1
|
Abstract
The molecular determinants regulating the specification of human embryonic stem cells (hESCs) into hematopoietic cells remain elusive. HOXA9 plays a relevant role in leukemogenesis and hematopoiesis. It is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and is downregulated upon differentiation. Hoxa9-deficient mice display impaired hematopoietic development, and deregulation of HOXA9 expression is frequently associated with acute leukemia. Analysis of the genes differentially expressed in cord blood HSPCs vs hESC-derived HSPCs identified HOXA9 as the most downregulated gene in hESC-derived HSPCs, suggesting that expression levels of HOXA9 may be crucial for hematopoietic differentiation of hESC. Here we show that during hematopoietic differentiation of hESCs, HOXA9 expression parallels hematopoietic development, but is restricted to the hemogenic precursors (HEP) (CD31(+)CD34(+)CD45(-)), and diminishes as HEPs differentiate into blood cells (CD45(+)). Different gain-of-function and loss-of-function studies reveal that HOXA9 enhances hematopoietic differentiation of hESCs by specifically promoting the commitment of HEPs into primitive and total CD45(+) blood cells. Gene expression analysis suggests that nuclear factor-κB signaling could be collaborating with HOXA9 to increase hematopoietic commitment. However, HOXA9 on its own is not sufficient to confer in vivo long-term engraftment potential to hESC-hematopoietic derivatives, reinforcing the idea that additional molecular regulators are needed for the generation of definitive in vivo functional HSPCs from hESC.
Collapse
|
2
|
Bluteau O, Langlois T, Rivera-Munoz P, Favale F, Rameau P, Meurice G, Dessen P, Solary E, Raslova H, Mercher T, Debili N, Vainchenker W. Developmental changes in human megakaryopoiesis. J Thromb Haemost 2013; 11:1730-41. [PMID: 23782903 DOI: 10.1111/jth.12326] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The molecular bases of the cellular changes that occur during human megakaryocyte (MK) ontogeny remain unknown, and may be important for understanding the significance of MK differentiation from human embryonic stem cells (hESCs) METHODS We optimized the differentiation of MKs from hESCs, and compared these with MKs obtained from primary human hematopoietic tissues at different stages of development. RESULTS Transcriptome analyses revealed a close relationship between hESC-derived and fetal liver-derived MKs, and between neonate-derived and adult-derived MKs. Major changes in the expression profiles of cell cycle and transcription factors (TFs), including MYC and LIN28b, and MK-specific regulators indicated that MK maturation progresses during ontogeny towards an increase in MK ploidy and a platelet-forming function. Important genes, including CXCR4, were regulated by an on-off mechanism during development. DISCUSSION Our analysis of the pattern of TF network and signaling pathways was consistent with a growing specialization of MKs towards hemostasis during ontogeny, and support the idea that MKs derived from hESCs reflect primitive hematopoiesis.
Collapse
Affiliation(s)
- O Bluteau
- Institut National de la Sante et de la Recherche Medicale, UMR 1009, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris-Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Identification of KAP-1-associated complexes negatively regulating the Ey and β-major globin genes in the β-globin locus. J Proteomics 2013; 80:132-44. [PMID: 23291531 DOI: 10.1016/j.jprot.2012.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/11/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Deregulations of erythroid differentiation may lead to erythroleukemia and other hemoglobinopathies, yet the molecular mechanisms underlying these events are not fully understood. Here, we found that KAP-1-associated complexes contribute to the regulation of the β-globin locus, the key events of erythroid differentiation. We show that RNAi-mediated knockdown of KAP-1 in mouse erythroleukemia (MEL) cells increases expression of the Ey and β-major globin genes during hexamethylenebisacetamide (HMBA) induced differentiation process. This indicates that at least part of KAP-1-associated complexes negatively regulates β-globin gene expression during definitive erythroid differentiation. ChIP-PCR analysis revealed that one or more KAP-1-associated complexes are targeted to the promoter region of the Ey and beta-major globin genes. Since KAP-1 is only a scaffold molecule, there must be some transcriptional regulators allowing its targeted recruitment to the β-globin locus. To further discover these novel regulators, proteins interacting with KAP-1 were isolated by endogenous immunoprecipitation and identified by LC-ESI-MS/MS. Among the proteins identified, MafK and Zfp445 were studied further. We found that KAP-1 may contribute to the repression of Ey and β-major globin gene transcription through recruitment to the promoters of these two genes, mediated by the interaction of KAP-1 with either Zfp445 or MafK, respectively.
Collapse
|
4
|
Panepucci RA, Oliveira LHB, Zanette DL, Viu Carrara RDC, Araujo AG, Orellana MD, Bonini de Palma PV, Menezes CCBO, Covas DT, Zago MA. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells. Stem Cells Dev 2010; 19:321-32. [PMID: 19686049 DOI: 10.1089/scd.2008.0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Department of Clinical Medicine of the Faculty of Medicine of Ribeirao Preto-USP, Center for Cell Therapy and Regional Blood Center, Araraquara, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H, Masumoto H, Larionov V, Earnshaw WC. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 2009; 20:4194-204. [PMID: 19656847 DOI: 10.1091/mbc.e09-06-0489] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously used a human artificial chromosome (HAC) with a synthetic kinetochore that could be targeted with chromatin modifiers fused to tetracycline repressor to show that targeting of the transcriptional repressor tTS within kinetochore chromatin disrupts kinetochore structure and function. Here we show that the transcriptional corepressor KAP1, a downstream effector of the tTS, can also inactivate the kinetochore. The disruption of kinetochore structure by KAP1 subdomains does not simply result from loss of centromeric CENP-A nucleosomes. Instead it reflects a hierarchical disruption of the outer kinetochore, with CENP-C levels falling before CENP-A levels and, in certain instances, CENP-H being lost more readily than CENP-C. These results suggest that this novel approach to kinetochore dissection may reveal new patterns of protein interactions within the kinetochore.
Collapse
Affiliation(s)
- Stefano Cardinale
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chang SJ, Huang TS, Wang KL, Wang TY, Yang YC, Chang MDT, Wu YH, Wang HW. Genetic network analysis of human CD34+ hematopoietic stem/precursor cells. Taiwan J Obstet Gynecol 2009; 47:422-30. [PMID: 19126509 DOI: 10.1016/s1028-4559(09)60010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Somatic CD34+ hematopoietic stem/precursor cells (HSPCs) give rise to hematopoietic cells and endothelial cells and have been used in clinical applications. Understanding the genes responsible for stemness and how they interact with each other will help us to manipulate these cells more efficiently in the future. MATERIALS AND METHODS We performed microarray analysis on human CD34+ HSPCs and on two different progeny cell types, i.e. microvascular endothelial cells and peripheral blood mononuclear cells. Systems biology and advanced bioinformatics tools were used to help clarify the genetic networks associated with these stem cell genes. RESULTS We identified CD34+ HSPC genes and found that they were involved in critical biologic processes such as cell cycle regulation, chromosome organization, and DNA repair. We also identified a novel precursor gene cluster on chromosome 19p13.3. Analysis of HSPC-enriched genes using systems biology tools revealed a complex genetic network functioning in CD34+ cells, in which several genes acted as hubs to maintain the stability (such as GATA1) or connectivity (such as hepatic growth factor) of the whole network. CONCLUSION This study provides the foundation for a more detailed understanding of CD34+ HSPCs.
Collapse
Affiliation(s)
- Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, and National Tsing Hua University, HsinChu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shojaei F, Menendez P. Molecular profiling of candidate human hematopoietic stem cells derived from human embryonic stem cells. Exp Hematol 2008; 36:1436-48. [DOI: 10.1016/j.exphem.2008.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 05/05/2008] [Accepted: 06/02/2008] [Indexed: 12/01/2022]
|
8
|
Nimer SD. MDS: a stem cell disorder--but what exactly is wrong with the primitive hematopoietic cells in this disease? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:43-51. [PMID: 19074057 DOI: 10.1182/asheducation-2008.1.43] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite the various abnormalities identified in the immune system or the bone marrow microenvironment in patients with myelodysplastic syndrome (MDS), most of the investigation of this disorder has centered on the hematopoietic stem/progenitor compartment. It is generally written that MDS is a stem cell disorder, and there is certainly evidence supporting this view. However, whether it occurs in a cell with only myeloid multipotentiality (i.e., that involves megakaryocytic, erythroid and granulocytic/monocytic lineages) or occurs in a true stem cell is open to debate. The absence of an assay for human stem cells necessitates the use of surrogate markers for such cells, such as gene expression profiles, or the identification of specific genetic or epigenetic abnormalities that are found in multiple lineages. Clearly, the common cytogenetic and genetic abnormalities found in MDS are most indicative of a clonal myeloid disease similar to AML, rather than a lymphoid disease, and the often tri-lineage ineffective hematopoiesis and dysplasia are generally not found within the lymphoid compartment. Recent studies, using modern molecular detection techniques, have identified new recurring molecular lesions in these disorders but have not really unraveled its pathogenesis.
Collapse
Affiliation(s)
- Stephen D Nimer
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY 10021, USA.
| |
Collapse
|
9
|
Abstract
The use of stem cells in regenerative medicine is a promising approach to the treatment of disease and injury. Natural and synthetic small molecules have been shown to be useful chemical tools for controlling and manipulating the fates of cells. Small molecules can target signaling transduction pathways (for example, tyrosine kinase receptors) and affect DNA replication, cell differentiation, tumor metastasis and apoptosis. Stem cells share many properties with cancer cells and these similarities can provide insights to control and direct cell behavior; small molecules are already standard chemotherapeutics in the treatment of cancer. Libraries of small molecules have been examined for anticancer behavior (especially apoptosis), and, more recently, for stem cell self-renewal and differentiation capabilities in potential approaches to regenerative medicine. Differentiation therapy for cancer is based on the idea that cancer cells are undifferentiated embryonic-like cells and proposes to promote the differentiation and hence block cell proliferation. For example, retinoids have a role in stem cell differentiation to several lineages and have also been used to promote differentiation of acute promyeloic leukemic cells. Small molecules are also important tools for understanding mechanistic and developmental processes. Strategies for generating functional small molecule libraries have been outlined previously. In this review, we will look at several small molecules that have been described in the recent literature as effectors of stem cell self-renewal or differentiation as associated with the Wnt, Hedgehog or NF-kappaB pathways.
Collapse
|
10
|
Xiao M, Inal CE, Parekh VI, Chang CM, Whitnall MH. 5-Androstenediol Promotes Survival of γ-Irradiated Human Hematopoietic Progenitors through Induction of Nuclear Factor-κB Activation and Granulocyte Colony-Stimulating Factor Expression. Mol Pharmacol 2007; 72:370-9. [PMID: 17473057 DOI: 10.1124/mol.107.035394] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
5-Androstenediol (5-AED) stimulates hematopoiesis and enhances survival in animals exposed to ionizing radiation (IR), suggesting that this steroid may act on hematopoietic progenitor cells. We used gamma-irradiated primary human CD34(+) hematopoietic progenitor cells to show that 5-AED protects hematopoietic cells from IR damage, as shown by enhanced cell survival, clonogenicity, proliferation, and differentiation. Unlike in tumor cells, IR did not induce nuclear factor-kappaB (NFkappaB) activation in primary progenitors. However, IR stimulated IkappaB(beta) release from NFkappaB/IkappaB complexes and caused NFkappaB1 (p50) degradation. 5-AED stabilized NFkappaB1 in irradiated cells and induced NFkappaB gene expression and NFkappaB activation (DNA binding). 5-AED stimulated interleukin-6 and granulocyte colony-stimulating factor (G-CSF) secretion. The survival-enhancing effects of 5-AED on clonogenic cells were abrogated by small interfering RNA inhibition of NFkappaB gene expression and by neutralization of G-CSF with antibody. The effects of 5-AED on survival and G-CSF secretion were blocked by the NFkappaB inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132). 5-AED had no effect on accumulation of the proapoptotic factor p53 after IR, as determined by Western blot. The results indicate that NFkappaB1 degradation after IR may be responsible for the radiation sensitivity of CD34+ cells compared with tumor cells. 5-AED exerts survival-enhancing effects on irradiated human hematopoietic progenitor cells via induction, stabilization, and activation of NFkappaB, which results in increased secretion of hematopoietic growth factor G-CSF.
Collapse
Affiliation(s)
- Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave., Bethesda, MD 20889-5603, USA.
| | | | | | | | | |
Collapse
|
11
|
Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A, Itskovitz-Eldor J, Kventsel I, Rosenthal E, Amariglio N, Rechavi G. CD133-positive hematopoietic stem cell "stemness" genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2006; 23:1142-53. [PMID: 16140871 DOI: 10.1634/stemcells.2004-0317] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Affymetrix human Hu133A oligonucleotide arrays were used to study the expression profile of CD133+ cord blood (CB) and peripheral blood (PB) using CD133 cell-surface marker. An unsupervised hierarchical clustering of 14,025 valid probe sets showed a clear distinction between the CD133+ cells representing the hematopoietic stem cell (HSC) population and CD133-differentiated cells. Two hundred forty-four genes were found to be upregulated by at least twofold in the CD133-positive cells of both CB and PB compared with the CD133-negative cells. These genes represent the hematopoietic "stemness," whereas the 218 and 304 upregulated genes exclusively in PB and CB, respectively, represent tissue specificity. Some of the stemness genes were also common to HSC genes found to be upregulated in several recently published studies. Among these common stemness genes, we identified several groups of genes that have an important role in hematopoiesis: growth factor receptors, transcription factors, genes that have an important role in development, and genes involved in cell growth. Sixteen selected stemness genes are known to be mutated or abnormally regulated in acute leukemias. It can be suggested that key hematopoietic stemness machinery genes may lead to abnormal proliferation and leukemia upon mutation or change of their expression.
Collapse
Affiliation(s)
- Amos Toren
- Department of Pediatric Hematology-Oncology, Sheba Medical Center,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wagner LM, Burger RA, Guichard SM, Raimondi SC, Santana VM, Furman WL, Barnette P, Danks MK. Pilot study to evaluate MYCN expression as a neuroblastoma cell marker to detect minimal residual disease by RT-PCR. J Pediatr Hematol Oncol 2006; 28:635-41. [PMID: 17023822 DOI: 10.1097/01.mph.0000212976.13749.8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This pilot study was performed to determine whether MYCN expression warrants further investigation as a tumor marker to detect low levels of residual neuroblastoma (NB). Seven NB cell lines and 30 bone marrow (BM) samples from patients with high-risk NB were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) for MYCN expression, and for the established NB marker tyrosine hydroxylase. MYCN was expressed in all 7 NB cell lines, but not in normal peripheral blood, CD34 cells, or BM. In dilution studies using cell lines with or without DNA amplification of MYCN, 1 NB cell in 10 to 10 nucleated blood cells was detectable by RT-PCR. MYCN was identified in all 21 BM samples in which tumor cells were identified by histologic examination, including 4 samples in which tyrosine hydroxylase was not detected. Additionally, expression of both markers was detected in 5 samples that were negative by histology but presumably contained low levels of tumor cells, consistent with the greater sensitivity of RT-PCR compared with morphologic methods. Detection of MYCN RNA was independent of MYCN DNA amplification status. The selective expression of MYCN in tumor cells, and the sensitivity of detection of MYCN by RT-PCR noted in this and other studies, supports further evaluation of MYCN as a NB marker for molecular detection of minimal residual disease.
Collapse
Affiliation(s)
- Lars M Wagner
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Panepucci RA, Calado RT, Rocha V, Proto-Siqueira R, Silva WA, Zago MA. Higher expression of transcription targets and components of the nuclear factor-kappaB pathway is a distinctive feature of umbilical cord blood CD34+ precursors. Stem Cells 2006; 25:189-96. [PMID: 16973832 DOI: 10.1634/stemcells.2006-0328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Delayed engraftment, better reconstitution of progenitors, higher thymic function, and a lower incidence of the graft-versus-host disease are characteristics associated with umbilical cord blood (UCB) transplants, compared with bone marrow (BM). To understand the molecular mechanisms causing these intrinsic differences, we analyzed the differentially expressed genes between BM and UCB hematopoietic stem and progenitor cells (HSPCs). The expressions of approximately 10,000 genes were compared by serial analysis of gene expression of magnetically sorted CD34(+) cells from BM and UCB. Differential expression of selected genes was evaluated by real-time polymerase chain reaction on additional CD34(+) samples from BM (n = 22), UCB (n = 9), and granulocyte colony stimulating factor-mobilized peripheral blood (n = 6). The overrepresentation of nuclear factor-kappaB (NF-kappaB) pathway components and targets was found to be a major characteristic of UCB HSPCs. Additional promoter analysis of 41 UCB-overrepresented genes revealed a significantly higher number of NF-kappaB cis-regulatory elements (present in 22 genes) than would be expected by chance. Our results point to an important role of the NF-kappaB pathway on the molecular and functional differences observed between BM and UCB HSPCs. Our study forms the basis for future studies and potentially for new strategies to stem cell graft manipulation, by specific NF-kappaB pathway modulation on stem cells, prior to transplant.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Center for Cell Therapy and Regional Blood Center, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Pilon AM, Nilson DG, Zhou D, Sangerman J, Townes TM, Bodine DM, Gallagher PG. Alterations in expression and chromatin configuration of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 2006; 26:4368-77. [PMID: 16705186 PMCID: PMC1489081 DOI: 10.1128/mcb.02216-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an erythroid zinc finger protein identified by its interaction with a CACCC sequence in the beta-globin promoter, where it establishes local chromatin structure permitting beta-globin gene transcription. We sought to identify other EKLF target genes and determine the chromatin status of these genes in the presence and absence of EKLF. We identified alpha hemoglobin-stabilizing protein (AHSP) by subtractive hybridization and demonstrated a 95 to 99.9% reduction in AHSP mRNA and the absence of AHSP in EKLF-deficient cells. Chromatin at the AHSP promoter from EKLF-deficient cells lacked a DNase I hypersensitive site and exhibited histone hypoacetylation across the locus compared to hyperacetylation of wild-type chromatin. Wild-type chromatin demonstrated a peak of EKLF binding over a promoter region CACCC box that differs from the EKLF consensus by a nucleotide. In mobility shift assays, the AHSP promoter CACCC site bound EKLF in a manner comparable to the beta-globin promoter CACCC site, indicating a broader recognition sequence for the EKLF consensus binding site. The AHSP promoter was transactivated by EKLF in K562 cells, which lack EKLF. These results support the hypothesis that EKLF acts as a transcription factor and a chromatin modulator for the AHSP and beta-globin genes and indicate that EKLF may play similar roles for other erythroid genes.
Collapse
Affiliation(s)
- Andre M Pilon
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Moneypenny CG, Shao J, Song Y, Gallagher EP. MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 2005; 27:874-81. [PMID: 16377807 DOI: 10.1093/carcin/bgi322] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During fetal development, the liver serves as the primary hematopoietic organ in which hematopoietic stem cells (HSC) comprise a large proportion of hepatic cell populations. Because HSC are capable of initiating long-term hematopoiesis, injury to these cells during pregnancy may play a role in the development of hematopoietic disorders manifested after birth. Of interest is the role of genetic injury to fetal HSC in the etiology of the infant acute leukemias, which are characterized by chromosomal rearrangements in the 11q23 region involving the mixed lineage leukemia (MLL) gene. These gene fusions also occur in leukemias in adults following chemotherapy with etoposide and other inhibitors of DNA topoisomerase II. We used etoposide as a model compound to determine the sensitivity of human fetal HSC to DNA damage and to determine whether we could induce MLL rearrangements in cultured human fetal HSC. Exposure of HSC to etoposide resulted in a dose-dependent loss of viability, with effects observed at low nanomolar concentrations. DNA strand breaks were observed on exposure to 140 nM etoposide, and higher etoposide concentrations stimulated an increase in early lymphoid populations and elicited G2/M cell cycle arrest. Immunophenotyping of MLL translocations revealed a significant increase in positive flow cytometry events at low etoposide concentrations and were consistent with MLL recombination. MLL translocations were confirmed using fluorescent in situ hybridization. In vitro inhibition of DNA topoisomerase II was observed at >or=25 microM etoposide, but was not evident at lower etoposide concentrations associated with DNA damage. Our data indicate that low acute doses of etoposide can cause DNA strand breaks and chromosomal rearrangements involving MLL in human fetal HSC. Ultimately, such injury may have ramifications with regards to transplacental exposures to environmental chemicals linked to the etiology of infant acute leukemias.
Collapse
Affiliation(s)
- Craig G Moneypenny
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
16
|
Jaatinen T, Hemmoranta H, Hautaniemi S, Niemi J, Nicorici D, Laine J, Yli-Harja O, Partanen J. Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells 2005; 24:631-41. [PMID: 16210406 DOI: 10.1634/stemcells.2005-0185] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cord blood (CB)-derived CD133+ cells carry characteristics of primitive hematopoietic cells and proffer an alternative for CD34+ cells in hematopoietic stem cell (HSC) transplantation. To characterize the CD133+ cell population on a genetic level, a global expression analysis of CD133+ cells was performed using oligonucleotide microarrays. CD133+ cells were purified from four fresh CB units by immunomagnetic selection. All four CD133+ samples showed significant similarity in their gene expression pattern, whereas they differed clearly from the CD133- control samples. In all, 690 transcripts were differentially expressed between CD133+ and CD133- cells. Of these, 393 were increased and 297 were decreased in CD133+ cells. The highest overexpression was noted in genes associated with metabolism, cellular physiological processes, cell communication, and development. A set of 257 transcripts expressed solely in the CD133+ cell population was identified. Colony-forming unit (CFU) assay was used to detect the clonal progeny of precursors present in the studied cell populations. The results demonstrate that CD133+ cells express primitive markers and possess clonogenic progenitor capacity. This study provides a gene expression profile for human CD133+ cells. It presents a set of genes that may be used to unravel the properties of the CD133+ cell population, assumed to be highly enriched in HSCs.
Collapse
Affiliation(s)
- Taina Jaatinen
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Eckfeldt CE, Mendenhall EM, Flynn CM, Wang TF, Pickart MA, Grindle SM, Ekker SC, Verfaillie CM. Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol 2005; 3:e254. [PMID: 16089502 PMCID: PMC1166352 DOI: 10.1371/journal.pbio.0030254] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/14/2005] [Indexed: 12/23/2022] Open
Abstract
Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+)(CD33-)(CD38-)Rho(lo)(c-kit+) cells, enriched for hematopoietic stem/progenitor cells with (CD34+)(CD33-)(CD38-)Rho(hi) cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global gene profiling of HSCs.
Collapse
Affiliation(s)
- Craig E Eckfeldt
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric M Mendenhall
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Catherine M Flynn
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tzu-Fei Wang
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael A Pickart
- 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Suzanne M Grindle
- 3 Cancer Center Bioinformatics Division, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen C Ekker
- 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Catherine M Verfaillie
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
18
|
Komor M, Güller S, Baldus CD, de Vos S, Hoelzer D, Ottmann OG, Hofmann WK. Transcriptional profiling of human hematopoiesis during in vitro lineage-specific differentiation. Stem Cells 2005; 23:1154-69. [PMID: 15955831 DOI: 10.1634/stemcells.2004-0171] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To better understand the transcriptional program that a ccompanies orderly lineage-specific hematopoietic differentiation, we performed serial oligonucleotide microarray analysis of human normal CD34+ bone marrow cells during lineage-specific differentiation. CD34+ bone marrow cells isolated from healthy individuals were selectively stimulated in vitro with the cytokines erythropoietin (EPO), thrombopoietin (TPO), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF). Cells from each of the lineages were harvested after 4, 7, and 11 days of culture for expression profiling. Gene expression was analyzed by oligonucleotide microarrays (HG-U133A; Affymetrix, Santa Clara, CA). Experiments were done in triplicates. We identified 258 genes that are consistently upregulated or downregulated during the course of lineage-specific differentiation within each specific lineage (horizontal change). In addition, we identified 52 genes that contributed to a specific expression profile, yielding a genetic signature specific for successive stages of differentiation within each of the three lineages. Analysis of horizontal changes selected 21 continuously upregulated genes for EPO-induced differentiation (including GTPase activator proteins RAP1GA1 and ARHGAP8, which regulate small Rho GTPases), 21 for G-CSF-induced/GM-CSF-induced differentiation, and 91 for TPO-induced differentiation (including DLK1, of which the role in normal hematopoiesis is not defined). During the lineage-specific differentiation, 58 (erythropoiesis), 30 (granulopoiesis), and 37 (thrombopoiesis) genes were significantly downregulated, respectively. The expression of selected genes was confirmed by real-time polymerase chain reaction. Our data encompass the first extensive transcriptional profile of human hematopoiesis during in vitro lineage-specific differentiation.
Collapse
Affiliation(s)
- Martina Komor
- Department of Hematology, Oncology and Transfusion Medicine, University Hospital Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Shojaei F, Trowbridge J, Gallacher L, Yuefei L, Goodale D, Karanu F, Levac K, Bhatia M. Hierarchical and Ontogenic Positions Serve to Define the Molecular Basis of Human Hematopoietic Stem Cell Behavior. Dev Cell 2005; 8:651-63. [PMID: 15866157 DOI: 10.1016/j.devcel.2005.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/27/2005] [Accepted: 03/01/2005] [Indexed: 12/21/2022]
Abstract
The molecular basis governing functional behavior of human hematopoietic stem cells (HSCs) is largely unknown. Here, using in vitro and in vivo assays, we isolate and define progenitors versus repopulating HSCs from multiple stages of human development for global gene expression profiling. Accounting for both the hierarchical relationship between repopulating cells and their progenitors, and the enhanced HSC function unique to early stages of ontogeny, the human homologs of Hairy Enhancer of Split-1 (HES-1) and Hepatocyte Leukemia Factor (HLF) were identified as candidate regulators of HSCs. Transgenic human hematopoietic cells expressing HES-1 or HLF demonstrated enhanced in vivo reconstitution ability that correlated to increased cycling frequency and inhibition of apoptosis, respectively. Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems, suggesting that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior.
Collapse
Affiliation(s)
- Farbod Shojaei
- Stem Cell Biology and Regenerative Medicine, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN, Papamichail M. CRD-BP/IMP1 Expression Characterizes Cord Blood CD34+ Stem Cells and Affects c-myc and IGF-II Expression in MCF-7 Cancer Cells. J Biol Chem 2005; 280:20086-93. [PMID: 15769738 DOI: 10.1074/jbc.m410036200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coding region determinant-binding protein/insulin-like growth factor II mRNA-binding protein (CRD-BP/IMP1) is an RNA-binding protein specifically recognizing c-myc, leader 3' IGF-II and tau mRNAs, and the H19 RNA. CRD-BP/IMP1 is predominantly expressed in embryonal tissues but is de novo activated and/or overexpressed in various human neoplasias. To address the question of whether CRD-BP/IMP1 expression characterizes certain cell types displaying distinct proliferation and/or differentiation properties (i.e. stem cells), we isolated cell subpopulations from human bone marrow, mobilized peripheral blood, and cord blood, all sources known to contain stem cells, and monitored for its expression. CRD-BP/IMP1 was detected only in cord blood-derived CD34(+) stem cells and not in any other cell type of either adult or cord blood origin. Adult BM CD34(+) cells cultured in the presence of 5'-azacytidine expressed de novo CRD-BP/IMP1, suggesting that epigenetic modifications may be responsible for its silencing in adult non-expressing cells. Furthermore, by applying the short interfering RNA methodology in MCF-7 cells, we observed, subsequent to knocking down CRD-BP/IMP1, decreased c-myc expression, increased IGF-II mRNA levels, and reduced cell proliferation rates. These data 1) suggest a normal role for CRD-BP/IMP1 in pluripotent stem cells with high renewal capacity, like the CB CD34(+) cells, 2) indicate that altered methylation may directly or indirectly affect its expression in adult cells, 3) imply that its de novo activation in cancer cells may affect the expression of c-Myc and insulin-like growth factor II, and 4) indicate that the inhibition of CRD-BP/IMP1 expression might affect cancer cell proliferation.
Collapse
Affiliation(s)
- Panayotis Ioannidis
- Cancer Immunology Immunotherapy Center, Saint Savas Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang L, Li L, Menendez P, Cerdan C, Bhatia M. Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 2005; 105:4598-603. [PMID: 15718421 DOI: 10.1182/blood-2004-10-4065] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To date, hematopoietic development of human embryonic stem cells (hESCs) has been limited to cell lines cultured in the presence of either mouse embryonic fibroblasts (MEFs) or MEF-conditioned media (MEF-CM). Anonymous xenogenic factors from MEFs or MEF-CM complicate studies of hESC self-renewal and also raise concerns for the potential clinical applications of generating primitive hematopoietic cells from hESC lines maintained under these ambiguous conditions. Here, we demonstrate that hESCs can be cultured over 30 passages in defined conditions in the absence of MEFs or MEF-CM using only serum replacement (SR) media and high concentrations of basic fibroblast growth factor (SR-bFGF). Similar to hESCs cultured in MEF-CM, hESCs cultured in SR-bFGF sustained characteristics of undifferentiated hESCs, proliferative potential, normal karyotype, in vitro and in vivo 3 germ-layer specification and gave rise to hemogenic-endothelial precursors required for subsequent primitive hematopoietic development. Our report demonstrates that anonymous factors produced by feeder cells are not necessary for hESC maintenance and subsequent hematopoietic specification, thereby providing a defined system for studies of hESC self-renewal and hESC-derived hematopoiesis.
Collapse
Affiliation(s)
- Lisheng Wang
- Krembil Center for Stem Cell Biology and Regenerative Medicine, Robarts Research Institute, 100 Perth Dr, London, ON N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
22
|
Moneypenny CG, Gallagher EP. 4-Hydroxynonenal inhibits cell proliferation and alters differentiation pathways in human fetal liver hematopoietic stem cells. Biochem Pharmacol 2005; 69:105-12. [PMID: 15588719 DOI: 10.1016/j.bcp.2004.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/03/2004] [Indexed: 11/30/2022]
Abstract
During fetal development, the liver serves as the primary hematopoietic organ in which hematopoietic stem cells (HSC) comprise a large proportion of hepatic cell populations. Because HSC are capable of initiating long-term hematopoiesis, injury to these cells may have ramifications with regard to the etiology of blood-borne diseases. In the current study, we examined the effects of 4-hydroxynonenal (4-HNE), a mutagenic alpha,beta-unsaturated aldehyde that can be produced in utero, on HSC proliferation, differentiation, viability and apoptosis. Exposure of HSC to acute single doses of 4-HNE as low as 1 nM inhibited HSC proliferation. Because 4-HNE rapidly disappears from culture media, a multiple dosing regime was also employed to approximate short-term steady state 4-HNE concentrations relevant to physiological oxidative stress. 4-Hydroxynonenal steady state concentrations as low as 1 microM altered HSC differentiation pathways, but did not affect apoptosis or cause cell death. In contrast, exposure to steady state 5 microM 4-HNE elicited a loss in viability, and increased the rate of apoptosis in total HSC populations. Collectively, our data indicate that cellular levels of 4-HNE associated with a low level of oxidative stress cause a loss of proliferation and viability and alter differentiation pathways in human fetal HSC.
Collapse
Affiliation(s)
- Craig G Moneypenny
- School of Public Health and Community Medicine, Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE Suite 100, University of Washington, Seattle, WA 98105-6099, USA
| | | |
Collapse
|