1
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
2
|
Karakas D, Xu M, Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res Pract Thromb Haemost 2021; 5:e12506. [PMID: 33977209 PMCID: PMC8105161 DOI: 10.1002/rth2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin (TPO), a glycoprotein hormone produced predominantly in the liver, plays important roles in the hematopoietic stem cell (HSC) niche, and is essential for megakaryopoiesis and platelet generation. Long-standing understanding proposes that TPO is constitutively produced by hepatocytes, and levels are fine-tuned through platelet and megakaryocyte internalization/degradation via the c-Mpl receptor. However, in immune thrombocytopenia (ITP) and several other diseases, TPO levels are inconsistent with this theory. Recent studies showed that platelets, besides their TPO clearance, can induce TPO production in the liver. Our group also accidentally discovered that platelet glycoprotein (GP) Ibα is required for platelet-mediated TPO generation, which is underscored in both GPIbα-/- mice and patients with Bernard-Soulier syndrome. This review will introduce platelet versatilities and several new findings in hemostasis and platelet consumption but focus on its roles in TPO regulation. The implications of these new discoveries in hematopoiesis and the HSC niche, particularly in ITP, will be discussed.
Collapse
Affiliation(s)
- Danielle Karakas
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
| | - Miao Xu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Heyu Ni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
- Canadian Blood Services Centre for InnovationTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
3
|
Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, Jurk K. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17:122. [PMID: 31519182 PMCID: PMC6743169 DOI: 10.1186/s12964-019-0428-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. Methods Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. Results EB-induced platelet aggregation was dependent on integrin αIIbβ3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbβ3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin−/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. Conclusion EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα−/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Trabold
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | | | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis 2018; 5:jcdd5020020. [PMID: 29671769 PMCID: PMC6023364 DOI: 10.3390/jcdd5020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.
Collapse
Affiliation(s)
- Moritz Lehners
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Hyazinth Dobrowinski
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Makhoul S, Walter E, Pagel O, Walter U, Sickmann A, Gambaryan S, Smolenski A, Zahedi RP, Jurk K. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide 2018; 76:71-80. [PMID: 29550521 DOI: 10.1016/j.niox.2018.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins.
Collapse
Affiliation(s)
- Stephanie Makhoul
- University Medical Center Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Elena Walter
- University Medical Center Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Dortmund, Germany
| | - Ulrich Walter
- University Medical Center Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Dortmund, Germany; Ruhr Universität Bochum, Medizinisches Proteom Center, Medizinische Fakultät, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stepan Gambaryan
- University Medical Center Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany; Russian Academy of Sciences, Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; St. Petersburg State University, Department of Cytology and Histology, St. Petersburg, Russia
| | - Albert Smolenski
- Conway Institute of Biomolecular & Biomedical Research, Univ. College Dublin, Dublin, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - René P Zahedi
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , Montreal, Quebec H4A 3T2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal, Quebec H3T 1E2, Canada
| | - Kerstin Jurk
- University Medical Center Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
| |
Collapse
|
7
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
|
8
|
Xu Z, Xu YJ, Hao YN, Ren LJ, Zhang ZB, Xu X, Cao BY, Dai KS, Zhu L, Fang Q, Kong Y, Mao XL. A novel STAT3 inhibitor negatively modulates platelet activation and aggregation. Acta Pharmacol Sin 2017; 38:651-659. [PMID: 28260800 DOI: 10.1038/aps.2016.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) plays a critical role in platelet functions. This study sought to understand the effects of the STAT3 inhibitor SC99 on platelet activation and aggregation. Immunoblotting assays were applied to measure the effects of SC99 on the STAT3 signaling pathway. A ChronoLog aggregometer was used to evaluate platelet aggregation. A flow cytometer was used to evaluate P-selectin expression in the presence of SC99. AlamarBlue and Annexin-V staining were used to evaluate platelet viability and apoptosis, respectively. A fluorescence microscope was applied to analyze platelet spreading. SC99 inhibited the phosphorylation of JAK2 and STAT3 in human platelets but had no effects on the phosphorylation of AKT, p65 or Src, all of which are involved in platelet activation. Further studies revealed that SC99 inhibited human platelet aggregation induced by collagen and thrombin in a dose-dependent manner. SC99 inhibited thrombin-induced P-selectin expression and fibrinogen binding to single platelets. Moreover, SC99 inhibited platelet spreading on fibrinogen and clot retraction mediated by outside-in signaling. SC99 inhibited platelet aggregation in mice but it did not significantly prolong the bleeding time. Taken together, the present study revealed that SC99 inhibited platelet activation and aggregation as a STAT3 inhibitor. This agent can be developed as a promising treatment for thrombotic disorders.
Collapse
|
9
|
Ottaiano TF, Andrade SS, de Oliveira C, Silva MCC, Buri MV, Juliano MA, Girão MJBC, Sampaio MU, Schmaier AH, Wlodawer A, Maffei FHA, Oliva MLV. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie 2017; 135:72-81. [PMID: 28115185 DOI: 10.1016/j.biochi.2017.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 11/26/2022]
Abstract
Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbβ3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbβ3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS473, ERK1/2, and p38 MAPK, and to Ca2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbβ3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis.
Collapse
Affiliation(s)
- Tatiana F Ottaiano
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Sheila S Andrade
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo 04024-002, Brazil; Charitable Association of Blood Collection - COLSAN São Paulo, SP, Brazil
| | - Cleide de Oliveira
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Mariana C C Silva
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Marcus V Buri
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Maria A Juliano
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Manoel J B C Girão
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo 04024-002, Brazil; Charitable Association of Blood Collection - COLSAN São Paulo, SP, Brazil
| | - Misako U Sampaio
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Alvin H Schmaier
- Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Francisco H A Maffei
- Department of Orthopedics and Surgery, Universidade Estadual Paulista, Botucatu, Brazil
| | - Maria Luiza V Oliva
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| |
Collapse
|
10
|
|
11
|
Gambaryan S, Tsikas D. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from L-arginine or nitrite? Amino Acids 2015; 47:1779-93. [PMID: 25929585 DOI: 10.1007/s00726-015-1986-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
The NO/sGC/cGMP/PKG system is one of the most powerful mechanisms responsible for platelet inhibition. In numerous publications, expression of functional NO synthase (NOS) in human and mouse platelets has been reported. Constitutive and inducible NOS isoforms convert L-arginine to NO and L-citrulline. The importance of this pathway in platelets and in endothelial cells for the regulation of platelet function is discussed since decades. However, there are serious doubts in the literature concerning both expression and functionality of NOS in platelets. In this review, we aim to present and critically evaluate recent data concerning NOS expression and function in platelets, and to especially emphasise potential pitfalls of detection of NOS proteins and measurement of NOS activity. Prevailing analytical problems are probably the main sources of contradictory data on occurrence, activity and function of NOS in platelets. In this review we also address issues of how these problems can be resolved. NO donors including organic nitrites (RONO) and organic nitrate (RONO2) are inhibitors of platelet activation. Endogenous inorganic nitrite (NO2 (-)), the product of NO autoxidation, and exogenous inorganic nitrite are increasingly investigated as NO donors in the circulation. The role of platelets in the generation of NO from nitrite is also discussed.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prosp, St. Petersburg, 194223, Russia,
| | | |
Collapse
|
12
|
Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci 2014; 72:307-26. [PMID: 25297919 PMCID: PMC4284388 DOI: 10.1007/s00018-014-1743-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.
Collapse
Affiliation(s)
- Marijke Bryckaert
- INSERM U770, Hôpital Bicêtre, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre Cedex, France,
| | | | | | | |
Collapse
|
13
|
Nygaard G, Herfindal L, Kopperud R, Aragay AM, Holmsen H, Døskeland SO, Kleppe R, Selheim F. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression. Biochem Biophys Res Commun 2014; 449:357-63. [PMID: 24845383 DOI: 10.1016/j.bbrc.2014.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Reidun Kopperud
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna M Aragay
- Department of Biomedicine, University of Bergen, Bergen, Norway; Molecular Biology Institute of Barcelona (IBMB, CSIC), Barcelona, Spain
| | - Holm Holmsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Rune Kleppe
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Navdaev A, Subramanian H, Petunin A, Clemetson KJ, Gambaryan S, Walter U. Echicetin coated polystyrene beads: a novel tool to investigate GPIb-specific platelet activation and aggregation. PLoS One 2014; 9:e93569. [PMID: 24705415 PMCID: PMC3976279 DOI: 10.1371/journal.pone.0093569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 01/01/2023] Open
Abstract
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.
Collapse
Affiliation(s)
- Alexey Navdaev
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Hariharan Subramanian
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Alexey Petunin
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | - Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
15
|
Shih CH, Chiang TB, Wang WJ. A critical role for the regulation of Syk from agglutination to aggregation in human platelets. Biochem Biophys Res Commun 2013; 443:580-5. [PMID: 24326074 DOI: 10.1016/j.bbrc.2013.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to integrin αIIbβ3-dependent aggregation in human platelets.
Collapse
Affiliation(s)
- Chun-Ho Shih
- Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tin-Bin Chiang
- Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan
| | - Wen-Jeng Wang
- Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
16
|
McFadyen JD, Jackson SP. Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb Haemost 2013; 110:859-67. [PMID: 23945664 DOI: 10.1160/th13-05-0379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The central role of platelets in the formation of the primary haemostatic plug as well as in the development of arterial thrombosis is well defined. In general, the molecular events underpinning these processes are broadly similar. Whilst it has long been known that disturbances in blood flow, changes in platelet reactivity and enhanced coagulation reactions facilitate pathological thrombus formation, the precise details underlying these events remain incompletely understood. Intravital microscopy studies have highlighted the dynamic and heterogeneous nature of thrombus development and demonstrated that there are considerable spatiotemporal differences in the activation states of platelets within a forming thrombus. In this review we will consider the factors regulating the activation state of platelets in a developing thrombus and discuss how specific prothrombotic factors may influence this process, leading to excessive thrombus propagation. We will also discuss some potentially novel therapeutic approaches that may reduce excess thrombus development whilst minimising bleeding risk.
Collapse
Affiliation(s)
- J D McFadyen
- Shaun P. Jackson, Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), 6th level Burnet Tower, 89 Commercial Rd, Melbourne, Victoria 3004, Australia, Tel.: +613 9903 0131, Fax: +613 9903 0228, E-mail:
| | | |
Collapse
|
17
|
Vaiyapuri S, Ali MS, Moraes LA, Sage T, Lewis KR, Jones CI, Gibbins JM. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler Thromb Vasc Biol 2013; 33:2740-9. [PMID: 24135020 DOI: 10.1161/atvbaha.113.301988] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. APPROACH AND RESULTS Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. CONCLUSIONS This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.
Collapse
Affiliation(s)
- Sakthivel Vaiyapuri
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
19
|
Xiang B, Zhang G, Stefanini L, Bergmeier W, Gartner TK, Whiteheart SW, Li Z. The Src family kinases and protein kinase C synergize to mediate Gq-dependent platelet activation. J Biol Chem 2012; 287:41277-87. [PMID: 23066026 DOI: 10.1074/jbc.m112.393124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Src family kinases (SFKs) play essential roles in collagen- and von Willebrand factor (VWF)-mediated platelet activation. However, the roles of SFKs in G protein-coupled receptor-mediated platelet activation and the molecular mechanisms whereby SFKs are activated by G protein-coupled receptor stimulation are not fully understood. Here we show that the thrombin receptor protease-activated receptor 4 agonist peptide AYPGKF elicited SFK phosphorylation in P2Y(12) deficient platelets but stimulated minimal SFK phosphorylation in platelets lacking G(q). We have previously shown that thrombin-induced SFK phosphorylation was inhibited by the calcium chelator 5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA). The calcium ionophore A23187 induced SFK phosphorylation in both wild-type and G(q) deficient platelets. Together, these results indicate that SFK phosphorylation in response to thrombin receptor stimulation is downstream from G(q)/Ca(2+) signaling. Moreover, A23187-induced thromboxane A(2) synthesis, platelet aggregation, and secretion were inhibited by preincubation of platelets with a selective SFK inhibitor, PP2. AYPGKF-induced thromboxane A(2) production in wild-type and P2Y(12) deficient platelets was abolished by PP2, and AYPGKF-mediated P-selectin expression, integrin α(IIb)β(3) activation, and aggregation of P2Y(12) deficient platelets were partially inhibited by the PKC inhibitor Ro-31-8220, PP2, dimethyl-BAPTA, or LY294002, but were abolished by Ro-31-8220 plus PP2, dimethyl-BAPTA, or LY294002. These data indicate that Ca(2+)/SFKs/PI3K and PKC represent two alternative signaling pathways mediating G(q)-dependent platelet activation.
Collapse
Affiliation(s)
- Binggang Xiang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cisplatin induces platelet apoptosis through the ERK signaling pathway. Thromb Res 2012; 130:81-91. [PMID: 22445428 DOI: 10.1016/j.thromres.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/28/2012] [Accepted: 02/19/2012] [Indexed: 01/12/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum II) is one of the most widely used anti-tumor agents. However, cisplatin-based chemotherapy is usually accompanied by adverse side effects such as thrombocytopenia, and the mechanism remains unclear. Here we show that cisplatin induced several platelet apoptotic events including up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-X(L), mitochondrial translocation of Bax, mitochondrial inner transmembrane potential depolarization, caspase-3 activation and phosphatidylserine (PS) exposure. Cisplatin dose-dependently induced activation of extracellular signal-regulated protein kinase (ERK) in platelets. Caspase-3 inhibitor z-DEVD-fmk dramatically inhibited cisplatin-induced caspase-3 activation and PS exposure without affecting ERK activation. Blockade of the ERK pathway significantly prevented platelet apoptosis. Furthermore, levels of reactive oxygen species (ROS) and Ca(2+) were significantly elevated by cisplatin, and scavenging of ROS and Ca(2+) obviously inhibited platelet apoptosis induced by cisplatin. In addition, cisplatin did not induce platelet activation, whereas it obviously impaired platelet functions. These data indicate that cisplatin induces platelet apoptosis through the ERK signaling pathway, which might contribute to cisplatin-related haematological toxicity.
Collapse
|
21
|
Abstract
Endothelial prostacyclin and nitric oxide potently inhibit platelet functions. Prostacyclin and nitric oxide actions are mediated by platelet adenylyl and guanylyl cyclases, which synthesize cyclic AMP (cAMP) and cyclic GMP (cGMP), respectively. Cyclic nucleotides stimulate cAMP-dependent protein kinase (protein kinase A [PKA]I and PKAII) and cGMP-dependent protein kinase (protein kinase G [PKG]I) to phosphorylate a broad panel of substrate proteins. Substrate phosphorylation results in the inactivation of small G-proteins of the Ras and Rho families, inhibition of the release of Ca(2+) from intracellular stores, and modulation of actin cytoskeleton dynamics. Thus, PKA/PKG substrates translate prostacyclin and nitric oxide signals into a block of platelet adhesion, granule release, and aggregation. cAMP and cGMP are degraded by phosphodiesterases, which might restrict signaling to specific subcellular compartments. An emerging principle of cyclic nucleotide signaling in platelets is the high degree of interconnection between activating and cAMP/cGMP-dependent inhibitory signaling pathways at all levels, including cAMP/cGMP synthesis and breakdown, and PKA/PKG-mediated substrate phosphorylation. Furthermore, defects in cAMP/cGMP pathways might contribute to platelet hyperreactivity in cardiovascular disease. This article focuses on recent insights into the regulation of the cAMP/cGMP signaling network and on new targets of PKA and PKG in platelets.
Collapse
Affiliation(s)
- A Smolenski
- UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
22
|
Abstract
IMPORTANCE OF THE FIELD Acute pancreatitis (AP) is a multifactorial disorder not fully understood yet. In particular, the pathogenetic pathways promoting a severe life-threatening course of AP are the subject of ongoing investigations. P-selectin has been shown to play a central role in the complex pathophysiology in AP as well as various other inflammatory conditions. AREAS COVERED IN THIS REVIEW P-selectin function in AP is reviewed with focus on its dual function as a mediator of leukocyte recruitment and cell adhesion, which implies the unique effect of linking both inflammation and coagulation, especially in the progression from mild to severe necrotizing AP. Potential therapeutic aspects are discussed with regard to the clinical situation. WHAT THE READER WILL GAIN A better understanding of the pathogenic role of P-selectin in AP and of the rationale for a therapeutic blockade. TAKE HOME MESSAGE P-selectin is a glycoprotein that mediates the adhesion of activated platelets and leukocytes to the vessel wall in various inflammatory conditions. Both pathophysiological steps are closely linked and play a key role in the course of severe AP. A treatment approach by inhibition of P-selectin could be of distinct interest as a therapeutic option in severe AP.
Collapse
Affiliation(s)
- Thilo Hackert
- University of Heidelberg, Department of Surgery, Germany.
| | | | | |
Collapse
|
23
|
Jackson ECG, McNicol A. Cyclic nucleotides inhibit MAP kinase activity in low-dose collagen-stimulated platelets. Thromb Res 2010; 125:147-51. [PMID: 19595442 DOI: 10.1016/j.thromres.2009.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/05/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Collagen-induced platelet activation is a complex process involving multiple signaling pathways. The role(s) of MAP kinases (ERKs and p38(MAPK)) are unclear, although at high, but not low, collagen concentrations p38(MAPK) is involved in cPLA(2)-mediated arachidonic acid release, prior to thromboxane generation. Cyclic nucleotides are conventionally regarded as mediators of platelet inhibition. However recent studies suggested a role for cGMP early in a MAP kinase pathway in platelet activation. In the current study the roles and relationships of MAP kinases, cyclic nucleotides and cPLA(2) in platelet activation by low-dose collagen and a thromboxane analogue (U46619) have been evaluated. Stimulants of neither adenylate cyclase (PGI(2)) nor guanylate cyclase (NaNP) alone had any effect on the basal phosphorylation of either MAP kinase. PGI(2) inhibited ERK/p38(MAPK) phosphorylation in response to both agonists which was unaffected by a cPLA(2) inhibitor (AACOCF(3)). NaNP inhibited collagen-induced ERK/p38(MAPK) phosphorylation, which was enhanced by AACOCF(3) and reversed by a guanylate cyclase inhibitor (ODQ). However NaNP had no effect on U46619-induced p38(MAPK) phosphorylation. Thus adenylate cyclase activation inhibits low-dose collagen-induced MAP kinase phosphorylation both prior, and distal, to thromboxane release. The study also supports an inhibitory, rather than stimulatory, role for guanylate cyclase in platelet signaling.
Collapse
Affiliation(s)
- Elke C G Jackson
- Department of Oral Biology, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0W2
| | | |
Collapse
|
24
|
David T, Strassel C, Eckly A, Cazenave JP, Gachet C, Lanza F. The platelet glycoprotein GPIbbeta intracellular domain participates in von Willebrand factor induced-filopodia formation independently of the Ser 166 phosphorylation site. J Thromb Haemost 2010; 8:1077-87. [PMID: 19694944 DOI: 10.1111/j.1538-7836.2009.03590.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY BACKGROUND Circulating platelets are initially recruited at the site of vessel injury by von Willebrand factor (VWF) immobilized on collagen fibers. This process, mediated by the GPIb-V-IX complex, is accompanied by specific intracellular signaling leading to reorganization of the platelet actin cytoskeleton and extension of filopodia. OBJECTIVES/METHODS To evaluate the GPIbalpha and GPIbbeta intracellular domains contribution to this signaling, we generated Chinese hamster ovary (CHO) cells expressing a GPIb-IX complex with mutant forms of the two subunits and we measured their ability to extend filopodia upon adhesion on a VWF matrix. RESULTS Complete intracellular deletion or elimination of the filamin or the 14-3-3zeta binding sites in GPIbalpha did not prevent filopodia extension. In contrast, deletion of the juxtamembrane (Leu(150)-Arg(160)) or central (Ala(159)-Pro(170)) intracellular segment of GPIbbeta resulted in a 21% and 23% reduction in the number of cells extending filopodia, respectively. This occurred without decreasing adhesion efficiency or GPIb-IX association with filamin A or 14-3-3zeta. Alanine scanning mutagenesis of the Leu(150)-Pro(170) segment identified Arg(164), Leu(165), Leu(167), Thr(168) and Pro(170) as important residues for efficient filopodia formation. Surprisingly, mutation of the Ser(166) PKA phosphorylation site did not alter adhesion and shape change. A role for the GPIbbeta subunit was reinforced by the decreased capacity to extend filopodia upon adhesion on VWF of platelets from knock-in mice expressing a GPIbbeta intracellular deletion mutant. CONCLUSIONS Altogether, our results strongly support participation of GPIbbeta and its intracellular region in GPIb-dependent platelet activation and shape change triggered by a VWF matrix.
Collapse
Affiliation(s)
- T David
- EFS-Alsace, Inserm, UMR-S949, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
25
|
Li Z, Zhang G, Liu J, Stojanovic A, Ruan C, Lowell CA, Du X. An important role of the SRC family kinase Lyn in stimulating platelet granule secretion. J Biol Chem 2010; 285:12559-70. [PMID: 20189992 DOI: 10.1074/jbc.m109.098756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Src family kinases (SFKs) have been proposed to play stimulatory and inhibitory roles in platelet activation. The mechanisms for these apparently contradictory roles are unclear. Here we show that SFK, mainly Lyn, is important in stimulating a common signaling pathway leading to secretion of platelet granules. Lyn knock-out or an isoform-nonselective SFK inhibitor, PP2, inhibited platelet secretion of both dense and alpha granules and the secretion-dependent platelet aggregation induced by thrombin, collagen, and thromboxane A(2). The inhibitory effect of Lyn knock-out on platelet aggregation was reversed by supplementing granule content ADP, indicating that the primary role of Lyn is to stimulate granule secretion. Inhibitory effect of PP2 on platelet aggregation induced by thrombin and thromboxane A(2) were also reversed by supplementing ADP. Furthermore, PP2 treatment or Lyn knock-out diminished agonist-induced Akt activation and cyclic GMP production. The inhibitory effect of PP2 or Lyn knock-out on platelet response can be corrected by supplementing cyclic GMP. These data indicate that Lyn stimulates platelet secretion by activating the phosphoinositide 3-kinase-Akt-nitric oxide (NO)-cyclic GMP pathway and also provide an explanation why Lyn can both stimulate and inhibit platelet activation.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Roberts W, Michno A, Aburima A, Naseem KM. Nitric oxide inhibits von Willebrand factor-mediated platelet adhesion and spreading through regulation of integrin alpha(IIb)beta(3) and myosin light chain. J Thromb Haemost 2009; 7:2106-15. [PMID: 19765213 DOI: 10.1111/j.1538-7836.2009.03619.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND von Willebrand factor (VWF)-mediated platelet adhesion and spreading at sites of vascular injury is a critical step in hemostasis. This process requires two individual receptors: glycoprotein Ib (GPIb)-V-IX and integrin alpha(IIb)beta(3). However, little is known about the negative regulation of these events. OBJECTIVES To examine if the endogenous platelet inhibitor nitric oxide (NO) has differential effects on adhesion, spreading and aggregation induced by immobilized VWF. RESULTS S-nitrosoglutathione (GSNO) inhibited platelet aggregation on immobilized VWF under static and flow conditions, but had no effect on platelet adhesion. Primary signaling events underpinning the actions of NO required cyclic GMP but not protein kinase A. Dissecting the roles of GPIb and integrin alpha(IIb)beta(3) demonstrated that NO targeted alpha(IIb)beta(3)-mediated aggregation and spreading, but did not significantly influence GPIb-mediated adhesion. To understand the relationship between the effects of NO on adhesion and subsequent aggregation, we evaluated the activation of alpha(IIb)beta(3) on adherent platelets. NO reduced the phosphorylation of extracellular stimuli-responsive kinase (ERK) and p38, required for integrin activation resulting in reduced binding of the activated alpha(IIb)beta(3)-specific antibody PAC-1 on adherent platelets. Detailed analysis of platelet spreading initiated by VWF demonstrated key roles for integrin alpha(IIb)beta(3) and myosin light chain (MLC) phosphorylation. NO targeted both of these pathways by directly modulating integrin affinity and activating MLC phosphatase. CONCLUSION These data demonstrate that initial activation-independent platelet adhesion to VWF via GPIb is resistant to NO, however, NO inhibits GPIb-mediated activation of alpha(IIb)beta(3) and MLC leading to reduced platelet spreading and aggregation.
Collapse
Affiliation(s)
- W Roberts
- Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| | | | | | | |
Collapse
|
27
|
The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood 2009; 114:1884-92. [PMID: 19494352 DOI: 10.1182/blood-2009-02-205328] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dasatinib is an oral potent adenosine triphosphate (ATP)-competitive inhibitor of BCR-ABL, cKIT, platelet-derived growth factor receptor, and SRC family kinases (SFKs), which has demonstrated high efficiency in patients with imatinib-resistant chronic myelogenous leukemia. Here, we show that dasatinib weakly affects platelet activation by thrombin or adenosine diphosphate but is a potent inhibitor of platelet signaling and functions initiated by collagen or FcgammaRIIA cross-linking, which require immunoreceptor tyrosine-based activation motif phosphorylation by SFKs. Accordingly, dasatinib treatment rapidly decreases the volume of thrombi formed under arterial flow conditions in whole blood from patients or mice perfused over a matrix of collagen. Moreover, treatment of mice with dasatinib increases the tail bleeding time in a dose-dependent manner. Interestingly, these effects are rapidly reversible after interruption of the treatment. Our data clearly demonstrate that, in contrast to imatinib, dasatinib affects platelet functions in vitro and in vivo, which has important implications in clinic and could explain increased risks of bleeding observed in patients. Moreover, dasatinib efficiently prevents platelet activation mediated by FcgammaRIIA cross-linking and by sera from patients with heparin-induced thrombocytopenia, suggesting that reversible antiplatelet agents acting as ATP-competitive inhibitors of SFKs may be of therapeutic interest in the treatment of this pathology.
Collapse
|
28
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
29
|
Riba R, Patel B, Aburima A, Naseem KM. Globular adiponectin increases cGMP formation in blood platelets independently of nitric oxide. J Thromb Haemost 2008; 6:2121-31. [PMID: 18983522 DOI: 10.1111/j.1538-7836.2008.03179.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelet-derived nitric oxide (NO) has been shown to play conflicting roles in platelet function, although it is accepted that NO mediates its actions through soluble guanylyl cyclase (sGC). This confusion concerning the roles of platelet NO may have arisen because of an uncharacterized mechanism for activation of sGC. OBJECTIVES To examine the ability of the novel platelet agonist globular adiponectin (gAd) to stimulate the NO-independent cGMP-protein kinase G (PKG) signaling cascade. METHODS We used three independent markers of NO signaling, [(3)H]l-citrulline production, cGMP accrual, and immunoblotting of vasodilator-stimulated phosphoprotein (VASP), to examine the NO signaling cascade in response to gAd. RESULTS gAd increased platelet cGMP formation, resulting in a dose- and time-dependent increase in phospho-VASP(157/239). Phosphorylation of VASP in response to gAd was mediated by both protein kinase A and PKG. Importantly, cGMP formation occurred in the absence of NO synthase (NOS) activation and in the presence of NOS inhibitors. Indeed, inhibition of the NOS signaling cascade had no influence on gAd-mediated platelet aggregation. Exploration of the mechanism demonstrated that NO-independent cGMP formation, phosphorylation of VASP and association of sGCalpha(1) with heat shock protein-90 induced by gAd were blocked under conditions that inhibited Src kinases, implying a tyrosine kinase-dependent mechanism. Indeed, sGCalpha1 was reversibly tyrosine phosphorylated in response to gAd, collagen, and collagen-related peptide, an effect that required Src kinases and downstream Ca(2+) mobilization. CONCLUSIONS These data demonstrate activation of the platelet cGMP signaling cascade by a novel tyrosine kinase-dependent mechanism in the absence of NO.
Collapse
Affiliation(s)
- R Riba
- Centre for Atherothrombosis Research, Medical Biosciences, University of Bradford, Bradford, UK
| | | | | | | |
Collapse
|
30
|
Adam F, Kauskot A, Rosa JP, Bryckaert M. Mitogen-activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 2008; 6:2007-16. [PMID: 18826389 DOI: 10.1111/j.1538-7836.2008.03169.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mitogen-activated protein (MAP) kinases ERK2, p38 and JNK1 are present in platelets and are activated by various stimuli, such as thrombin, collagen, von Willebrand factor (VWF) and ADP. Until recently, MAP kinases were only studied in the conventional model of agonist-induced platelet aggregation mediated by fibrinogen and integrin alphaIIbbeta3. However, this approach is likely to be too limited for a physiological understanding of platelet MAP kinases and their signaling pathways. Recent studies with varying blood-flow conditions and animal models of thrombosis have provided deeper insight into the role of MAP kinases in thrombus formation and the dependence of these kinases on shear conditions. This review summarizes and discusses the physiological functions of these kinases in hemostasis and thrombosis as revealed by various technical approaches.
Collapse
Affiliation(s)
- F Adam
- Centre de Recherche Cardiovasculaire INSERM Lariboisiére U689, Hôpital Lariboisiére, Paris, France
| | | | | | | |
Collapse
|
31
|
Valtcheva N, Nestorov P, Beck A, Russwurm M, Hillenbrand M, Weinmeister P, Feil R. The commonly used cGMP-dependent protein kinase type I (cGKI) inhibitor Rp-8-Br-PET-cGMPS can activate cGKI in vitro and in intact cells. J Biol Chem 2008; 284:556-562. [PMID: 19008225 DOI: 10.1074/jbc.m806161200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small-molecule modulators of cGMP signaling are of interest to basic and clinical research. The cGMP-dependent protein kinase type I (cGKI) is presumably a major mediator of cGMP effects, and the cGMP analogue Rp-8-Br-PET-cGMPS (Rp-PET) (chemical name: beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer) is currently considered one of the most permeable, selective, and potent cGKI inhibitors available for intact cell studies. Here, we have evaluated the properties of Rp-PET using cGKI-expressing and cGKI-deficient primary vascular smooth muscle cells (VSMCs), purified cGKI isozymes, and an engineered cGMP sensor protein. cGKI activity in intact VSMCs was monitored by cGMP/cGKI-stimulated cell growth and phosphorylation of vasodilator-stimulated phosphoprotein. Unexpectedly, Rp-PET (100 microm) did not efficiently antagonize activation of cGKI by the agonist 8-Br-cGMP (100 microm) in intact VSMCs. Moreover, in the absence of 8-Br-cGMP, Rp-PET (100 microm) stimulated cell growth in a cGKIalpha-dependent manner. Kinase assays with purified cGKI isozymes confirmed the previously reported inhibition of the cGMP-stimulated enzyme by Rp-PET in vitro. However, in the absence of the agonist cGMP, Rp-PET partially activated the cGKIalpha isoform. Experiments with a fluorescence resonance energy transfer-based construct harboring the cGMP binding sites of cGKI suggested that binding of Rp-PET induces a conformational change similar to the agonist cGMP. Together, these findings indicate that Rp-PET is a partial cGKIalpha agonist that under certain conditions stimulates rather than inhibits cGKI activity in vitro and in intact cells. Data obtained with Rp-PET as cGKI inhibitor should be interpreted with caution and not be used as sole evidence to dissect the role of cGKI in signaling processes.
Collapse
Affiliation(s)
- Nadejda Valtcheva
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Peter Nestorov
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Alexander Beck
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Michael Russwurm
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Matthias Hillenbrand
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Pascal Weinmeister
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany
| | - Robert Feil
- Interfakulta¨res Institut fu¨r Biochemie, Universita¨t Tu¨bingen, 72076 Tu¨bingen, the Zentrum fu¨r Klinische Massenspektrometrie GmbH, 74076 Heilbronn, the Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bochum, 44780 Bochum, and the Institut fu¨r Pharmakologie und Toxikologie, Technische Universita¨t Mu¨nchen, 80802 Mu¨nchen Germany.
| |
Collapse
|
32
|
Gambaryan S, Kobsar A, Hartmann S, Birschmann I, Kuhlencordt PJ, Müller-Esterl W, Lohmann SM, Walter U. NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost 2008; 6:1376-84. [PMID: 18485089 DOI: 10.1111/j.1538-7836.2008.03014.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Platelets, specialized adhesive cells, play key roles in normal and pathological hemostasis through their ability to rapidly adhere to subendothelial matrix proteins (adhesion) and to other activated platelets (aggregation), functions which are inhibited by nitric oxide (NO). Platelets have been reported to be regulated not only by exogenous endothelium-derived NO, but also by two isoforms of NO synthase, endothelial (eNOS) and inducible (iNOS), endogenously expressed in platelets. however, data concerning expression, regulation and function of eNOS AND iNOS in platelets remain controversial. METHODS AND RESULTS Using important positive (endothelial cells, stimulated macrophages) and negative (eNOS/iNOS knock-out mouse) controls, as well as human platelets highly purified by a newly developed protocol, we now demonstrate that human and mouse platelets do not contain eNOS/iNOS proteins or mRNA. NOS substrate (L-arginine), NOS inhibitors (L-NAME, L-NMMA), and eNOS/iNOS deficiency did not produce detectable functional effects on human and mouse platelets. von Willebrand factor (VWF)/ristocetin treatment of platelets increased cGMP by NO-independent activation of soluble guanylyl cyclase (sGC) which correlated with Src kinase-dependent phosphorylation of sGC beta(1)-subunit-Tyr(192). CONCLUSIONS Human and mouse platelets do not express eNOS/iNOS. VWF/ristocetin-mediated activation of the sGC/cGMP signaling pathway may contribute to feedback platelet inhibition.
Collapse
Affiliation(s)
- S Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, Johnson LA, Jackson DG, Watson SP, O'Callaghan CA. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008; 411:133-40. [PMID: 18215137 PMCID: PMC2749330 DOI: 10.1042/bj20071216] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.
Collapse
Affiliation(s)
- Charita M. Christou
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Andrew C. Pearce
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Aleksandra A. Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Anita R. Mistry
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Alice Y. Pollitt
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Angharad E. Fenton-May
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Louise A. Johnson
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - David G. Jackson
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chris A. O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| |
Collapse
|
34
|
Benard SA, Smith TM, Cunningham K, Jacob J, DeSilva T, Lin L, Shaw GD, Kriz R, Kelleher KS. Identification of peptide antagonists to glycoprotein Ibalpha that selectively inhibit von Willebrand factor dependent platelet aggregation. Biochemistry 2008; 47:4674-82. [PMID: 18363340 DOI: 10.1021/bi702428q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.
Collapse
Affiliation(s)
- Susan Adam Benard
- Departments of Chemical and Screening Sciences and Cardiovascular and Metabolic Disease, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
36
|
Abstract
Endothelial-derived nitric oxide (NO) is a key regulator of platelet function, inhibiting both adhesion to the extracellular matrix and aggregation at sites of vascular injury. Platelets also have the capacity to synthesize and release bioactive NO, which is thought to make a significant contribution to the vascular pool of NO. The regulation of platelet NO production is poorly understood and studies examining the physiological role of platelet-derived NO have produced contradictory and controversial findings. In the present article, we discuss the current understanding of the biochemical and molecular regulation of platelet NO synthesis and outline the potential physiological and clinical significance of this molecule.
Collapse
Affiliation(s)
- K M Naseem
- Medical Biosciences, University of Bradford, Bradford, West Yorkshire, UK.
| | | |
Collapse
|
37
|
Kauskot A, Adam F, Mazharian A, Ajzenberg N, Berrou E, Bonnefoy A, Rosa JP, Hoylaerts MF, Bryckaert M. Involvement of the Mitogen-activated Protein Kinase c-Jun NH2-terminal Kinase 1 in Thrombus Formation. J Biol Chem 2007; 282:31990-9. [PMID: 17785464 DOI: 10.1074/jbc.m701596200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase-1 (JNK1) has never been investigated in hemostasis and thrombosis. Using two JNK inhibitors (SP600125 and 6o), we have demonstrated that JNK1 is involved in collagen-induced platelet aggregation dependent on ADP. In these conditions, JNK1 activation requires the coordinated signaling pathways of collagen receptors (alpha2beta1 and glycoprotein (GP)VI) and ADP. In contrast, JNK1 is not required for platelet adhesion on a collagen matrix in static or blood flow conditions (300-1500 s(-1)) involving collagen receptors (alpha2beta1 and GPVI). Importantly, at 1500 s(-1), JNK1 acts on thrombus formation on a collagen matrix dependent on GPIb-von Willebrand factor (vWF) interaction but not ADP receptor activation. This is confirmed by the involvement of JNK1 in shear-induced platelet aggregation at 4000 s(-1). We also provide evidence during rolling and adhesion of platelets to vWF that platelet GPIb-vWF interaction triggers alphaIIbbeta3 activation in a JNK1-dependent manner. This was confirmed with a Glanzmann thrombastenic patient lacking alphaIIbbeta3. Finally, in vivo, JNK1 is involved in arterial but not in venular thrombosis in mice. Overall, our in vitro studies define a new role of JNK1 in thrombus formation in flowing blood that is relevant to thrombus development in vivo.
Collapse
Affiliation(s)
- Alexandre Kauskot
- Centre de Recherche Cardiovasculaire INSERM Lariboisière, U689-E4, Hôpital Lariboisière, 8 rue Guy Patin, 75010 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bilodeau ML, Hamm HE. Regulation of protease-activated receptor (PAR) 1 and PAR4 signaling in human platelets by compartmentalized cyclic nucleotide actions. J Pharmacol Exp Ther 2007; 322:778-88. [PMID: 17525299 DOI: 10.1124/jpet.107.121830] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin potently regulates human platelets by the G protein-coupled receptors protease-activated receptor (PAR) 1 and PAR4. Platelet activation by thrombin and other agonists is broadly inhibited by prostacyclin and nitric oxide acting through adenylyl and guanylyl cyclases to elevate cAMP and cGMP levels, respectively. Using forskolin and YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole] to selectively activate the adenylyl and guanylyl cyclases, respectively, and the membrane-permeable analogs N(6),2'-O-dibutyryladenosine-3'-5'-cAMP (dibutyryl-cAMP) and 8-(4-parachlorophenylthoi)-cGMP (8-pCPT-cGMP), we sought to identify key antiplatelet steps for cyclic nucleotide actions in blocking platelet activation by PAR1 versus PAR4. Platelet aggregation by PAR1 or PAR4 was inhibited with similar EC(50) of 1.2 to 2.1 microM forskolin, 31 to 33 microM YC-1, 57 to 150 microM dibutyryl-cAMP, and 220 to 410 microM 8-pCPT-cGMP. There was a marked left shift in the inhibitory potencies of forskolin and YC-1 for alpha-granule release and glycoprotein IIbIIIa/integrin alphaIIbbeta3 activation (i.e., EC(50) of 1-60 and 40-1300 nM, respectively) that was not observed for dibutyryl-cAMP and 8-pCPT-cGMP (i.e., EC(50) of 200-600 and 40-140 microM, respectively). This inhibition was essentially instantaneous, and measurements of cyclic nucleotide levels and kinase activities support a model of compartmentation involving the cyclic nucleotide effectors and regulators and the key molecular targets for this platelet inhibition. The different sensitivities of PAR1 and PAR4 to inhibition of calcium mobilization and dense granule release identify key antiplatelet steps for cyclic nucleotide actions and are consistent with the signaling models for these receptors. Specifically, PAR4 inhibition depends on the regulation of both calcium mobilization and dense granule release, and PAR1 inhibition depends predominantly on the regulation of dense granule release.
Collapse
Affiliation(s)
- Matthew L Bilodeau
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 442 Robinson Research Building, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
39
|
Mazharian A, Roger S, Berrou E, Adam F, Kauskot A, Nurden P, Jandrot-Perrus M, Bryckaert M. Protease-activating receptor-4 induces full platelet spreading on a fibrinogen matrix: involvement of ERK2 and p38 and Ca2+ mobilization. J Biol Chem 2007; 282:5478-87. [PMID: 17200114 DOI: 10.1074/jbc.m609881200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the involvement of protease-activating receptor PAR1 and PAR4 is well established in platelet aggregation, their role in platelet adhesion and spreading has yet to be characterized. We investigated platelet adhesion and spreading on a fibrinogen matrix after PAR1 and PAR4 stimulation in correlation with the activation of two MAPKs, ERK2 and p38. Of the two PAR-activating peptides (PAR-APs), PAR1-AP and PAR4-AP, which both induce adhesion, only PAR4-AP induced full platelet spreading. Although both PAR1-AP and PAR4-AP induced ADP secretion, which is required for platelet spreading, only PAR4-AP induced sustained Ca(2+) mobilization. In these conditions of PAR4 induction, ERK2 and p38 activation were involved in platelet spreading but not in platelet adhesion. p38 phosphorylation was dependent on ADP signaling through P2Y12, its receptor. ERK2 phosphorylation was triggered through integrin alphaIIbbeta3 outside-in signaling and was dependent on the Rho pathway. ERK2 and p38 activation induced phosphorylation of the myosin light chain and actin polymerization, respectively, necessary for cytoskeleton reorganization. These findings provide the first evidence that thrombin requires PAR4 for the full spreading response. ERK2 and p38 and sustained Ca(2+) mobilization, involved in PAR4-induced platelet spreading, contribute to the stabilization of platelet thrombi at sites of high thrombin production.
Collapse
Affiliation(s)
- Alexandra Mazharian
- U689 INSERM, IFR139, Hôpital Lariboisière, 8 rue Guy Patin, 75010 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Senis YA, Tomlinson MG, García A, Dumon S, Heath VL, Herbert J, Cobbold SP, Spalton JC, Ayman S, Antrobus R, Zitzmann N, Bicknell R, Frampton J, Authi KS, Martin A, Wakelam MJO, Watson SP. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell Proteomics 2006; 6:548-64. [PMID: 17186946 PMCID: PMC1860054 DOI: 10.1074/mcp.d600007-mcp200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation.
Collapse
Affiliation(s)
- Yotis A Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Riba R, Oberprieler NG, Roberts W, Naseem KM. Von Willebrand factor activates endothelial nitric oxide synthase in blood platelets by a glycoprotein Ib-dependent mechanism. J Thromb Haemost 2006; 4:2636-44. [PMID: 17100655 DOI: 10.1111/j.1538-7836.2006.02195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The molecular regulation of endothelial nitric oxide synthase (eNOS) in blood platelets and the signalling events induced by platelet-derived NO are poorly defined. In particular, the ability of von Willebrand factor (VWF) to stimulate cyclic guanosine monophosphate (cGMP) formation in platelets has produced conflicting data. OBJECTIVES To determine the mechanisms leading to eNOS activation and clarify the downstream signaling pathways activated by platelet-derived NO in response to VWF. METHODS We used three independent markers of NO signaling, [3H] l-citrulline production, cGMP accrual and immunoblotting of vasodilator-stimulated phosphoprotein (VASP) to examine the NO signaling cascade in response to VWF. RESULTS VWF increased NO synthesis and bioavailability, as evidenced by increased [3H] l-citrulline production and cGMP accrual, respectively. VWF-induced eNOS activation was GPIb-IX-dependent and independent of integrin alpha(IIb)beta3. cGMP formation in response to VWF required Ca2+ mobilization, Src family kinases, phosphatidylinositol 3-kinase and phospholipase C, but not protein kinase C. This suggests that a cross-talk between the signaling mechanisms regulates platelet activation and NO synthesis. VWF-induced cGMP accrual was completely blocked by apyrase and indomethacin, demonstrating an essential role for platelet-derived ADP and thromboxane A2 (TxA2). Elevated cGMP levels led to increased VASP phosphorylation at serine239 that was both protein kinase G (PKG)- and protein kinase A (PKA)-dependent. CONCLUSIONS We demonstrate that VWF activates eNOS through a specific Ca2+-dependent GPIb receptor-signaling cascade that relies on the generation of platelet-derived ADP and TxA2. Furthermore, we provide the first evidence to suggest that platelet derived-NO/cGMP activates PKA in addition to PKG.
Collapse
Affiliation(s)
- R Riba
- Medical Biosciences, University of Bradford, Bradford, West Yorkshire, UK
| | | | | | | |
Collapse
|
43
|
Suzuki-Inoue K, Hughes CE, Inoue O, Kaneko M, Cuyun-Lira O, Takafuta T, Watson SP, Ozaki Y. Involvement of Src kinases and PLCgamma2 in clot retraction. Thromb Res 2006; 120:251-8. [PMID: 17055557 PMCID: PMC1884692 DOI: 10.1016/j.thromres.2006.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/18/2022]
Abstract
The integrin αIIbβ3 plays a critical role in mediating clot retraction by platelets which is important in vivo in consolidating thrombus formation. Actin–myosin interaction is essential for clot retraction. In the present study, we demonstrate that the structurally distinct Src kinase inhibitors, PP2 and PD173952, significantly reduced the rate of clot retraction, but did not prevent it reaching completion. This effect was accompanied by abolition of αIIbβ3-dependent protein tyrosine phosphorylation, including PLCγ2. A role for PLCγ2 in mediating clot retraction was demonstrated using PLCγ2-deficient murine platelets. Furthermore, platelet adhesion to fibrinogen leads to MLC phosphorylation through a pathway that is inhibited by PP2 and by the PLC inhibitor, U73122. These results demonstrate a partial role for Src kinase-dependent activation of PLCγ2 and MLC phosphorylation in mediating clot retraction downstream of integrin αIIbβ3.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, Yamanashi University, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Begonja AJ, Geiger J, Rukoyatkina N, Rauchfuss S, Gambaryan S, Walter U. Thrombin stimulation of p38 MAP kinase in human platelets is mediated by ADP and thromboxane A2 and inhibited by cGMP/cGMP-dependent protein kinase. Blood 2006; 109:616-8. [PMID: 16990590 DOI: 10.1182/blood-2006-07-038158] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p38 MAP kinase in human platelets is activated by platelet agonists including thrombin, thromboxane A2 (TxA2), ADP, and others. However, both upstream mechanisms of p38 MAP kinase activation, and their downstream sequelae, are presently controversial and essentially unclear. Certain studies report sequential activation of cGMP-dependent protein kinase (PKG) and p38/ERK pathways by platelet agonists, leading to integrin activation and secretion, whereas others establish an essential role of Src/ERK-mediated TxA2 generation for fibrinogen receptor activation in human platelets. Here, we show that ADP secreted from platelet-dense granules, and subsequent activation of P2Y12 receptors, as well as TxA2 release are important upstream mediators of p38 MAP kinase activation by thrombin. However, p38 MAP kinase activation did not significantly contribute to calcium mobilization, P-selectin expression, alphaIIbbeta3 integrin activation, and aggregation of human platelets in response to thrombin. Finally, PKG activation did not stimulate, but rather inhibited, p38 MAP kinase in human platelets.
Collapse
Affiliation(s)
- Antonija Jurak Begonja
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J. IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 2006; 109:552-9. [PMID: 16990611 DOI: 10.1182/blood-2005-10-026294] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis, the major complication of atherosclerosis triggering myocardial infarction and stroke. A central regulatory pathway conveying inhibition of platelet activation/aggregation is nitric oxide (NO)/cyclic GMP (cGMP) signaling by cGMP-dependent protein kinase I (cGKI). However, the regulatory cascade downstream of cGKI mediating platelet inhibition is still unclear. Here, we show that the inositol-1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) is abundantly expressed in platelets and assembled in a macrocomplex together with cGKIbeta and the inositol-1,4,5-trisphosphate receptor type I (InsP3RI). cGKI phosphorylates IRAG at Ser664 and Ser677 in intact platelets. Targeted deletion of the IRAG-InsP3RI interaction in IRAGDelta12/Delta12 mutant mice leads to a loss of NO/cGMP-dependent inhibition of fibrinogen-receptor activation and platelet aggregation. Intracellular calcium transients were not affected by DEA/NO or cGMP in mutant platelets. Furthermore, intravital microscopy shows that NO fails to prevent arterial thrombosis of the injured carotid artery in IRAGDelta12/Delta12 mutants. These findings reveal that interaction between IRAG and InsP3RI has a central role in NO/cGMP-dependent inhibition of platelet aggregation and in vivo thrombosis.
Collapse
Affiliation(s)
- Melanie Antl
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klein PJ, Schmidt CM, Wiesenauer CA, Choi JN, Gage EA, Yip-Schneider MT, Wiebke EA, Wang Y, Omer C, Sebolt-Leopold JS. The effects of a novel MEK inhibitor PD184161 on MEK-ERK signaling and growth in human liver cancer. Neoplasia 2006; 8:1-8. [PMID: 16533420 PMCID: PMC1601146 DOI: 10.1593/neo.05373] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The MEK-ERK growth signaling pathway is important in human hepatocellular carcinoma (HCC). To evaluate the targeting of this pathway in HCC, we characterized a novel, orally-active MEK inhibitor, PD184161, using human HCC cells (HepG2, Hep3B, PLC, and SKHep) and in vivo human tumor xenografts. PD184161 inhibited MEK activity (IC50 = 10-100 nM) in a time- and concentration-dependent manner more effectively than PD098059 or U0126. PD184161 inhibited cell proliferation and induced apoptosis at concentrations of > or = 1.0 microM in a time- and concentration-dependent manner. In vivo, tumor xenograft P-ERK levels were significantly reduced 3 to 12 hours after an oral dose of PD184161 (P < .05). Contrarily, tumor xenograft P-ERK levels following long-term (24 days) daily dosing of PD184161 were refractory to this signaling effect. PD184161 significantly suppressed tumor engraftment and initial growth (P < .0001); however, established tumors were not significantly affected. In conclusion, PD184161 has antitumor effects in HCC in vitro and in vivo that appear to correlate with suppression of MEK activity. These studies demonstrate that PD184161 is unable to suppress MEK activity in HCC xenografts in the long term. Thus, we speculate that the degree of success of MEK targeted treatment in HCC and other cancers may, in part, depend on the discovery of mechanisms governing MEK inhibitor signaling resistance.
Collapse
Affiliation(s)
- Patrick J Klein
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kroll MH, Feng S. Targeting shear stress-induced platelet activation: is lesion-specific antiplatelet therapy a realistic clinical goal? Expert Rev Cardiovasc Ther 2006; 3:941-51. [PMID: 16181038 DOI: 10.1586/14779072.3.5.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelets are mediators of physiologic hemostasis and pathologic thrombosis. They operate within distinctive vascular and rheologic microenvironments, and their participation in hemostasis or thrombosis is directed by distinct variables operating within the microenvironment. Thrombosis is not simply too much hemostasis: there is good evidence that triggering mechanisms of platelet aggregation under low shear stress conditions are different from those operating under high shear stress conditions. Such differences are hypothesized to exist in vivo and to separate mechanisms of microvascular hemostasis from mechanisms of arterial thrombosis, such as those involved in myocardial, cerebral and peripheral vascular ischemia and infarction. This separation forms the conceptual basis for the hypothesis that lesion-specific antithrombotic agents might some day be invented that inhibit arterial thrombosis without causing bleeding that arises from impaired hemostasis. The focus of much of the work in this field has been platelet aggregation initiated by shear-dependent von Willebrand factor binding to the platelet glycoprotein Ib-IX-V complex. It is hypothesized that by elucidating molecular mechanisms of platelet activation operating under pathologically elevated shear stresses, targets of lesion-specific therapies will one day be identified for use in clinical syndromes of arterial thrombosis.
Collapse
Affiliation(s)
- Michael H Kroll
- Michael E DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
48
|
Liu J, Fitzgerald ME, Berndt MC, Jackson CW, Gartner TK. Bruton tyrosine kinase is essential for botrocetin/VWF-induced signaling and GPIb-dependent thrombus formation in vivo. Blood 2006; 108:2596-603. [PMID: 16788103 PMCID: PMC1895591 DOI: 10.1182/blood-2006-01-011817] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Botrocetin (bt)-facilitated binding of von Willebrand factor (VWF) to the platelet membrane glycoprotein (GP) Ib-IX-V complex on platelets in suspension initiates a signaling cascade that causes alphaIIbbeta3 activation and platelet aggregation. Previous work has demonstrated that bt/VWF-mediated agglutination activates alphaIIbbeta3 and elicits ATP secretion in a thromboxane A2 (TxA2)-dependent manner. The signaling that results in TxA2 production was shown to be initiated by Lyn, enhanced by Src, and propagated through Syk, SLP-76, PI3K, PLCgamma2, and PKC. Here, we demonstrate that the signaling elicited by GPIb-mediated agglutination that results in TxA2 production is dependent on Bruton tyrosine kinase (Btk). The results demonstrate that Btk is downstream of Lyn, Syk, SLP-76, and PI3K; upstream of ERK1/2, PLCgamma2, and PKC; and greatly enhances Akt phosphorylation. The relationship(s), if any, between ERK1/2, PLCgamma2, and PKC were not elucidated. The requirement for Btk and TxA2 receptor function in GPIb-dependent arterial thrombosis was confirmed in vivo by characterizing blood flow in ferric chloride-treated mouse carotid arteries. These results demonstrate that the Btk family kinase, Tec, cannot provide the function(s) missing because of the absence of Btk and that Btk is essential for both bt/VWF-mediated agglutination-induced TxA2 production and GPIb-dependent stable arterial thrombus formation in vivo.
Collapse
Affiliation(s)
- Junling Liu
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|
49
|
Stojanovic A, Marjanovic JA, Brovkovych VM, Peng X, Hay N, Skidgel RA, Du X. A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signaling pathway in stimulating platelet secretion and aggregation. J Biol Chem 2006; 281:16333-9. [PMID: 16613861 DOI: 10.1074/jbc.m512378200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and Akt play important roles in platelet activation. However, the downstream mechanisms mediating their functions are unclear. We have recently shown that nitric-oxide (NO) synthase 3 and cGMP-dependent protein kinase stimulate platelet secretion and aggregation. Here we show that PI3K-mediated Akt activation plays an important role in agonist-stimulated platelet NO synthesis and cGMP elevation. Agonist-induced elevation of NO and cGMP was inhibited by Akt inhibitors and reduced in Akt-1 knock-out platelets. Akt-1 knock-out or Akt inhibitor-treated platelets showed reduced platelet secretion and aggregation in response to low concentrations of agonists, which can be reversed by low concentrations of 8-bromo-cGMP or sodium nitroprusside (an NO donor). Similarly, PI3K inhibitors diminished elevation of cGMP and inhibited platelet secretion and the second wave platelet aggregation, which was also partially reversed by 8-bromo-cGMP. These results indicate that the NO-cGMP pathway is an important downstream mechanism mediating PI3K and Akt signals leading to platelet secretion and aggregation. Conversely, the PI3K-Akt pathway is the major upstream mechanism responsible for activating the NO-cGMP pathway in platelets. Thus, this study delineates a novel platelet activation pathway involving sequential activation of PI3K, Akt, nitric-oxide synthase 3, sGC, and cGMP-dependent protein kinase.
Collapse
Affiliation(s)
- Aleksandra Stojanovic
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wentworth J, Pula G, Poole A. Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochem J 2006; 393:555-64. [PMID: 16197368 PMCID: PMC1360706 DOI: 10.1042/bj20050796] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VASP (vasodilator-stimulated phosphoprotein) is an actin- and profilin-binding protein that is expressed in platelets at high levels and plays a major role in negatively regulating secretory and adhesive events in these cells. VASP is a major substrate for cAMP- and cGMP-regulated protein kinases and it has been shown to be directly phosphorylated on Ser157 by PKC (protein kinase C). In the present paper, we show that, in human platelets, VASP is phosphorylated by PKC on Ser157, but not Ser239, in response to phorbol ester stimulation, in a manner blocked by the PKC inhibitor BIM I (bisindolylmaleimide I). In response to thrombin, VASP was also phosphorylated on Ser157, but this response was only partially inhibited by BIM I, indicating PKC-dependent and -independent pathways to VASP phosphorylation by thrombin. Using inhibitors, we have ruled out the possibility that the PKC-independent pathway acts through guanylate cyclase generation of cGMP, or through a phosphoinositide 3-kinase-dependent kinase. Inhibition of Rho kinase, however, substantially reduced Ser157 VASP phosphorylation, and its effects were additive with BIM I. This implicates Rho kinase and PKC as the major kinases that phosphorylate VASP Ser157 in response to thrombin in platelets.
Collapse
Affiliation(s)
- James K. T. Wentworth
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, U.K
| | - Giordano Pula
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, U.K
| | - Alastair W. Poole
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|