrogen-containing BPs (N-BPs) have well established clinical benefits in the treatment of bone metastases from solid tumors and bone lesions from multiple myeloma. Preclinical data indicate that N-BPs, especially zoledronic acid (ZOL), can exert antimyeloma activity both in vitro and in vivo. Studies show that N-BPs can inhibit multiple intracellular processes essential for cancer cell proliferation and invasion and induce apoptosis. Furthermore, clinically relevant doses of N-BPs inhibit tumor-associated angiogenesis and can modulate macrophage phenotype in vivo, which is likely to contribute to anticancer effects.
Collapse
|
39
|
Hus M, Grzasko N, Szostek M, Pluta A, Helbig G, Woszczyk D, Adamczyk-Cioch M, Jawniak D, Legiec W, Morawska M, Kozinska J, Waciński P, Dmoszynska A. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann Hematol 2011; 90:1161-6. [PMID: 21698395 PMCID: PMC3168480 DOI: 10.1007/s00277-011-1276-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 06/07/2011] [Indexed: 12/22/2022]
Abstract
The treatment of patients with multiple myeloma usually includes many drugs including thalidomide, lenalidomide and bortezomib. Lovastatin and other inhibitors of HMG-CoA reductase demonstrated to exhibit antineoplasmatic and proapoptotic properties in numerous in vitro studies involving myeloma cell lines. We treated 91 patients with relapsed or refractory multiple myeloma with thalidomide, dexamethasone and lovastatin (TDL group, 49 patients) or thalidomide and dexamethasone (TD group, 42 patients). A clinical response defined of at least 50% reduction of monoclonal band has been observed in 32% of TD patients and 44% of TDL patients. Prolongation of overall survival and progression-free survival in the TDL group as compared with the TD group has been documented. The TDL regimen was safe and well tolerated. The incidence of side effects was comparable in both groups. Plasma cells have been cultured in vitro with thalidomide and lovastatin to assess the impact of both drugs on the apoptosis rate of plasma cells. In vitro experiments revealed that the combination of thalidomide and lovastatin induced higher apoptosis rate than apoptosis induced by each drug alone. Our results suggest that the addition of lovastatin to the TD regimen may improve the response rate in patients with relapsed or refractory myeloma.
Collapse
Affiliation(s)
- Marek Hus
- Department of Haematology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, Lublin, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ageberg M, Rydström K, Lindén O, Linderoth J, Jerkeman M, Drott K. Inhibition of geranylgeranylation mediates sensitivity to CHOP-induced cell death of DLBCL cell lines. Exp Cell Res 2011; 317:1179-91. [PMID: 21324313 DOI: 10.1016/j.yexcr.2011.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/13/2022]
Abstract
Prenylation is a post-translational hydrophobic modification of proteins, important for their membrane localization and biological function. The use of inhibitors of prenylation has proven to be a useful tool in the activation of apoptotic pathways in tumor cell lines. Rab geranylgeranyl transferase (Rab GGT) is responsible for the prenylation of the Rab family. Overexpression of Rab GGTbeta has been identified in CHOP refractory diffuse large B cell lymphoma (DLBCL). Using a cell line-based model for CHOP resistant DLBCL, we show that treatment with simvastatin, which inhibits protein farnesylation and geranylgeranylation, sensitizes DLBCL cells to cytotoxic treatment. Treatment with the farnesyl transferase inhibitor FTI-277 or the geranylgeranyl transferase I inhibitor GGTI-298 indicates that the reduction in cell viability was restricted to inhibition of geranylgeranylation. In addition, treatment with BMS1, a combined inhibitor of farnesyl transferase and Rab GGT, resulted in a high cytostatic effect in WSU-NHL cells, demonstrated by reduced cell viability and decreased proliferation. Co-treatment of BMS1 or GGTI-298 with CHOP showed synergistic effects with regard to markers of apoptosis. We propose that inhibition of protein geranylgeranylation together with conventional cytostatic therapy is a potential novel strategy for treating patients with CHOP refractory DLBCL.
Collapse
Affiliation(s)
- Malin Ageberg
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Abeltino M, Bonomini S, Bolzoni M, Storti P, Colla S, Todoerti K, Agnelli L, Neri A, Rizzoli V, Giuliani N. The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol 2011; 39:55-65. [DOI: 10.1016/j.exphem.2010.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022]
|
42
|
Gao J, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ge YS, Yu JH, Ren WH, Liu WB, Zhang CH. Combined inhibitory effects of celecoxib and fluvastatin on the growth of human hepatocellular carcinoma xenografts in nude mice. J Int Med Res 2010; 38:1413-27. [PMID: 20926014 DOI: 10.1177/147323001003800423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was designed to investigate the in vivo growth inhibitory effects of celecoxib, a cyclo-oxygenase-2 inhibitor, and fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on the hepatocellular carcinoma (HCC) cell line, BEL-7402. Athymic nude mice implanted with BEL-7402 cells were given celecoxib and fluvastatin, either alone or in combination, and the effect of treatment on tumour growth was evaluated after 6 weeks. The combination of celecoxib and fluvastatin enhanced inhibition of tumour growth, induction of apoptosis, inhibition of tumour cell proliferation, and inhibition of tumour angiogenesis compared with either treatment alone. The combination of celecoxib and fluvastatin also increased levels of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1), decreased levels of p-Akt, myeloid cell leukaemia-1 (Mcl-1) and survivin protein, but had no effect on Akt protein levels in tumours. These results suggest that celecoxib combined with fluvastatin would be more efficacious for the treatment of HCC than either treatment alone and this combination of therapy warrants further research.
Collapse
Affiliation(s)
- J Gao
- Centre for the Study of Liver Cancer, and Department of Hepatic Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Isoprenoid biosynthetic pathway inhibition disrupts monoclonal protein secretion and induces the unfolded protein response pathway in multiple myeloma cells. Leuk Res 2010; 35:551-9. [PMID: 20828814 DOI: 10.1016/j.leukres.2010.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
Abstract
Myeloma is characterized by the overproduction and secretion of monoclonal protein. Inhibitors of the isoprenoid biosynthetic pathway (IBP) have pleiotropic effects in myeloma cells. To investigate whether IBP inhibition interferes with monoclonal protein secretion, human myeloma cells were treated with specific inhibitors of the IBP or prenyltransferases. These studies demonstrate that agents that inhibit Rab geranylgeranylation disrupt light chain trafficking, lead to accumulation of light chain in the endoplasmic reticulum, activate the unfolded protein response pathway and induce apoptosis. These studies provide a novel mechanism of action for IBP inhibitors and suggest that further exploration of Rab-targeted agents in myeloma is warranted.
Collapse
|
44
|
Abstract
Abstract
Statin inhibitors, used to control hypercholesterolemia, trigger apoptosis of hematologic tumor cells and therefore have immediate potential as anticancer agents. Evaluations of statins in acute myelogenous leukemia and multiple myeloma have shown that statin efficacy is mixed, with only a subset of tumor cells being highly responsive. Our goal was to distinguish molecular features of statin-sensitive and -insensitive myeloma cells and gain insight into potential predictive markers. We show that dysregulation of the mevalonate pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In sensitive cells, the classic feedback response to statin exposure is lost. This results in deficient up-regulation of 2 isoforms of hydroxymethylglutaryl coenzyme A reductase: the rate-limiting enzyme of the mevalonate pathway and hydroxymethylglutaryl coenzyme A synthase 1. To ascertain the clinical utility of these findings, we demonstrate that a subset of primary myeloma cells is sensitive to statins and that monitoring dysregulation of the mevalonate pathway may distinguish these cancers. We also show statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring this dysregulation. This determinant of sensitivity further provides molecular rationale for the significant therapeutic index of statins on these tumor cells.
Collapse
|
45
|
Schaafsma D, Dueck G, Ghavami S, Kroeker A, Mutawe MM, Hauff K, Xu FY, McNeill KD, Unruh H, Hatch GM, Halayko AJ. The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol 2010; 44:394-403. [PMID: 20463291 DOI: 10.1165/rcmb.2010-0052oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells promote fibroproliferative airway remodeling in asthma, and transforming growth factor β1 (TGFβ1) is a key inductive signal. Statins are widely used to treat hyperlipidemia. Growing evidence indicates they also exert a positive impact on lung health, but the underlying mechanisms are unclear. We assessed the effects of 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase inhibition with simvastatin on the fibrotic function of primary cultured human airway smooth muscle cells. Simvastatin blocked de novo cholesterol synthesis, but total myocyte cholesterol content was unaffected. Simvastatin also abrogated TGFβ1-induced collagen I and fibronectin expression, and prevented collagen I secretion. The depletion of mevalonate cascade intermediates downstream from HMG-CoA underpinned the effects of simvastatin, because co-incubation with mevalonate, geranylgeranylpyrophosphate, or farnesylpyrophosphate prevented the inhibition of matrix protein expression. We also showed that human airway myocytes express both geranylgeranyl transferase 1 (GGT1) and farnesyltransferase (FT), and the inhibition of GGT1 (GGTI inhibitor-286, 10 μM), but not FT (FTI inhibitor-277, 10 μM), mirrored the suppressive effects of simvastatin on collagen I and fibronectin expression and collagen I secretion. Moreover, simvastatin and GGTI-286 both prevented TGFβ1-induced membrane association of RhoA, a downstream target of GGT1. Our findings suggest that simvastatin and GGTI-286 inhibit synthesis and secretion of extracellular matrix proteins by human airway smooth muscle cells by suppressing GGT1-mediated posttranslational modification of signaling molecules such as RhoA. These findings reveal mechanisms related to evidence for the positive impact of statins on pulmonary health.
Collapse
Affiliation(s)
- Dedmer Schaafsma
- Department of Physiology, Section of Respiratory Disease, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen S, Fu L, Raja SM, Yue P, Khuri FR, Sun SY. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer 2010; 9:23. [PMID: 20113484 PMCID: PMC2824632 DOI: 10.1186/1476-4598-9-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geranylgeranyltransferase I (GGTase I) has emerged as a cancer therapeutic target. Accordingly, small molecules that inhibit GGTase I have been developed and exhibit encouraging anticancer activity in preclinical studies. However, their underlying anticancer mechanisms remain unclear. Here we have demonstrated a novel mechanism by which GGTase I inhibition modulates apoptosis. RESULTS The GGTase I inhibitor GGTI-298 induced apoptosis and augmented tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. GGTI-298 induced DR4 and DR5 expression and reduced c-FLIP levels. Enforced c-FLIP expression or DR5 knockdown attenuated apoptosis induced by GGTI-298 and TRAIL combination. Surprisingly, DR4 knockdown sensitized cancer cells to GGTI298/TRAIL-induced apoptosis. The combination of GGTI-298 and TRAIL was more effective than each single agent in decreasing the levels of IkappaBalpha and p-Akt, implying that GGTI298/TRAIL activates NF-kappaB and inhibits Akt. Interestingly, knockdown of DR5, but not DR4, prevented GGTI298/TRAIL-induced IkappaBalpha and p-Akt reduction, suggesting that DR5 mediates reduction of IkappaBalpha and p-Akt induced by GGTI298/TRAIL. In contrast, DR4 knockdown further facilitated GGTI298/TRAIL-induced p-Akt reduction. CONCLUSIONS Both DR5 induction and c-FLIP downregulation contribute to GGTI-298-mediated augmentation of TRAIL-induced apoptosis. Moreover, DR4 appears to play an opposite role to DR5 in regulation of GGTI/TRAIL-induced apoptotic signaling.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
47
|
Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:452-67. [PMID: 20045437 DOI: 10.1016/j.bbamcr.2009.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/15/2023]
Abstract
Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.
Collapse
|
48
|
Callegari S, McKinnon RA, Andrews S, de Barros Lopes MA. Atorvastatin-induced cell toxicity in yeast is linked to disruption of protein isoprenylation. FEMS Yeast Res 2009; 10:188-98. [PMID: 20002195 DOI: 10.1111/j.1567-1364.2009.00593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Statins, used to treat hypercholesterolemia, are one of the most frequently prescribed drug classes in the developed world. However, a significant proportion of users suffer symptoms of myotoxicity, and currently, the molecular mechanisms underlying myotoxicity remain ambiguous. In this study, Saccharomyces cerevisiae was exploited as a model system to gain further insight into the molecular mechanisms of atorvastatin toxicity. Atorvastatin-treated yeast cells display marked morphological deformities, have reduced cell viability and are highly vulnerable to perturbed mitochondrial function. Supplementation assays of atorvastatin-treated cells reveal that both loss of viability and mitochondrial dysfunction occur as a consequence of perturbation of the sterol synthesis pathway. This was further investigated by supplementing statin-treated cells with various metabolites of the sterol synthesis pathway that are believed to be essential for cell function. Ergosterol, coenzyme Q and a heme precursor were all ineffective in the prevention of statin-induced mitochondrial disruption and cell death. However, the addition of geranylgeranyl pyrophosphate and farnesyl pyrophosphate significantly restored cell viability, although these did not overcome petite induction. This highlights the pleiotropic nature of statin toxicity, but has established protein prenylation disruption as one of the principal mechanisms underlying statin-induced cell death in yeast.
Collapse
Affiliation(s)
- Sylvie Callegari
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
49
|
van der Spek E. Targeting the mevalonate pathway in multiple myeloma. Leuk Res 2009; 34:267-8. [PMID: 19695704 DOI: 10.1016/j.leukres.2009.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
50
|
Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leuk Res 2009; 34:344-51. [PMID: 19646757 DOI: 10.1016/j.leukres.2009.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/05/2009] [Accepted: 06/30/2009] [Indexed: 11/21/2022]
Abstract
Thalidomide has emerged as an effective agent for treating multiple myeloma, however the precise mechanism of action remains unknown. Agents known to target the isoprenoid biosynthetic pathway (IBP) can have cytotoxic effects in myeloma cells. The interactions between thalidomide and IBP inhibitors in human multiple myeloma cells were evaluated. Enhanced cytotoxicity and induction of apoptosis were observed in RPMI-8226 cells. Examination of intracellular levels of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) revealed a wide variance in basal levels and response to IBP inhibitors. These findings provide a mechanism for the differential sensitivity of myeloma cells to pharmacologic manipulation of the IBP.
Collapse
|