1
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
2
|
Stewart W, Hejl C, Guleria RS, Gupta S. Effect of thymosin β4 on lipopolysaccharide‑stimulated brain microvascular endothelial cell remodeling: A possible role in blood‑brain barrier injury. Exp Ther Med 2023; 26:468. [PMID: 37664684 PMCID: PMC10469577 DOI: 10.3892/etm.2023.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/07/2023] [Indexed: 09/05/2023] Open
Abstract
War veterans, in particular, are more prone to mental illness as they are more likely to have encountered multiple traumatic brain injuries (TBIs) whilst serving on active duty in war zone areas. A TBI is known to cause mortality or serious neurological disabilities among survivors and elicits a number of pathological processes, including neuroinflammation and blood brain barrier (BBB) disruption, leading to secondary brain damage and subsequent impairment of the neurovascular unit. Although several drugs exhibit promising effects for TBI, the repertoire of currently available therapeutic strategies remains limited. Thymosin 4 (Tβ4) is a 43-amino acid G-acting sequestering peptide that confers neuroprotective potential in TBI models. However, its role in BBB function remains unclear. Further research into the mechanism of BBB disruption induced by TBI and its specific role in neurovascular pathophysiology is necessary. In the present study, the protective effects of Tβ4 in lipopolysaccharide (LPS)-stimulated gene expression of several tight junction proteins, inflammatory genes, apoptotic genes, and adhesion genes in human brain microvascular endothelial cells (hBMVECs), one of the pivotal cell types in the BBB, were reported. The results suggested that pretreatment with Tβ4 reversed the LPS-induced damage of BBB components in hBMVECs. Furthermore, these results identified neuregulin 1 as a possible target for Tβ4. Therefore, it is proposed that Tβ4-mediated cellular signaling in hBMVEC may be vital for understanding the association between the BBB and TBI pathophysiology, which warrants further investigation.
Collapse
Affiliation(s)
- William Stewart
- Biomarkers & Genetics Core, VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Waco, TX 76711, USA
| | - Christina Hejl
- Biomarkers & Genetics Core, VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Waco, TX 76711, USA
| | - Rakeshwar S. Guleria
- Biomarkers & Genetics Core, VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Waco, TX 76711, USA
| | - Sudhiranjan Gupta
- Biomarkers & Genetics Core, VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Waco, TX 76711, USA
| |
Collapse
|
3
|
Qu Y, Wang Q, Fu S, Guo X, Luan J, Mu D. The Effect of Thymosin beta4 on the Survival of Autologous Fat Grafting: A Preliminary Study. Aesthet Surg J 2020; 40:NP519-NP529. [PMID: 32144415 DOI: 10.1093/asj/sjaa062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Autologous fat grafting is a common procedure to improve tissue deficiencies. However, the survival rate of fat grafting is unpredictable. Thymosin beta 4 (Tß4), a multifunctional peptide containing 43 amino acids, is effective in angiogenesis, inhibiting apoptosis and inflammation. OBJECTIVES The authors initially investigated the potential effect of Tß4 in fat grafting. METHODS Adipose tissue premixed exogenous Tß4 were transplanted into rabbit ears. Rabbits were randomly assigned to 3 groups: group A, 5 μg/mL Tß4; group B, 10 μg/mL Tß4; and group C, phosphate-buffered saline buffer as a blank control. The fat grafts were subjected to magnetic resonance imaging at 2, 4, and 12 weeks in vivo. Each harvested graft was analyzed at 3 time points after transplantation. RESULTS The fat grafts in the Tß4-treated groups showed better volume and weight retention, greater adipose tissue integrity, adipocyte viability, and angiogenesis. The results of dynamic contrast-enhanced magnetic resonance imaging also showed that the experimental groups increased microcirculation perfusion of the grafts. CONCLUSIONS The study proved that Tß4 could improve adipose tissue survival and neovascularization. It may be useful for fat grafting as a potential protective reagent.
Collapse
Affiliation(s)
- Yaping Qu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Qian Wang
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Su Fu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoshuang Guo
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jie Luan
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Dali Mu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Al Saleh HA, Haas-Neill S, Al-Hashimi A, Kapoor A, Shayegan B, Austin RC, Al-Nedawi K. Thrombotic characteristics of extracellular vesicles derived from prostate cancer cells. Prostate 2018; 78:953-961. [PMID: 29761522 DOI: 10.1002/pros.23653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prostate cancer (PC) patients in advanced stages of the disease have high risk of blood coagulation complications. The procoagulant molecule Tissue factor (TF), and the fibrinolysis inhibitor plasminogen activator inhibitor-1 PAI-1 play important role in this complication. Extracellular vesicles (EV) shed from cancer cells may contribute to the regulation of TF and PAI-1. The procoagulant activity of EV can be associated with the oncogenic and metastatic characteristics of their cells. METHODS We have expressed EGFRvIII in DU145 cells to assess the role of this oncogene in the procoagulant activity of EV. The intercellular exchange of TF via EV was assessed by downregulating its expression in DU145 cells using shRNA vector, and determining the transfer of TF via EV enriched with the protein. Two PC cell lines with different metastatic potential were used to assess the correlation between the procoagulant activity of EV and the metastatic potential of PC cells. Photometric assays were used to determine FXa-activity and thrombin generation as indicators for the procoagulant activity of EV. Double-tagged proteinase-activated receptor 1(PAR-1) expressed in CHO cells to assess its activation by EV. RESULTS The expression of EGFRvIII in DU145 cells led to increased mRNA levels for TF and PAI-1, but the increase in these proteins expression was detected mostly in the EV. EV with enhanced levels of TF protein conferred higher TF procoagulant activity on the acceptor cells by intercellular exchange of this protein. Procoagulant activity of EV, assessed by FXa activity, and thrombin generation, was correlated with the oncogenic and metastatic potential of PC cells. The ability of EV to generate thrombin led to the activation of PAR-1, which was evident by the truncation of tagged-PAR-1. CONCLUSION The active oncogene EGFRvIII increases the concentration of TF and PAI-1 in EV. The procoagulant activity of EV is associated with the oncogenic and metastatic characteristics of their PC cells. Also, EV may contribute to the high procoagulant activity in the tumour microenvironment by the intercellular exchange of TF. Finally, through the generation of thrombin, EV can activate PAR-1, which evidently contributes to cancer progression, linking the coagulation system to tumor progression.
Collapse
Affiliation(s)
- Hassan A Al Saleh
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Sandor Haas-Neill
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Ali Al-Hashimi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Anil Kapoor
- Division of Urology, Department of Surgery, McMaster University, Hamilton, Canada
| | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University, Hamilton, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Sosne G, Rimmer D, Kleinman H, Ousler G. Thymosin Beta 4. VITAMINS AND HORMONES 2016; 102:277-306. [DOI: 10.1016/bs.vh.2016.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Huang L, Niu C, Willard B, Zhao W, Liu L, He W, Wu T, Yang S, Feng S, Mu Y, Zheng L, Li K. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2015; 6:77. [PMID: 25889491 PMCID: PMC4425931 DOI: 10.1186/s13287-015-0061-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/14/2014] [Accepted: 03/24/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have the ability to proliferate in vivo with a large variety of differentiation potentials and therefore are widely used as an ideal material for cell therapy. MSCs derived from pig and human sources are similar in many aspects, such as cell immunophenotype and functional characteristics. However, differences in proteomics and the molecular mechanisms of cell functions between porcine bone marrow MSCs (BM-MSCs) and umbilical cord MSCs (UC-MSCs) are largely unknown. To the best of our knowledge, MSCs collected from different tissue have specific phenotype and differentiation ability in response to microenvironment, known as a niche. METHODS Porcine BM-MSCs and UC-MSCs were evaluated with flow cytometric and adipogenic and osteogenic differentiation analyses. We used isobaric tagging for relative and absolute quantitation (iTRAQ), combined with liquid chromatography-tandem mass spectrometry, to identify differentially expressed proteins (DEPs) between these two types of MSCs. Kyoto Encyclopedia of Genes and Genomes pathway and phenotype analyses were used to understand the links between cell migration ability and DEPs. RESULTS Two separate iTRAQ experiments were conducted, identifying 95 DEPs (95% confidence interval). Five of these proteins were verified by Western blotting. These 95 DEPs were classified in terms of biological regulation, metabolic process, developmental process, immune system process, reproduction, death, growth, signaling, localization, response to stimulus, biological adhesion, and cellular component organization. Our study is the first to show results indicating that porcine BM-MSCs have a higher migration capability than UC-MSCs. Finally, one of the DEPs, Vimentin, was verified to have a positive role in MSC migration. CONCLUSIONS These results represent the first attempt to use proteomics specifically targeted to porcine MSCs of different tissues. The identified components should help reveal a variety of tissue-specific functions in tissue-derived MSC populations and could serve as important tools for the regeneration of particular tissues in future stem cell-based tissue engineering studies using animal models.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District 100191, Beijing, China.
| | - Belinda Willard
- Cleveland Clinic Lerner Research Institute Mass Spectrometry Laboratory for Protein Sequencing, Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Weimin Zhao
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Lan Liu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Wei He
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Shutang Feng
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District 100191, Beijing, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District 100193, Beijing, China.
| |
Collapse
|
7
|
Kozaczuk A, Selmi A, Bednarek R. Bacterial expression, purification and angiogenesis-promoting activity of human thymosin β4. Protein Expr Purif 2013; 90:142-52. [PMID: 23769831 DOI: 10.1016/j.pep.2013.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 01/23/2023]
Abstract
Thymosin β4 (Tβ4) is an actin-binding peptide involved in tissue regeneration and angiogenesis. This 43-amino acid peptide is chemically synthesized for research or clinical trials. To overcome the high costs of solid phase synthesis, we developed a genetic engineering procedure of Tβ4 expression in a protease-deficient host strain, Escherichia coli BL21(DE3), transformed with different expression vectors (pRSETA, pET-15b and pEcoli-Cterm6 × HN). The recombinant, non-glycosylated peptide was overexpressed in soluble form and purified by two-step immobilized metal ion affinity chromatography. Use of the pET vector expression system allowed for easy removal of the polyhistidine tag by thrombin. Functional studies revealed that recombinant Tβ4 stimulated angiogenesis via activation of the endothelial proteolytic systems, inhibition of endothelial cell adhesion, promotion of migration and capillary tube formation in Matrigel, and that its activity was similar to that observed for the synthetic peptide. The presented study comprises the first evidence that recombinant Tβ4 promotes angiogenesis in an in vitro endothelial cell model.
Collapse
Affiliation(s)
- Anna Kozaczuk
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | |
Collapse
|
8
|
Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int 2013; 84:1166-75. [PMID: 23739235 PMCID: PMC3830708 DOI: 10.1038/ki.2013.209] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 02/14/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Previously we found thymosin β4 (Tβ4) is up-regulated in glomerulosclerosis and required for angiotensin II-induced expression of plasminogen activator inhibitor-1 (PAI-1) in glomerular endothelial cells. Tβ4 has beneficial effects in dermal and corneal wound healing and heart disease yet its effects in kidney disease are unknown. Here we studied renal fibrosis in wild type and PAI-1 knockout mice following unilateral ureteral obstruction to explore the impact of Tβ4 and its prolyl oligopeptidase tetrapeptide degradation product, Ac-SDKP, in renal fibrosis. Additionally, we explored interactions of Tβ4 with PAI-1. Treatment with Ac-SDKP significantly decreased fibrosis in both wild type and PAI-1 knockout mice, as observed by decreased collagen and fibronectin deposition, fewer myofibroblasts and macrophages, and suppressed pro-fibrotic factors. In contrast, Tβ4 plus a prolyl oligopeptidase inhibitor significantly increased fibrosis in wild type mice. Tβ4 alone also promoted repair and reduced late fibrosis in wild type mice. Importantly, both pro-fibrotic effects of Tβ4 plus the prolyl oligopeptidase inhibitor, and late reparative effects of Tβ4 alone, were absent in PAI-1 knockout mice. Thus, Tβ4 combined with prolyl oligopeptidase inhibition, is consistently pro-fibrotic, but by itself, has anti-fibrotic effects in late stage fibrosis, while Ac-SDKP has consistent anti-fibrotic effects in both early and late stages of kidney injury. These effects of Tβ4 are dependent on PAI-1.
Collapse
|
9
|
Cierniewski CS, Sobierajska K, Selmi A, Kryczka J, Bednarek R. Thymosin β4 is rapidly internalized by cells and does not induce intracellular Ca2+ elevation. Ann N Y Acad Sci 2013; 1269:44-52. [PMID: 23045969 DOI: 10.1111/j.1749-6632.2012.06685.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymosin β4 (Tβ4) is a multifunctional protein that has pleiotropic activities both intracellularly and extracellularly. The mechanisms by which it influences cellular processes such as adhesion, migration, differentiation, or apoptosis are not yet understood. Calcium is a ubiquitous signal molecule that is involved in the regulation of almost all cellular functions. Our data indicate that the release of Ca(2+) from intracellular stores following stimulation of cells with Tβ4 does not occur. Interestingly, Tβ4 becomes rapidly internalized, supporting the concept that it may express its activities via intracellular receptors.
Collapse
Affiliation(s)
- Czeslaw S Cierniewski
- Department of Molecular and Medical Biophysics, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|
10
|
Ock MS, Song KS, Kleinman H, Cha HJ. Thymosin β4 stabilizes hypoxia-inducible factor-1α protein in an oxygen-independent manner. Ann N Y Acad Sci 2013; 1269:79-83. [PMID: 23045974 DOI: 10.1111/j.1749-6632.2012.06657.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The small actin-binding protein thymosin β4 (Tβ4) is understood to stimulate angiogenesis. Previously, we reported that Tβ4 induces angiogenesis by increasing vascular endothelial growth factor (VEGF) expression, but the mechanism underlying how Tβ4 upregulates VEGF expression remain unknown. To identify the mechanism of VEGF induction by Tβ4, we measured VEGF promoter activity and analyzed the effect of Tβ4 on VEGF RNA stability. The Tβ4 peptide had no effect on either VEGF promoter activity or VEGF RNA stability. We focused on the possibility that Tβ4 may indirectly induce VEGF expression via hypoxia-inducible factor (HIF)-1α. We determined that Tβ4 increased the stability of HIF-1α protein under normoxic conditions. These data suggest that Tβ4 indirectly induces VEGF expression by increasing the protein stability of HIF-1α in an oxygen-independent manner.
Collapse
Affiliation(s)
- Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | | | | | | |
Collapse
|
11
|
Selmi A, Malinowski M, Brutkowski W, Bednarek R, Cierniewski CS. Thymosin β4 promotes the migration of endothelial cells without intracellular Ca2+ elevation. Exp Cell Res 2012; 318:1659-66. [DOI: 10.1016/j.yexcr.2012.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 01/15/2023]
|
12
|
Kim YC, Kim BG, Lee JH. Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 2012; 7:e35399. [PMID: 22623951 PMCID: PMC3356296 DOI: 10.1371/journal.pone.0035399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Thymosin β(10) (Tβ(10)) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10) diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10), that can overexpress the Tβ(10) gene in cancer cells. This was accomplished by replacing the native Tβ(10) gene promoter with the human TERT promoter in Ad.TERT.Tβ(10). We investigated the cancer suppression activity of Tβ(10) and found that Ad.TERT.Tβ(10) strikingly induced cancer-specific expression of Tβ(10) as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10) decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10) overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10) by Ad.TERT.Tβ(10) could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | | | | |
Collapse
|
13
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
14
|
Neutrophil Function and Apoptosis in Patients with Chronic Hepatitis C Treated with Pegylated Interferon α and Ribavirin. Arch Immunol Ther Exp (Warsz) 2011; 60:61-8. [DOI: 10.1007/s00005-011-0153-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 07/01/2011] [Indexed: 12/11/2022]
|
15
|
Huang G, Elferink CJ. A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression. Mol Pharmacol 2011; 81:338-47. [PMID: 22113079 DOI: 10.1124/mol.111.075952] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a mediator of xenobiotic toxicity, best recognized for conveying the deleterious effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. The AhR functions as a ligand-activated transcription factor that binds to a canonical xenobiotic response element (XRE) in association with the heterodimerization partner, the AhR nuclear translocator (Arnt) protein. However, within the repertoire of AhR target genes identified in recent years, many lack a clearly defined XRE highlighting the growing realization that AhR-mediated gene expression seems to involve additional mechanisms distinct from the well characterized process involving the XRE. The present study characterized a novel nonconsensus XRE (NC-XRE) in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene that recruits a novel protein-DNA complex responsible for TCDD-inducible expression. DNA binding studies and reporter assays identified key residues in the NC-XRE necessary for protein-DNA binding and function, respectively. Functional studies with AhR expression constructs confirm that TCDD-inducibility is AhR-dependent and requires direct AhR-DNA binding to the NC-XRE. Chromatin immunoprecipitation and RNA interference studies reveal that the Arnt protein is not a component of the NC-XRE-bound AhR complex, suggesting that in contrast to the XRE, AhR-dependent gene expression mediated through the NC-XRE may involve a new DNA binding partner.
Collapse
Affiliation(s)
- Gengming Huang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0654, USA
| | | |
Collapse
|
16
|
Goto N, Hiyoshi H, Ito I, Tsuchiya M, Nakajima Y, Yanagisawa J. Estrogen and antiestrogens alter breast cancer invasiveness by modulating the transforming growth factor-β signaling pathway. Cancer Sci 2011; 102:1501-8. [PMID: 21564419 DOI: 10.1111/j.1349-7006.2011.01977.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the later stages of breast cancer, estrogen receptor (ER)α-negative cancers typically have higher histological grades than ERα-positive cancers, and transforming growth factor (TGF)-β promotes invasion and metastasis. Our previous study indicated that ERα inhibited TGF-β signaling by inducing the degradation of Smad in an estrogen-dependent manner. In the present study, we report that the suppressive effects of ERα and estrogen on tumor progression are mediated by inhibiting TGF-β signaling. Furthermore, we investigated the effects of antiestrogens such as ICI182,780 (ICI) or tamoxifen (TAM) on TGF-β signaling and breast cancer invasiveness. The levels of total Smad and pSmad were reduced by estrogen, whereas ICI slightly increased them, and TAM had no effect. To investigate the effect of antiestrogens on breast cancer invasiveness, we generated highly migratory and invasive MCF-7-M5 cells. The migration and invasion of these cells were suppressed by the inhibitor of TGF-β receptor kinase, SB-505124, and estrogen. However, antiestrogens did not suppress the migration and invasion of these cells. In addition, we screened TGF-β target genes whose expression was reduced by estrogen treatment and identified four genes associated with breast cancer invasiveness and poor prognosis. The expression of these genes was not decreased by antiestrogens. These observations provide a new insight into estrogen function and the mechanisms underlying estrogen-mediated suppression of tumor progression.
Collapse
Affiliation(s)
- Natsuka Goto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
17
|
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Res Cardiol 2011; 106:829-47. [PMID: 21516490 PMCID: PMC3149675 DOI: 10.1007/s00395-011-0181-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/16/2022]
Abstract
Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair.
Collapse
|
18
|
Salhab M, Papillier P, Perreau C, Guyader-Joly C, Dupont J, Mermillod P, Uzbekova S. Thymosins β-4 and β-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation. Reprod Fertil Dev 2010; 22:1206-21. [PMID: 20883646 DOI: 10.1071/rd10015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/19/2010] [Indexed: 01/13/2023] Open
Abstract
β-Thymosins are small proteins that regulate the actin cytoskeleton and are involved in cell motility, differentiation, the induction of metalloproteinases, in anti-inflammatory processes and tumourigenesis. However, their roles in the ovary have not yet been elucidated. Using transcriptomics and real time reverse transcription-polymerase chain reaction validation, the present study demonstrates that thymosin β-4 (TMSB4) and thymosin β-10 (TMSB10) are upregulated in bovine cumulus cells (CCs) during in vitro maturation of cumulus-oocyte complexes (COCs) in parallel with an increase in mRNA expression of HAS2, COX2 and PGR genes. Using immunocytochemistry, both proteins were found to be localised mainly in granulosa cells, CCs and oocytes, in both the cytoplasm and nucleus, as well as being colocalised with F-actin stress fibres in CCs. Using different maturation mediums, we showed that the expression of TMSB10, but not TMSB4, was positively correlated with COC expansion and progesterone secretion and negatively correlated with apoptosis. Immunofluorescence, coupled with terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL), demonstrated the absence of TMSB4 and/or TMSB10 in apoptotic cells. TMSB10 expression was higher in COCs matured in vivo than in vitro, and differences related to the age of the animal were observed. TMSB4 and/or TMSB10 expression was unchanged, whereas HAS2 overexpressed in CCs from oocytes that developed to the blastocyst stage in vitro compared with those that did not. Thus, TMSB4 and/or TMSB10 ovarian expression patterns suggest that these two thymosins may be involved in cumulus modifications during maturation.
Collapse
Affiliation(s)
- Mohamad Salhab
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS,UMR6175, Université de Tours, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Cierniewski CS, Papiewska-Pajak I, Malinowski M, Sacewicz-Hofman I, Wiktorska M, Kryczka J, Wysocki T, Niewiarowska J, Bednarek R. Thymosin β4 regulates migration of colon cancer cells by a pathway involving interaction with Ku80. Ann N Y Acad Sci 2010; 1194:60-71. [PMID: 20536451 DOI: 10.1111/j.1749-6632.2010.05480.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Papiewska-Pajak I, Boncela J, Przygodzka P, Cierniewski CS. Autocrine effects of VEGF-D on endothelial cells after transduction with AD-VEGF-D(DeltaNDeltaC). Exp Cell Res 2010; 316:907-14. [PMID: 20096685 DOI: 10.1016/j.yexcr.2010.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 11/27/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Endothelial cells in tumor vessels display unusual characteristics in terms of survival and angiogenic properties which result from the increased expression of VEGF-D and its autocrine effect. To evaluate mechanisms by which VEGF-D leads to such abnormal phenotype, we searched for proteins with modified expression in HUVECs enriched in the recombinant mature VEGF-D (VEGFD(DeltaNDeltaC)) delivered by adenovirus. Expression of membrane proteins in endothelial cells was characterized by FACS using anti-human IT-Box-135 antibodies. HUVECs transduced with Ad-VEGF-D(DeltaNDeltaC) revealed markedly increased expression of proteins involved in adhesion and migration such as (a) integrins (alphaVbeta5, alpha2beta1, alpha5beta1, alphaMbeta2, alphaLbeta2), (b) matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), (c) components of fibrinolytic system (PAI-1, u-PAR), and (d) CD45, CD98, CD147. Interestingly, there also were numerous proteins with significantly reduced expression, particularly among surface exposed membrane proteins. Thus, it can be concluded that to induce proangiogenic phenotype and facilitate migration of HUVECs, VEGF-D(DeltaNDeltaC) not only upregulates expression of proteins known to participate in the cell-matrix interactions but also silences some membrane proteins which could interfere with this process.
Collapse
|
21
|
Lee HR, Yoon SY, Kang HB, Park S, Kim KE, Cho YH, Kim S, Kim CW, Cho BJ, Lee WJ, Bang SI, Park H, Cho D. Thymosin beta 4 enhances NK cell cytotoxicity mediated by ICAM-1. Immunol Lett 2009; 123:72-6. [PMID: 19369144 DOI: 10.1016/j.imlet.2009.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/04/2009] [Accepted: 02/15/2009] [Indexed: 10/21/2022]
Abstract
Thymosin beta 4 (T beta 4), which is the major G-actin sequestering protein, has been shown to have ubiquitous distribution and multiple biological activities. However, T beta 4's functions in relation to natural killer(NK) cells are still unknown. In this study, we show that synthetic T beta 4 peptide increases NK cell cytotoxicity mediated by intercellular adhesion molecule-1 (ICAM-1) through the secretion of cytolytic granules to target cells. This suggests that T beta 4 is a key activator of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Ha-reum Lee
- Department of Life Science, Sookmyung Women's University, Hyochangwon-gil 52, Yongsan-gu, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ito M, Iguchi K, Usui S, Hirano K. Overexpression of Thymosin .BETA.4 Increases Pseudopodia Formation in LNCaP Prostate Cancer Cells. Biol Pharm Bull 2009; 32:1101-4. [DOI: 10.1248/bpb.32.1101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Ito
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University
| | | | - Shigeyuki Usui
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University
| | | |
Collapse
|
23
|
Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN, Fung ET, Michel JB, Meilhac O. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 2008; 14:383-94. [PMID: 18496584 DOI: 10.2119/2008-00030.delbosc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/12/2008] [Indexed: 11/06/2022] Open
Abstract
Hypertension represents one of the main risk factors for vascular diseases. Genetic susceptibility may influence the rate of its development and the associated vascular remodeling. To explore markers of hypertension-related morbidity, we have used surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry to study changes in proteins released by the aorta of two rat strains with different susceptibilities to hypertension. Fischer and Brown Norway (BN) rats were divided into a control group and a group receiving low-dose N(Omega)-nitro-L-arginine methyl ester (L-NAME), a hypertensive drug, interfering with endothelial function. In spite of a significant elevation of blood pressure in both strains in response to L-NAME, BN rats exhibited a lower vascular remodeling in response to hypertension. Proteomic analysis of secreted aortic proteins by SELDI-TOF MS allowed detection of four mass-to-charge ratio (m/z) peaks whose corresponding proteins were identified as ubiquitin, smooth muscle (SM) 22alpha, thymosin beta4, and C-terminal fragment of filamin A, differentially secreted in Fischer rats in response to L-NAME. We have confirmed a strain-dependent difference in susceptibility to L-NAME-induced hypertension between BN and Fischer rats. The greater susceptibility of Fischer rats is associated with aortic wall hypertrophic remodeling, reflected by increased aortic secretion of four identified biomarkers. Similar variations in one of them, SM22alpha, also were observed in plasma, suggesting that this marker could be used to assess vascular damage induced by hypertension.
Collapse
Affiliation(s)
- Sandrine Delbosc
- Inserm, U698 Hematology, Bio-engineering and Cardiovascular Remodeling, University Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wozniacka A, Lesiak A, Boncela J, Smolarczyk K, McCauliffe DP, Sysa-Jedrzejowska A. The influence of antimalarial treatment on IL-1beta, IL-6 and TNF-alpha mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br J Dermatol 2008; 159:1124-30. [PMID: 18764842 DOI: 10.1111/j.1365-2133.2008.08804.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND There are very few data addressing the mechanisms of antimalarial treatment benefit locally within the skin of patients with lupus erythematosus, at the level of cytokine messenger RNA (mRNA) expression. OBJECTIVES The aim of this study was to evaluate whether 3 months of monotherapy with chloroquine influences the mRNA skin expression of interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha (TNF-alpha) in nonirradiated and locally ultraviolet B (UVB) irradiated nondiseased skin of patients with systemic lupus erythematosus (SLE). PATIENTS/METHODS Skin biopsies were collected from 14 patients with SLE 24 h after irradiation at one site and from an adjacent unirradiated site, before and after 3 months of chloroquine treatment. Messenger RNA levels for IL-1beta, IL-6 and TNF-alpha were determined by relative quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS There were no significant differences in the levels of mRNA cytokine expressions in the unirradiated sites before and after 3 months of chloroquine administration. In the irradiated sites, the expression of all three cytokine mRNA levels was significantly higher than in the unirradiated group, approximately 24 h after irradiation, before chloroquine treatment. Significantly lower expression of IL-1beta, IL-6 and TNF-alpha mRNAs was noted in irradiated skin samples after 3 months of chloroquine treatment. CONCLUSIONS These results demonstrate the local inhibitory effects of chloroquine on UVB-induced upregulation in the mRNA expression of proinflammatory cytokines in irradiated skin of SLE patients, and provide further insight into the apparent immunomodulatory, anti-inflammatory and photoprotective properties of chloroquine.
Collapse
Affiliation(s)
- A Wozniacka
- Department of Dermatology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Bednarek R, Boncela J, Smolarczyk K, Cierniewska-Cieslak A, Wyroba E, Cierniewski CS. Ku80 as a Novel Receptor for Thymosin β4 That Mediates Its Intracellular Activity Different from G-actin Sequestering. J Biol Chem 2008; 283:1534-1544. [DOI: 10.1074/jbc.m707539200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Narbutt J, Lesiak A, Sysa-Jedrzejowska A, Wozniacka A, Cierniewska-Cieslak A, Boncela J, Jochymski C, Kozlowski W, Zalewska A, Skibinska M, Norval M. Repeated low-dose ultraviolet (UV) B exposures of humans induce limited photoprotection against the immune effects of erythemal UVB radiation. Br J Dermatol 2007; 156:539-47. [PMID: 17300245 DOI: 10.1111/j.1365-2133.2006.07670.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exposure of human subjects to ultraviolet (UV) B radiation causes immunosuppression. Most experiments to date have not tested the effects of low daily doses of UVB radiation. OBJECTIVES To ascertain whether photoprotection against several UV-induced immune effects might develop following repeated exposure. METHODS Groups of approximately 30 healthy individuals were given whole-body UVB irradiation on each of 10 consecutive days with 0.7 minimal erythema dose, or whole-body irradiation as before followed by a single erythemal UVB dose on a small body area, or irradiated only with a single erythemal UVB dose on a small body area, or were not irradiated. They were sensitized with diphenylcyclopropenone (DPCP) 24 h after the final dose, and skin biopsies collected to assess cytokine mRNA expression and the number of cells with thymine dimers and expression cyclooxygenase (COX)-1 and COX-2. RESULTS The contact hypersensitivity (CHS) response to DPCP was significantly lower in the three irradiated groups compared with the unirradiated controls, while cutaneous interleukin (IL)-1beta, IL-6, IL-10 and tumour necrosis factor-alpha mRNAs, COX-1 and COX-2 and thymine dimers were all significantly higher. When the single erythemal UVB dose was given following the repeated low exposures, a slight downregulation in cytokine expression and thymine dimer formation was indicated. CONCLUSIONS The repeated low doses of UVB protected to a limited extent against the effects of an erythemal UVB dose on cytokine expression and thymine dimer formation, but not on CHS or COX enzymes.
Collapse
Affiliation(s)
- J Narbutt
- Department of Dermatology, Medical University of Lodz, Krzemieniecka 5, 94-017 Lodz, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cierniewski CS, Malinowski M, Bednarek R, Cierniewska-Cieslak A. Adhesive and proteolytic phenotype of migrating endothelial cells induced by thymosin beta-4. Ann N Y Acad Sci 2007; 1112:123-39. [PMID: 17495245 DOI: 10.1196/annals.1415.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The early stages of angiogenesis are usually accompanied by the occurrence of vascular leakage, and the deposition of fibrin in extravascular spaces. Initially, the fibrin network acts as a sealing matrix, but later on also as a scaffolding for invading endothelial cells. This process is induced by angiogenic growth factors, particularly by vascular endothelial growth factor (VEGF). Angiogenesis involves proteolytic activities, in particular cell-bound urokinase/plasmin and matrix metalloproteinase (MMPs) activities that modulate the fibrin structure and affect adhesion and migration of endothelial cells. Recent data show that formation of new vessels may be stimulated by thymosin beta-4 (Tbeta-4), but it is still not clear whether Tbeta-4 alone is angiogenic or the angiogenic potential of Tbeta-4 is mediated by VEGF. In this report to further characterize Tbeta-4 angiogenic activity, we produced its mutants that were deprived of the N-terminal tetrapeptide AcSDKP (Tbeta-4((AcSDKPT/4A))), the actin-binding sequence KLKKTET (Tbeta-4((KLKKTET/7A))) and with the nuclear localization sequence damaged by a point mutation Lys16Ala (Tbeta-4((K16A))). Then we tested their activity to induce expression and release of MMPs as well as plasminogen activators inhibitor type-1 (PAI-1). We also analyzed their effect on migration and proliferation of endothelial cells in three-dimensional (3D) fibrin matrix as well as on their ability to stimulate the outgrowth of human endothelial cells in capillary-like tubular structures. Our data demonstrate that increased intracellular expression of Tbeta-4 and its mutants is necessary and sufficient to induce PAI-1 gene expression in endothelial cells. Similarly, they stimulate expression and release of MMP-1, -2, and -3. As evaluated by using specific inhibitors to these MMPs, they modified specifically the structure of fibrin and thus facilitated migration of endothelial cells. To sum up, our data show that the mechanism by which Tbeta-4 induced transition of endothelial cells from quiescent to proangiogenic phenotype is characterized by increased expression of PAI-1 and MMPs did not require the presence of the N-terminal sequence AcSDKP, and depended only partially on its ability to bind G-actin or to enter the nucleus.
Collapse
Affiliation(s)
- Czeslaw S Cierniewski
- Department of Molecular and Medical Biophysics, Medical University, 6/8 Mazowiecka Street, Lodz 92-215, Poland.
| | | | | | | |
Collapse
|
28
|
Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 2006; 17:2999-3012. [PMID: 17035608 DOI: 10.1681/asn.2006050503] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Allison A Eddy
- Children's Hospital and Regional Medical Center, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA.
| | | |
Collapse
|
29
|
Swiatkowska M, Szemraj J, Cierniewski CS. Induction of PAI-1 expression by tumor necrosis factor alpha in endothelial cells is mediated by its responsive element located in the 4G/5G site. FEBS J 2005; 272:5821-31. [PMID: 16279946 DOI: 10.1111/j.1742-4658.2005.04979.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is induced by many proinflammatory and pro-oxidant factors. Among them, tumor necrosis factor alpha (TNFalpha), a pivotal early mediator that regulates and amplifies the development of inflammation, is one of the strongest PAI-1 synthesis activators. Location of the TNFalpha response element in the PAI-1 promoter is still ambiguous. In this study, we attempted to evaluate the significance of the element located in the 4G/5G site of the PAI-1 promoter in the TNFalpha stimulation of PAI-1 expression in endothelial cells. PAI-1 expression was monitored at: (a) the level of mRNA using real-time PCR, (b) PAI-1 gene transcription by transfection reporter assays, and (c) protein synthesis using the enzyme immunoassay. NF-kappaB activity was monitored using the electrophoretic mobility shift assay. Its activity was modified by either antisense oligonucleotides or transfection of endothelial cells with the wild-type or mutated IkappaBalpha. We have shown that TNFalpha-induced expression and gene transcription of PAI-1 involves a regulatory region present in segment -664/-680 of the PAI-1 promoter. This reaction involves the TNFalpha-induced generation of superoxide leading to activation of NF-kappaB, and can be abolished by antioxidants and by overexpression of a super-suppressor phosphorylation-resistant IkappaBalpha. Stimulation of PAI-1 under these conditions involves the motif of the PAI-1 promoter adjacent to the 4G/5G site, which can directly interact with NF-kappaB. We show that activation of PAI-1 gene by TNFalpha and reactive oxygen species is mediated by interaction of NF-kappaB with the cis-acting element located in the -675 4G/5G insertion/deletion in the PAI-1 promoter.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Cell Culture Techniques
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fluoresceins
- Gene Deletion
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Luciferases/metabolism
- Mutagenesis, Insertional
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Oligonucleotides, Antisense/pharmacology
- Peroxidases
- Plasminogen Activator Inhibitor 1/biosynthesis
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- Polyethylene Glycols/pharmacology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Response Elements
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/pharmacology
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Maria Swiatkowska
- Department of Molecular and Medical Biophysics, Medical University in Lodz, Poland
| | | | | |
Collapse
|
30
|
Boncela J, Smolarczyk K, Wyroba E, Cierniewski CS. Binding of PAI-1 to endothelial cells stimulated by thymosin beta4 and modulation of their fibrinolytic potential. J Biol Chem 2005; 281:1066-72. [PMID: 16272158 DOI: 10.1074/jbc.m506303200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies showed that thymosin beta4 (Tbeta4) induced the synthesis of plasminogen activator inhibitor-1 (PAI-1) in cultured human umbilical vein endothelial cells (HUVECs) via the AP-1 dependent mechanism and its enhanced secretion. In this work we provide evidence that the released PAI-1 is accumulated on the surface of HUVECs, exclusively in its active form, in a complex with alpha1-acid glycoprotein (AGP) that is also up-regulated and released from the cells. This mechanism is supported by several lines of experiments, in which expression of both proteins was analyzed by flow cytometry and their colocalization supported by confocal microscopy. PAI-1 did not bind to quiescent cells but only to the Tbeta4-activated endothelial cells. In contrast, significant amounts of AGP were found to be associated with the cells overexpressing enhanced green fluorescent protein (EGFP)-alpha1-acid glycoprotein (AGP) without Tbeta4 treatment. The AGP.PAI-1 complex was accumulated essentially at the basal surface of endothelial cells, and such cells showed (a) morphology characteristic for strongly adhered and spread cells and (b) significantly reduced plasmin formation. Taken together, these results provide the evidence supporting a novel mechanism by which active PAI-1 can be bound to the Tbeta4-activated endothelial cells, thus influencing their adhesive properties as well as their ability to generate plasmin.
Collapse
Affiliation(s)
- Joanna Boncela
- Center of Medical Biology, Polish Academy of Sciences, Lodz
| | | | | | | |
Collapse
|
31
|
Hsiao HL, Su Y. Identification of the positive and negative cis-elements involved in modulating the constitutive expression of mouse thymosin beta4 gene. Mol Cell Biochem 2005; 272:75-84. [PMID: 16010974 DOI: 10.1007/s11010-005-7638-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously showed that the -278 to +410 region of mouse thymosin beta4 (mT,beta4) gene supports high levels of reporter gene expression in NIH3T3 cells. This region contains part of the 5'-flanking sequences (-278 to -1), the intact first exon (+1 to +133), and portion of the first intron (+134 to +410). However, the size of this exon is much longer than those of its rat and human counterparts. To resolve the question regarding this size discrepancy, transcription start site for the mTbeta4 gene was re-examined by primer extension and bioinformatics analyses. We found that the first exon of mTbeta4 gene spans 56 bp with its cap site situated in a putative initiator highly similar to the consensus mammalian sequence. In addition, a TATA box-like motif and two consecutive downstream promoter elements were also found. To delineate the cis-elements involved in modulating the constitutive expression of mTbeta4 gene, transient transfection assay was performed. Interestingly, expression level of the reporter gene driven by the -117 to +56 region of mTbeta4 gene was approximately 8-fold higher than that directed by the SV40 promoter and significant promoter activity was found to be associated with the smaller (-56 to +56) fragment. A nuclear protein-bound silencer was located in the region between the -167 and -118 and an enhancer whose effect did not seem to be dependent on protein binding was identified in the downstream (-117 to -88) region. However, neither of these cis-elements affected reporter expression driven by a SV40 promoter. Intriguingly, mTbeta4 promoter functioned well in human colorectal (SW480) and cervical (HeLa) carcinoma cells. Taken together, our findings not only provide crucial information for further elucidation of the transcriptional regulation of mTbeta4 gene but also raise the possibility of utilizing its promoter to produce large quantity of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Hung-Liang Hsiao
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
32
|
Xu BJ, Shyr Y, Liang X, Ma LJ, Donnert EM, Roberts JD, Zhang X, Kon V, Brown NJ, Caprioli RM, Fogo AB. Proteomic Patterns and Prediction of Glomerulosclerosis and Its Mechanisms. J Am Soc Nephrol 2005; 16:2967-75. [PMID: 16079267 DOI: 10.1681/asn.2005030262] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Protein expression profiles linked to sclerosis in the 5/6 nephrectomy (Nx) rat model of focal segmental glomerulosclerosis were investigated. Sections of control glomeruli from normal baseline Nx tissue and nonsclerotic and sclerotic glomeruli from 12 wk after 5/6 Nx were isolated by laser capture microdissection. Protein profiles were acquired directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Classification accuracy was 99.2% for distinguishing normal versus sclerotic glomeruli and 96.7 and 97.8% for nonsclerotic versus normal and sclerotic glomeruli, respectively. The proteomic pattern of the nonsclerotic glomeruli was more similar to sclerotic than normal glomeruli (P < 0.0001). Thymosin beta4, a protein with relevant interactions with plasminogen activator inhibitor-1, angiogenesis, and wound healing, was identified as a key differentially expressed protein. Thymosin beta4 immunostaining was increased in sclerotic glomeruli, predominantly in endothelial cells. Downregulation of thymosin beta4 by RNAi in cultured glomerular endothelial cells decreased angiotensin II-induced plasminogen activator inhibitor-1 expression. In conclusion, proteomic patterns can accurately distinguish normal versus nonsclerotic versus sclerotic glomeruli. The closely related proteomic patterns of nonsclerotic and sclerotic glomeruli suggest early activation of prosclerotic mechanisms even in seemingly intact glomeruli. Thymosin beta4 is a marker of such early events and may even contribute to sclerosis.
Collapse
Affiliation(s)
- Baogang J Xu
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sheikh AM, Ochi H, Masuda J. Lysophosphatidylcholine induces tPA gene expression through CRE-dependent mechanism. Biochem Biophys Res Commun 2005; 329:71-7. [PMID: 15721275 DOI: 10.1016/j.bbrc.2005.01.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 11/21/2022]
Abstract
Lysophosphatidylcholine (lysoPC) is implicated in the development of atherosclerosis and certain autoimmune diseases, and is reported to induce tissue-type plasminogen activator (tPA) at the protein level in endothelial cells. This study was designed to investigate the effect of lysoPC on tPA gene expression and the underlying molecular mechanisms in cultured endothelial cells. LysoPC transiently induced the mRNA expression of tPA in endothelial cells. LysoPC also induced the mRNA expression of urokinase-type plasminogen activator (uPA), uPA receptor, and plasminogen activator inhibitor-1, but the kinetics were different from that of tPA. Promoter analysis revealed that the cyclic AMP-responsive element of the tPA gene (tPACRE) is required for lysoPC-induced tPA expression. Furthermore, an electrophoresis mobility shift assay showed that lysoPC increased the binding activity of CRE binding protein to tPACRE. These results indicated that lysoPC transcriptionally upregulated the gene expression of tPA in endothelial cells, at least in part, via tPACRE activation.
Collapse
Affiliation(s)
- Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | |
Collapse
|
34
|
Szulawska A, Gniazdowski M, Czyz M. Sequence specificity of formaldehyde-mediated covalent binding of anthracycline derivatives to DNA. Biochem Pharmacol 2005; 69:7-18. [PMID: 15588709 DOI: 10.1016/j.bcp.2004.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
Daunorubicin (DRB) and doxorubicin (DOX) in the presence of formaldehyde (CH2O) form covalent adducts with DNA. A G-specific adduct is formed by producing an aminal bridge between the C-3' of daunosamine and the C-2 of guanine. New derivatives of DRB, DOX and epidoxorubicin (EDOX) with an amidine group bonded to the C-3' of the daunosamine moiety, with either a morpholine or hexamethyleneimine ring attached to the amidine group, were studied in this paper. DNase I footprinting and analyses with restriction endonucleases were applied to compare the specificity of adduct formed by the amidine derivatives and their parent compounds. These approaches provide consistent results, proving that a GC pair is required for covalent binding of anthracycline derivatives to DNA and that different flanking sequences are able to modify the sequence preference of the drugs. The 5'-GC-3', 5'-CG-3' and 5'-TC-3' sequences were protected most efficiently by the parent compounds and their morpholine derivatives and some increased protection of 5'-TC-3' sequence was observed for morpholine analogues. Hexamethyleneimine derivatives bind to DNA with much lower efficiency. Finally, the sequence specificity of anthracycline derivatives was correlated with their ability to inhibit binding of transcription factors Sp1 and AP-1 to their DNA recognition sequences. The anthracycline derivatives were more potent in inhibiting Sp1 binding to its cognate GC box than in preventing AP-1 from binding to its mixed A.T and G.C site. Overall, the results indicate that the amidine derivatives of anthracyclines show similar, but not identical sequence specificity as parent compounds, though they exert their effect at a higher concentration.
Collapse
Affiliation(s)
- Agata Szulawska
- Department of Medicinal Chemistry, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | | | | |
Collapse
|