1
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
2
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
3
|
Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, Coscia M. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:594556. [PMID: 33312177 PMCID: PMC7708380 DOI: 10.3389/fimmu.2020.594556] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors).
Collapse
Affiliation(s)
- Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Hu W, Huang F, Ning L, Hao J, Wan J, Hao S. Enhanced immunogenicity of leukemia-derived exosomes via transfection with lentiviral vectors encoding costimulatory molecules. Cell Oncol (Dordr) 2020; 43:889-900. [PMID: 32578140 PMCID: PMC7581614 DOI: 10.1007/s13402-020-00535-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Tumor cell-derived exosomes (TEXs) have been widely used to induce antitumor immune responses in animal models and clinical trials. Similarly, leukemia cell-derived exosomes (LEXs) can induce antileukemia immune responses in animal models. However, the antileukemia immunity induced by LEXs is less effective, which may be due to an inadequate costimulatory capacity. Methods: In this study, we transduced L1210 leukemia cells with a lentiviral vector encoding two B7 costimulatory molecules (CD80, CD86) and obtained LEXs that highly expressed CD80 and CD86. The antileukemia immune response derived from these LEXs was examined in vitro and in vivo in animal models. Results: We found that B7 gene-modified LEXs, including LEX-CD80, LEX-CD86, and LEX-8086, could significantly boost the expression of CD80 and CD86 in dendritic cells (DCs) and promote the secretion of functional cytokines such as TNF-α and IL-12. Moreover, these B7 gene-modified LEXs, particularly LEX-CD8086, could effectively induce CD4+ T cell proliferation, Th1 cytokine secretion, and an antigen-specific anti-leukemia cytotoxic T lymphocyte (CTL) response. Additional animal studies indicated that immunization with B7 gene-modified LEXs, in particular LEX-CD8086, could significantly retard tumor growth compared to the control LEXnull group. Conclusions: This study sheds light on the feasibility of obtaining LEXs that overexpress costimulatory molecules via genetically modified leukemia cells, thereby enhancing their anti-leukemia immunity and providing a potential therapeutic strategy that contributes to leukemia immunotherapy.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665# Kongjiang Road, Shanghai, 200090, China
| | - Fang Huang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665# Kongjiang Road, Shanghai, 200090, China
| | - Liuxin Ning
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665# Kongjiang Road, Shanghai, 200090, China
| | - Jun Hao
- Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665# Kongjiang Road, Shanghai, 200090, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665# Kongjiang Road, Shanghai, 200090, China.
| |
Collapse
|
5
|
Shang Y, Zhou F. Current Advances in Immunotherapy for Acute Leukemia: An Overview of Antibody, Chimeric Antigen Receptor, Immune Checkpoint, and Natural Killer. Front Oncol 2019; 9:917. [PMID: 31616632 PMCID: PMC6763689 DOI: 10.3389/fonc.2019.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, due to the application of hematopoietic stem cell transplantation and small molecule inhibitor, the survival of acute leukemia is prolonged. However, the 5 year survival rate remains low due to a high incidence of relapse. Immunotherapy is expected to improve the prognosis of patients with relapsed or refractory hematological malignancies because it does not rely on the cytotoxic mechanisms of conventional therapy. In this paper, the advances of immunotherapy in acute leukemia are reviewed from the aspects of Antibody including Unconjugated antibodies, Antibody-drug conjugate and Bispecific antibody, Chimeric Antigen Receptor (CARs), Immune checkpoint, Natural killer cells. The immunological features, mechanisms and limitation in clinic will be described.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Aue G, Sun C, Liu D, Park JH, Pittaluga S, Tian X, Lee E, Soto S, Valdez J, Maric I, Stetler-Stevenson M, Yuan C, Nakamura Y, Muranski P, Wiestner A. Activation of Th1 Immunity within the Tumor Microenvironment Is Associated with Clinical Response to Lenalidomide in Chronic Lymphocytic Leukemia. THE JOURNAL OF IMMUNOLOGY 2018; 201:1967-1974. [PMID: 30104242 DOI: 10.4049/jimmunol.1800570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Immune stimulation contributes to lenalidomide's antitumor activity. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature, autoreactive B cells in secondary lymphoid tissues, blood, and bone marrow and progressive immune dysfunction. Previous studies in CLL indicated that lenalidomide can repair defective T cell function in vitro. Whether T cell activation is required for clinical response to lenalidomide remains unclear. In this study, we report changes in the immune microenvironment in patients with CLL treated with single-agent lenalidomide and associate the immunologic effects of lenalidomide with antitumor response. Within days of starting lenalidomide, T cells increased in the tumor microenvironment and showed Th1-type polarization. Gene expression profiling of pretreatment and on-treatment lymph node biopsy specimens revealed upregulation of IFN-γ and many of its target genes in response to lenalidomide. The IFN-γ-mediated Th1 response was limited to patients achieving a clinical response defined by a reduction in lymphadenopathy. Deep sequencing of TCR genes revealed decreasing diversity of the T cell repertoire and an expansion of select clonotypes in responders. To validate our observations, we stimulated T cells and CLL cells with lenalidomide in culture and detected lenalidomide-dependent increases in T cell proliferation. Taken together, our data demonstrate that lenalidomide induced Th1 immunity in the lymph node that is associated with clinical response.
Collapse
Affiliation(s)
- Georg Aue
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Delong Liu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Elinor Lee
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan Soto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Janet Valdez
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irina Maric
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | | | - Constance Yuan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
7
|
Abstract
Chronic Lymphocytic Leukemia B cells (CLL) are malignant cells which retain at least some functions of normal B cells. Paramount amongst the latter is that when such cells are appropriately stimulated, they are able to present antigens, including any potential tumor antigens, making them excellent choices as a candidate tumor vaccine. We show that following stimulation of CLL cells with Phorbol myristic acetate, IL-2, the TLR7 agonist imiquimod (P2I) and ionomycin (P2Iio), markedly increased expression of CD54 and CD83 was seen, indicative of B cell activation and a transition to antigen-presenting cells. However, this occurred in the context of augmented expression of the known immunoregulatory molecule, CD200. Accordingly we explored the effect of stimulation of CLL cells with P2Iio, followed by coating of cells with a non-depleting anti-CD200mAb, on the ability of those cells to immunize PBL in vitro to become cytotoxic to CLL cells, or to protect NOD-SCIDγcnull (NSG) mice from subsequent CLL tumor challenge. Our data indicate that this protocol is effective in inducing CD8+ CTL able to lyse CLL cells in vitro, and decrease tumor burden in vivo in spleen and marrow of mice injected with CLL cells. Pre-treatment of mice with a CD8 depleting antibody before vaccination with P2Iio/anti-CD200 coated cells abolished any protection seen. These data suggest a potential role for blockade of CD200 expression on CLL cells as a component of a tumor vaccination strategy.
Collapse
Affiliation(s)
- Fang Zhu
- Institute of Medical Sciences, University of Toronto, Canada; University Health Network, Department of Surgery, University of Toronto, Canada
| | - Ismat Khatri
- University Health Network, Department of Surgery, University of Toronto, Canada
| | - David Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Canada
| | - Reginald M Gorczynski
- Institute of Medical Sciences, University of Toronto, Canada; University Health Network, Department of Surgery, University of Toronto, Canada; Department of Immunology, University of Toronto, Canada.
| |
Collapse
|
8
|
Pham Minh N, Murata S, Kitamura N, Ueki T, Kojima M, Miyake T, Takebayashi K, Kodama H, Mekata E, Tani M. In vivo antitumor function of tumor antigen-specific CTLs generated in the presence of OX40 co-stimulation in vitro. Int J Cancer 2018; 142:2335-2343. [PMID: 29313971 DOI: 10.1002/ijc.31244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022]
Abstract
Adoptive cell transfer (ACT) is an emerging and promising cancer immunotherapy that has been improved through various approaches. Here, we described the distinctive characteristics and functions of tumor Ag-specific effector CD8+ T-cells, co-cultured with a tumor-specific peptide and a stimulatory anti-OX40 antibody, before being used for ACT therapy in tumor-bearing mouse recipients. Splenic T-cells were obtained from wild-type FVB/N mice that had been injected with a HER2/neu (neu)-expressing tumor and a neu-vaccine. The cells were then incubated for 7 days in vitro with a major histocompatibility complex (MHC) class I peptide derived from neu, in the presence or absence of an agonistic anti-OX40 monoclonal antibody, before CD8+ T cells were isolated for use in ACT therapy. The proliferative ability of OX40-driven tumor Ag-specific effector CD8+ T-cells in vitro was less than that of non-OX40-driven tumor Ag-specific effector CD8+ T-cells, but they expressed significantly more early T-cell differentiation markers, such as CD27, CD62L and CCR7, and significantly higher levels of Bcl-2, an anti-apoptotic protein. These OX40-driven tumor Ag-specific effector CD8+ T-cells, when transferred into tumor-bearing recipients, demonstrated potent proliferation capability and successfully eradicated the established tumor. In addition, these cells exhibited long-term antitumor function, and appeared to be established as memory T-cells. Our findings suggest a possible in vitro approach for improving the efficacy of ACT, which is simple, requires only a small amount of modulator, and can potentially avoid several toxicities associated with co-stimulation in vivo.
Collapse
Affiliation(s)
- Ngoc Pham Minh
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Satoshi Murata
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan.,Cancer Center, Shiga University of Medical Science Hospital, Otsu, Shiga-Pref., Japan
| | - Naomi Kitamura
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan.,Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Tomoyuki Ueki
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Masatsugu Kojima
- Department of Comprehensive Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Katsushi Takebayashi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Hirokazu Kodama
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan.,Department of Surgery, Hino Memorial Hospital, Gamou-gun, Shiga-Pref., Japan
| | - Eiji Mekata
- Department of Comprehensive Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga-Pref., Japan
| |
Collapse
|
9
|
Berrong Z, Mkrtichyan M, Ahmad S, Webb M, Mohamed E, Okoev G, Matevosyan A, Shrimali R, Abu Eid R, Hammond S, Janik JE, Khleif SN. Antigen-Specific Antitumor Responses Induced by OX40 Agonist Are Enhanced by the IDO Inhibitor Indoximod. Cancer Immunol Res 2018; 6:201-208. [PMID: 29305519 DOI: 10.1158/2326-6066.cir-17-0223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
Although an immune response to tumors may be generated using vaccines, so far, this approach has only shown minimal clinical success. This is attributed to the tendency of cancer to escape immune surveillance via multiple immune suppressive mechanisms. Successful cancer immunotherapy requires targeting these inhibitory mechanisms along with enhancement of antigen-specific immune responses to promote sustained tumor-specific immunity. Here, we evaluated the effect of indoximod, an inhibitor of the immunosuppressive indoleamine-(2,3)-dioxygenase (IDO) pathway, on antitumor efficacy of anti-OX40 agonist in the context of vaccine in the IDO- TC-1 tumor model. We demonstrate that although the addition of anti-OX40 to the vaccine moderately enhances therapeutic efficacy, incorporation of indoximod into this treatment leads to enhanced tumor regression and cure of established tumors in 60% of treated mice. We show that the mechanisms by which the IDO inhibitor leads to this therapeutic potency include (i) an increment of vaccine-induced tumor-infiltrating effector T cells that is facilitated by anti-OX40 and (ii) a decrease of IDO enzyme activity produced by nontumor cells within the tumor microenvironment that results in enhancement of the specificity and the functionality of vaccine-induced effector T cells. Our findings suggest a translatable strategy to enhance the overall efficacy of cancer immunotherapy. Cancer Immunol Res; 6(2); 201-8. ©2018 AACR.
Collapse
Affiliation(s)
- Zuzana Berrong
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Shamim Ahmad
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mason Webb
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Eslam Mohamed
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Grigori Okoev
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | | | - Rasha Abu Eid
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,The University of Aberdeen Dental School and Hospital, The Institute of Medicine, Medical Sciences and Nutrition, The University of Aberdeen, Scotland, United Kingdom
| | | | - John E Janik
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, Augusta, Georgia.
| |
Collapse
|
10
|
Deng J, Pennati A, Cohen JB, Wu Y, Ng S, Wu JH, Flowers CR, Galipeau J. GIFT4 fusokine converts leukemic B cells into immune helper cells. J Transl Med 2016; 14:106. [PMID: 27118475 PMCID: PMC4847253 DOI: 10.1186/s12967-016-0865-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/12/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) remains incurable with standard therapy, and is characterized by excessive expansion of monoclonal abnormal mature B cells and more regulatory immune properties of T cell compartment. Thus, developing novel strategies to enhance immune function merits further investigation as a possible therapy for CLL. Methods We generated a fusion cytokine (fusokine) arising from the combination of human GM-CSF and IL-4 (named GIFT4). Primary CLL cells were treated with GIFT4 or GM-CSG and IL-4 in vitro. GIFT4-triggered STAT5 signaling in CLL cells was examined by Western blot. The phenotype and secretome of GIFT4-treated CLL cells (GIFT4-CLL cells), and the immune stimulatory function of GIFT4-CLL cells on autologous T cells were analyzed by flow cytometry and luminex assay. Results GIFT4-CLL up-regulated the expression of co-stimulatory molecules CD40, CD80 and CD86 and adhesion molecule CD54. GIFT4-CLL cells secreted IL-1β, IL-6, ICAM-1 and substantial IL-2 relative to unstimulated CLL cells. GIFT4 treatment led to JAK1, JAK2 and JAK3-mediated hyper-phosphorylation of STAT5 in primary CLL cells, which is essential for GIFT4-triggered conversion of CLL cells. GIFT4-CLL cells directly propelled the expansion of autologous IFN-γ-producing CD314+ cytotoxic T cells in vitro, and that these could lyse autologous CLL cells. Furthermore, administration of GIFT4 protein promoted the expansion of human T cells in NOD-scid IL2Rγnull immune deficient mice adoptively pre-transferred with peripheral blood mononuclear cells from subjects with CLL. Conclusion GIFT4 has potent capability to converts primary CLL cells into APC-like immune helper cells that initiate a T cell driven anti-CLL immune response.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Yuanqiang Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Spencer Ng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jian Hui Wu
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Christopher R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Caruana I, Weber G, Ballard BC, Wood MS, Savoldo B, Dotti G. K562-Derived Whole-Cell Vaccine Enhances Antitumor Responses of CAR-Redirected Virus-Specific Cytotoxic T Lymphocytes In Vivo. Clin Cancer Res 2015; 21:2952-62. [PMID: 25691731 DOI: 10.1158/1078-0432.ccr-14-2998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Adoptive transfer of Epstein-Barr virus (EBV)-specific and cytomegalovirus (CMV)-specific cytotoxic T cells (CTL) genetically modified to express a chimeric antigen receptor (CAR) induces objective tumor responses in clinical trials. In vivo expansion and persistence of these cells are crucial to achieve sustained clinical responses. We aimed to develop an off-the-shelf whole-cell vaccine to boost CAR-redirected virus-specific CTLs in vivo after adoptive transfer. As proof of principle, we validated our vaccine approach by boosting CMV-specific CTLs (CMV-CTLs) engineered with a CAR that targets the GD2 antigen. EXPERIMENTAL DESIGN We generated the whole-cell vaccine by engineering the K562 cell line to express the CMV-pp65 protein and the immune stimulatory molecules CD40L and OX40L. Single-cell-derived clones were used to stimulate CMV-CTLs in vitro and in vivo in a xenograft model. We also assessed whether the in vivo boosting of CAR-redirected CMV-CTLs with the whole-cell vaccine enhances the antitumor responses. Finally, we addressed potential safety concerns by including the inducible safety switch caspase9 (iC9) gene in the whole-cell vaccine. RESULTS We found that K562-expressing CMV-pp65, CD40L, and OX40L effectively stimulate CMV-specific responses in vitro by promoting antigen cross-presentation to professional antigen-presenting cells (APCs). Vaccination also enhances antitumor effects of CAR-redirected CMV-CTLs in xenograft tumor models. Activation of the iC9 gene successfully induces growth arrest of engineered K562 implanted in mice. CONCLUSIONS Vaccination with a whole-cell vaccine obtained from K562 engineered to express CMV-pp65, CD40L, OX40L and iC9 can safely enhance the antitumor effects of CAR-redirected CMV-CTLs.
Collapse
Affiliation(s)
- Ignazio Caruana
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Gerrit Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Brandon C Ballard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Michael S Wood
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas. Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas. Department of Immunology, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
12
|
Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am 2013; 27:207-35. [PMID: 23561470 DOI: 10.1016/j.hoc.2013.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Although significant advances have been made in the treatment of CLL in the last decade, it remains incurable. Treatments may be too toxic for some elderly patients, who constitute most of the individuals with this disease, and there remain subgroups of patients for which this therapy has minimal activity. This article summarizes the current understanding of the immune defects in CLL. It also examines the potential clinical implications of these findings.
Collapse
|
13
|
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; 27:2311-21. [PMID: 23619564 PMCID: PMC4126654 DOI: 10.1038/leu.2013.131] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, the B-cell receptor (BCR) and NF-κB pathways are activated in the lymph node microenvironment. Thus, model systems mimicking tumor-host interactions are important tools to study CLL biology and pathogenesis. We investigated whether the recently established NOD/scid/γcnull (NSG) mouse xenograft model can recapitulate the effects of the human microenvironment. We assessed, therefore, tumor characteristics previously defined in lymph node-resident CLL cells, including proliferation, and activation of the BCR and NF-κB pathways. We found that the murine spleen microenvironment supported CLL cell proliferation and activation to a similar degree than the human lymph node, including induction of BCR and NF-κB signaling in the xenografted cells. Next, we used this model to study ibrutinib, a Bruton's tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis, and reduced the tumor burden in vivo. Thus, our data demonstrate that the spleen of xenografted NSG mice can, in part, recapitulate the role of the human lymph node for CLL cells. In addition, we show that ibrutinib effectively disrupts tumor-host interactions essential for CLL cell proliferation and survival in vivo.
Collapse
|
14
|
Carballido E, Veliz M, Komrokji R, Pinilla-Ibarz J. Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Control 2012; 19:54-67. [PMID: 22143062 DOI: 10.1177/107327481201900106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The last decade witnessed the emergence of several therapeutic options for patients with chronic lymphocytic leukemia (CLL) for first-line and relapsed settings. The vast majority of patients with relapsed or refractory CLL carry poor prognostic features, which are strong predictors of shorter overall survival and resistance to first-line treatment, particularly fludarabine-based regimens. METHODS This article highlights the current role of immunomodulatory drugs (IMiDs) and active immunotherapy as treatment options for this select group. The rationale of using IMiDs is discussed from the perspective of lenalidomide as a novel active agent. Relevant clinical trials using IMiDs alone or in combinations are discussed. New immunotherapeutic experimental approaches are also described. RESULTS As a single agent, lenalidomide offers an overall response rate of 32% to 47% in patients with relapsed/refractory disease. Recent studies have shown promising activity as a single agent in treatment-naive patients. The combination of lenalidomide with immunotherapy (rituximab and ofatumumab) has also shown clinical responses. Encouraging preclinical and early clinical data have been observed with different immunotherapeutic approaches. CONCLUSIONS The use of IMiDs alone or in combination with immunotherapy represents a treatment option for relapsed/refractory or treatment-naive patients. Mature data and further studies are needed to validate overall and progression-free survival. The toxicity profile of lenalidomide might limit its use and delay further studies. Immunotherapy offers another potential alternative, but further understanding of the immunogenicity of CLL cells and the mechanisms of tumor fl are reaction is needed to improve the outcomes in this field.
Collapse
Affiliation(s)
- Estrella Carballido
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
15
|
Riches JC, Ramsay AG, Gribben JG. T-cell function in chronic lymphocytic leukaemia. Semin Cancer Biol 2010; 20:431-8. [DOI: 10.1016/j.semcancer.2010.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/22/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
|
16
|
Comparative analysis of MVA-CD40L and MVA-TRICOM vectors for enhancing the immunogenicity of chronic lymphocytic leukemia (CLL) cells. Leuk Res 2010; 34:1351-7. [PMID: 20122733 DOI: 10.1016/j.leukres.2009.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/14/2009] [Accepted: 12/19/2009] [Indexed: 11/21/2022]
Abstract
Adenoviral transduction with CD40L and poxviral transduction with B7-1, ICAM-1, and LFA-3 (TRICOM) have been used to enhance the antigen-presenting capacity of chronic lymphocytic leukemia (CLL) cells. This study compares the same vector (modified vaccinia virus strain Ankara (MVA)) encoding CD40L or TRICOM for its ability to enhance the immunogenicity of CLL cells. CLL cells from some patients showed differential responses to each vector in terms of induction of autologous T-cell responses. This study supports the rationale for the use of CLL cells modified ex vivo with pre-specified recombinant MVA vectors as a whole tumor-cell vaccine for immunotherapy in CLL patients.
Collapse
|
17
|
Selective elimination of a chemoresistant side population of B-CLL cells by cytotoxic T lymphocytes in subjects receiving an autologous hCD40L/IL-2 tumor vaccine. Leukemia 2010; 24:563-72. [PMID: 20072155 PMCID: PMC2836398 DOI: 10.1038/leu.2009.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Side-population (SP) analysis identifies precursor cells in normal and malignant tissues. Cells with this phenotype have increased resistance to many cytotoxic agents, and in malignant disease may represent a primary drug resistant population. To discover whether drug resistant malignant SP cells are nonetheless sensitive to immune-mediated killing, we first established the presence of a malignant CD5+CD19+ SP subset in the blood of 18/21 subjects with B-CLL. We examined the fate of these cells in 6 of these individuals who received autologous hCD40L/IL-2 gene-modified tumor cells as part of a tumor vaccine study. Vaccinated patients showed an increase in B-CLL-reactive T cells followed by a corresponding decline in circulating CD5+CD19+ SP cells. T cell lines and clones generated from vaccinated patients specifically recognized B-CLL SP tumor cells. Elimination of SP cells is likely triggered by their increased expression of target antigens such as RHAMM following stimulation of the malignant cells by hCD40L, since CD8+ RHAMM-specific T cells could be detected in the peripheral blood of immunized patients and were associated with the decline in B-CLL SP cells. Hence malignant B cells with a primary drug resistant phenotype can be targeted by T cell mediated effector activity following immunization of human subjects.
Collapse
|
18
|
Redmond WL, Gough MJ, Weinberg AD. Ligation of the OX40 co-stimulatory receptor reverses self-Ag and tumor-induced CD8 T-cell anergy in vivo. Eur J Immunol 2009; 39:2184-94. [PMID: 19672905 DOI: 10.1002/eji.200939348] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tumor-specific CD8 T-cell peripheral tolerance occurs through clonal deletion, suppression, and the induction of anergy and can limit the generation of anti-tumor immunity. Several groups have demonstrated that prostate cancer can render tumor-specific CD8 T cells anergic, suggesting reversing tumor-induced anergy may greatly augment anti-tumor immunity. Recent work has demonstrated that signaling through the OX40 (CD134) co-stimulatory receptor, a member of the TNFR super-family, can augment CD4 and CD8 T-cell expansion, differentiation, and the generation of memory cells. However, whether OX40 ligation can reverse CD8 T-cell anergy, and more specifically, tumor-induced CD8 T-cell anergy, remains unclear. In the current study, we demonstrate that OX40 ligation can reverse CD8 T-cell anergy to a prostate-specific self-Ag in non-tumor-bearing hosts. Furthermore, OX40 engagement reversed tumor-specific CD8 T-cell anergy and restored the proliferative capacity of tumor-reactive CD8 T cells, which attenuated tumor growth and enhanced the survival of tumor-bearing hosts. These data demonstrate that OX40 ligation can rescue the function of anergic self- or tumor-reactive CD8 T cells in vivo and suggests that OX40-mediated therapy may provide a novel means of boosting anti-tumor immunity by restoring the responsiveness of previously anergic tumor-specific CD8 T cells.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | | | | |
Collapse
|
19
|
Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol 2009; 29:187-201. [PMID: 19538134 DOI: 10.1615/critrevimmunol.v29.i3.10] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extent of T-cell activation, proliferation, and survival that follows T-cell receptor (TCR) ligation is controlled by several factors, including the strength of TCR stimulation, the availability of prosurvival cytokines, and the presence or absence of co-stimulatory signals. In addition to engagement of the CD28 co-stimulatory receptor by its natural ligands, B7.1 (CD80) and B7.2 (CD86), recent work has begun to elucidate the mechanisms by which signaling through the OX40 (CD134) co-stimulatory receptor, a member of the tumor necrosis factor receptor (TNFR) superfamily, affects T-cell responses. Importantly, OX40 ligation has been shown to augment CD4 and CD8 T-cell clonal expansion, effector differentiation, survival, and in some cases, abrogate the suppressive activity of regulatory FoxP3+CD25+CD4+ T cells. In this review, we focus on the mechanisms regulating OX40 expression on activated T cells as well as the role of OX40-mediated co-stimulation in boosting T-cell clonal expansion, effector differentiation, and survival.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, 4805 NE Glisan St., No. 5F37, Portland, OR 97213, USA
| | | | | |
Collapse
|
20
|
Guo S, Xu J, Denning W, Hel Z. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther 2009; 16:1300-13. [PMID: 19641529 PMCID: PMC2783822 DOI: 10.1038/gt.2009.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
B cell-based cellular vaccines represent a promising approach to active immunotherapy of cancer complementing the use of dendritic cells, especially in pediatric patients and patients with low bone marrow reserves. B cells can be easily prepared in large numbers and readily home to secondary lymphoid organs, the primary site of induction of cytotoxic T lymphocyte (CTL) responses. However, most B cell-based vaccines tested so far failed to induce functional and protective CTLs in in vivo models. Here we demonstrate that B cells activated via the Toll like receptor-9 (TLR-9) and CD40 up-regulate surface expression of MHC and costimulatory molecules, produce IL-12, and exhibit potent antigen-presenting properties in vitro. Importantly, while administration of peptide-coated or transiently transfected B cells fails to induce immune responses, therapeutic immunization with low numbers of genetically modified B cells stably expressing antigen results in an induction of functional CTLs and protection against the growth of tumor in an animal model. Following activation, B cells partially loose their ability to home to organized lymphoid tissue due to the shedding of CD62L; however, this property can be restored by expression of protease-resistant mutant of CD62L. In summary, the data presented in this report suggest that genetically modified activated B cells represent a promising candidate for a cancer vaccine eliciting functional systemic CTLs.
Collapse
Affiliation(s)
- S Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The mainstay of therapy of chronic lymphocytic leukemia (CLL) is cytotoxic chemotherapy; however, CLL is still an incurable disease with resistance to therapy developing in the majority of patients. In recent years, our understanding of the biological basis of CLL pathogenesis has substantially improved and novel treatment strategies are emerging. Tailoring and individualizing therapy according to the molecular and cellular biology of the disease is on the horizon, and advances with targeted agents such as monoclonal antibodies combined with traditional chemotherapy have lead to improved remission rates. The proposed key role of the B-cell receptor (BCR) in CLL pathogenesis has led to a number of possible opportunities for therapeutic exploitation. We are beginning to understand that the microenvironment is of utmost importance in CLL because certain T-cell subsets and stromal cells support the outgrowth and development of the malignant clone. Furthermore, an increase in our understanding of the deregulated cell-death machinery in CLL is a prerequisite to developing new targeted strategies that might be more effective in engaging with the cell-death machinery. This Review summarizes the progress made in understanding these features of CLL biology and describes novel treatment strategies that have also been exploited in current clinical trials.
Collapse
|
22
|
Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, Weinberg AD, Wolchok JD, Houghton AN. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. ACTA ACUST UNITED AC 2009; 206:1103-16. [PMID: 19414558 PMCID: PMC2715041 DOI: 10.1084/jem.20082205] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expansion and recruitment of CD4+ Foxp3+ regulatory T (T reg) cells are mechanisms used by growing tumors to evade immune elimination. In addition to expansion of effector T cells, successful therapeutic interventions may require reduction of T reg cells within the tumor microenvironment. We report that the combined use of the alkylating agent cyclophosphamide (CTX) and an agonist antibody targeting the co-stimulatory receptor OX40 (OX86) provides potent antitumor immunity capable of regressing established, poorly immunogenic B16 melanoma tumors. CTX administration resulted in tumor antigen release, which after OX86 treatment significantly enhanced the antitumor T cell response. We demonstrated that T reg cells are an important cellular target of the combination therapy. Paradoxically, the combination therapy led to an expansion of T reg cells in the periphery. In the tumor, however, the combination therapy induced a profound T reg cell depletion that was accompanied by an influx of effector CD8+ T cells leading to a favorable T effector/T reg cell ratio. Closer examination revealed that diminished intratumoral T reg cell levels resulted from hyperactivation and T reg cell–specific apoptosis. Thus, we propose that CTX and OX40 engagement represents a novel and rational chemoimmunotherapy.
Collapse
|
23
|
Pulsipher MA, Bader P, Klingebiel T, Cooper LJN. Allogeneic transplantation for pediatric acute lymphoblastic leukemia: the emerging role of peritransplantation minimal residual disease/chimerism monitoring and novel chemotherapeutic, molecular, and immune approaches aimed at preventing relapse. Biol Blood Marrow Transplant 2009; 15:62-71. [PMID: 19147081 DOI: 10.1016/j.bbmt.2008.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although improved donor sources and supportive care have decreased transplantation-related mortality over the past decade, relapse remains the principal cause of failure after allogeneic transplantation for high-risk pediatric acute lymphoblastic leukemia (ALL). Emerging tools of minimal residual disease (MRD) and chimerism monitoring before and after transplantation have defined those children at highest risk for relapse and provide the opportunity for intervention to prevent relapse. Specific methods aimed at decreasing relapse include the use of intensive treatment before transplantation to increase the percentage of patients undergoing the procedure with negative MRD, optimal transplantation preparative regimens, and posttransplantation interventions with targeted or immunologic therapy. Early data demonstrate decreased relapse with the use of sirolimus for all types of ALL and imatinib for ALL with the Philadelphia chromosome (Ph(+) ALL) after transplantation. Patients with increasing chimerism or MRD have been shown to benefit from early withdrawal of immune suppression or donor lymphocyte infusion. Finally, various targeted immunologic therapies, including monoclonal antibodies, killer cell immunoglobulin-like receptor mismatching, natural killer cell therapy, and targeted T cell therapies, are emerging that also could have an affect on relapse and improve survival after transplantation for pediatric ALL.
Collapse
Affiliation(s)
- Michael A Pulsipher
- Division of Hematology/BMT, Primary Children's Medical Center, University of Utah School of Medicine, Salt Lake City, Utah
| | | | | | | |
Collapse
|
24
|
Abstract
Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has led to new strategies of immunotherapy, and even past failures in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia.
Collapse
Affiliation(s)
- Wing Leung
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Oncology, St. Jude Children's Research Hospital, and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| |
Collapse
|
25
|
Burrell BE, Lu G, Li XC, Bishop DK. OX40 costimulation prevents allograft acceptance induced by CD40-CD40L blockade. THE JOURNAL OF IMMUNOLOGY 2009; 182:379-90. [PMID: 19109169 DOI: 10.4049/jimmunol.182.1.379] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disrupting the CD40-CD40L costimulation pathway promotes allograft acceptance in many settings. Herein, we demonstrate that stimulating OX40 overrides cardiac allograft acceptance induced by disrupting CD40-CD40L interactions. This effect of OX40 stimulation was dependent on CD4(+) T cells, which in turn provided help for CD8(+) T cells and B cells. Allograft rejection was associated with donor-reactive Th1 and Th2 responses and an unconventional granulocytic infiltrate and thrombosis of the arteries. Interestingly, OX40 stimulation induced a donor-reactive IgG class switch in the absence of CD40-CD40L interactions, and the timing of OX40 stimulation relative to transplantation affected the isotype of donor-reactive Ab produced. Inductive OX40 stimulation induced acute graft rejection, which correlated with both IgG1 and IgG2a deposition within the graft. Once graft acceptance was established following CD40-CD40L blockade, delayed OX40 stimulation did not induce acute allograft rejection despite priming of graft-reactive Th1 and Th2. Rather, chronic rejection was induced, which was characterized by IgG1 but not IgG2a deposition within the graft. These studies reveal both redundancy and key differences in function among costimulatory molecules that manifest in distinct pathologies of allograft rejection. These findings may help guide development of therapeutics aimed at promoting graft acceptance in transplant recipients.
Collapse
Affiliation(s)
- Bryna E Burrell
- Section of General Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
26
|
Ramsay AG, Gribben JG. Vaccine therapy and chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2008; 21:421-36. [PMID: 18790447 DOI: 10.1016/j.beha.2008.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
B-cell chronic lymphocytic leukaemia (CLL) should be an ideal target for immune-mediated responses. CLL arises from B cells that can act as antigen-presenting cells (APCs), expresses unique tumour antigens, and has been shown to be a target of the allogeneic T cells which mediate a graft-versus-leukaemia effect. Despite these potential benefits, immune responses against CLL cells have been difficult to elicit. CLL induces immune defects in the host, the tumour cells are inefficient APCs, and therapies given to patients with CLL are themselves immunosuppressive. Successful vaccination approaches in this disease will require steps to overcome these difficulties, including identification of the targets of immune responses in this disease to enable monitoring of the immune response after vaccination, improved presentation of antigens, and steps to improve the immune defects that accompany this disease.
Collapse
Affiliation(s)
- Alan G Ramsay
- Institute of Cancer, Barts and The London School of Medicine, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
27
|
Foster AE, Brenner MK, Dotti G. Adoptive T-cell immunotherapy of chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2008; 21:375-89. [PMID: 18790444 DOI: 10.1016/j.beha.2008.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immunotherapy for B-cell chronic lymphocytic leukaemia (B-CLL) and other haematological malignancies may consist of passive antibody, active immunization or adoptive T-cell transfer. This chapter will focus on T-lymphocyte immunotherapy; an approach supported by earlier observations that the beneficial effects of allogeneic stem cell transplantation depend, in part, on the graft-versus-leukaemia effects mediated by these cells. One promising strategy consists of the genetic manipulation of effector T lymphocytes to express tumour-specific T-cell receptors or chimeric antigen receptors directed against surface antigens on the B-CLL cells. This methodology is now being integrated with the concept that tumour recurrence may be due to the persistence of a reservoir of more primitive and chemoresistant tumour cells, dubbed 'cancer stem cells', with self-renewal capacity. Identification and characterization of these cancer stem cells in B-CLL is crucial for the development of new anti-tumour agents, and for the identification of target antigens for cellular immunotherapy. This chapter will describe how immunotherapy may be directed to a more primitive side population of B-CLL cells.
Collapse
Affiliation(s)
- Aaron E Foster
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, 6621 Fannin Street, MC 3-3320, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 2008; 112:1876-85. [PMID: 18591381 DOI: 10.1182/blood-2008-04-150045] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cancer testis antigen (CTA) preferentially expressed antigen of melanoma (PRAME) is overexpressed in many hematologic malignancies, including chronic myeloid leukemia (CML). The sensitivity of CML to donor lymphocyte infusion after allogeneic stem cell transplantation suggests this tumor can be highly susceptible to cellular immunotherapy targeted to tumor associated antigens. We therefore tested whether functional PRAME-specific cytotoxic T lymphocytes (PRAME CTLs) could be generated and expanded from healthy donors and CML patients, or whether the limited immunogenicity of this CTA coupled with tumor-associated anergy would preclude this approach. Using optimized culture conditions and HLA-A*02-restricted PRAME-peptides, we have consistently generated PRAME CTLs from 8/9 healthy donors and 5/6 CML patients. These CTLs released IFNgamma in response to PRAME peptides (between 113 +/- 8 and 795 +/- 23 spot forming cells/10(5) T cells) and lysed PRAME peptide-loaded cells (45 +/- 19% at an effector:target [E:T] ratio of 20:1) in a MHC-restricted fashion. Importantly, these CTLs recognized and had cytotoxic activity against HLA-A*02(+)/PRAME(+) tumor cell lines, and could recognize and respond to primary CML cells. PRAME CTLs were generated almost exclusively from the naive T-cell compartment, and clonal analysis showed these cells could have high alphabetaTCR-peptide avidity. PRAME CTLs or vaccines may thus be of value for patients with CML.
Collapse
|
29
|
Redmond WL, Gough MJ, Charbonneau B, Ratliff TL, Weinberg AD. Defects in the acquisition of CD8 T cell effector function after priming with tumor or soluble antigen can be overcome by the addition of an OX40 agonist. THE JOURNAL OF IMMUNOLOGY 2008; 179:7244-53. [PMID: 18025166 DOI: 10.4049/jimmunol.179.11.7244] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several members of the TNFR superfamily, including OX40 (CD134), 4-1BB (CD137), and CD27 provide critical costimulatory signals that promote T cell survival and differentiation in vivo. Although several studies have demonstrated that OX40 engagement can enhance CD4 T cell responses, the mechanisms by which OX40-mediated signals augment CD8 T cell responses are still unclear. Previously, we and others have shown that OX40 engagement on Ag-specific CD8 T cells led to increased CD8 T cell expansion, survival, and the generation of greater numbers of long-lived memory cells. Currently, we demonstrate that provision of an OX40 agonist during the activation of naive CD8 T cells primed in vivo with either soluble or tumor-associated Ag significantly augments granzyme B expression and CD8 T cell cytolytic function through an IL-2-dependent mechanism. Furthermore, augmented CTL function required direct engagement of OX40 on the responding CD8 T cells and was associated with increased antitumor activity against established prostate tumors and enhanced the survival of tumor-bearing hosts. Thus, in the absence of danger signals, as is often the case in a tumor-bearing host, provision of an OX40 agonist can overcome defective CD8 T cell priming and lead to a functional antitumor response in vivo.
Collapse
Affiliation(s)
- William L Redmond
- Earle A Chiles Research Institute, Robert W Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | | | | | | | | |
Collapse
|
30
|
Wierda WG, Kipps TJ. Gene therapy and active immune therapy of hematologic malignancies. Best Pract Res Clin Haematol 2007; 20:557-68. [PMID: 17707840 DOI: 10.1016/j.beha.2007.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gene therapy for patients with hematologic malignancies, particularly chronic lymphocytic leukemia (CLL), have focused on transducing primary leukemia cells with a virus vector to express immune-stimulating genes which can induce and propagate a productive and clinically significant immune response against the malignant cells. A variety of replication-defective vectors has been studied to transduce genes for cytokines and function-associated surface molecules. Active vaccines have been developed in vitro, and their activity has been confirmed in clinical trials. Ongoing work aims to optimize this strategy and to identify the appropriate and optimal patient groups in which to apply vaccine therapy. Clinical trials also have provided insight into unexpected alternative mechanisms through which these strategies might provide a clinical benefit.
Collapse
Affiliation(s)
- William G Wierda
- Department of Leukemia, Division of Cancer Medicine, UT MD Anderson Cancer Center, PO Box 301402, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
31
|
Abstract
Although chemotherapy can induce complete responses in patients with chronic lymphocytic leukemia (CLL), it is not considered curative. Treated patients generally develop recurrent disease requiring additional therapy, which can cause worsening immune dysfunction, myelosuppression, and selection for chemotherapy-resistant leukemia-cell subclones. Cellular immune therapy promises to mitigate these complications and potentially provide for curative treatment. Most experience with this is in the use of allogeneic hematopoietic stem-cell transplantation (allo-HSCT), in which graft-versus-leukemia (GVL) effects can be observed and shown responsible for long-term disease-free survival. However, use of allo-HSCT for CLL is limited because of the lack of suitable donors and the treatment-related morbidity/mortality for elderly patients, who constitute the majority at risk for developing this disease. The GVL effect, however, suggests there are specific CLL-associated antigens that could be targeted in autologous cellular immune therapy. Effective strategies for this will have to overcome the disease-related acquired immune deficiency and the capacity of the leukemia-cell to induce T-cell tolerance, thereby compromising the activity of even conventional vaccines in patients with this disease. We will discuss the different strategies being developed to overcome these limitations that might provide for effective cellular immune therapy of CLL.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
32
|
Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK, Dotti G. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108:3890-7. [PMID: 16926291 PMCID: PMC1895462 DOI: 10.1182/blood-2006-04-017061] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Accepted: 07/21/2006] [Indexed: 01/04/2023] Open
Abstract
There has been interest in generating T cells expressing chimeric artificial receptors (CARs) targeting CD19/CD20 antigens to treat B-cell lymphomas. If successful, however, this approach would likely impair humoral immunity because T cells may persist long-term. Most low-grade lymphoma and chronic lymphocytic leukemia (B-CLL) cells express monoclonal immunoglobulins carrying either kappa or lambda light chains. We, therefore, explored whether T lymphocytes could be genetically modified to target the tumor-associated light chain, sparing B lymphocytes expressing the reciprocal light chain, and consequently reduce impairment of humoral immunity. We found that T lymphocytes expressing the anti-kappa light chain CAR showed cytotoxic activity against Igkappa(+) tumor cell lines and B-CLL cells both in vitro and in vivo. We also found that the incorporation of the CD28 endodomain within the CAR enhanced the in vitro and in vivo expansion of transgenic T cells after tumor-associated antigen stimulation. Free Igkappa(+) did not compromise the ability of redirected T lymphocytes to eliminate Igkappa(+) tumors because these free immunoglobulins served to sustain proliferation of CAR-CD28 transgenic T cells. Thus, adoptive transfer of T lymphocytes targeting the appropriate light chain could be a useful immunotherapy approach to treat B-lymphocyte malignancies that clonally express immunoglobulin without entirely compromising humoral immunity.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antibody Formation/immunology
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD20/genetics
- Antigens, CD20/immunology
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- Cell Proliferation
- Gene Expression Regulation, Leukemic/immunology
- Humans
- Immunoglobulin kappa-Chains/immunology
- Immunoglobulin lambda-Chains/immunology
- K562 Cells
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, SCID
- Neoplasm Proteins/immunology
- Protein Structure, Tertiary/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Juan Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Fannin St, MC 3-3320, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Novel approaches to the immunotherapy of B-cell malignancies: An update. Curr Hematol Malig Rep 2006; 1:258-63. [PMID: 20425321 DOI: 10.1007/s11899-006-0007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Immunotherapy of cancer includes both active and adoptive, or passive, forms of immunization to target and eradicate malignant B cells in the host. Advances in the understanding of immunology and tumor-cell evasion of the host immune system, coupled with improved technologies to manipulate immune effectors and tumors, have led to a wide array of novel therapies for B-cell malignancies. As a result, investigators have proposed and tested numerous vaccine strategies able to elicit immune responses to tumor antigens. Furthermore, novel approaches to B-cell-targeted antibody therapies hold promise in advancing this line of treatment, and efficient gene transfer technologies have enabled investigators to manipulate immune effector cells to enhance antitumor activity. Significantly, an increasing number of these novel immune-based therapies are being applied to the clinical setting. Whether findings from these clinical trials, in combination with further preclinical studies, will ultimately translate into improved survival of patients with B-cell malignancies remains to be seen.
Collapse
|
34
|
D'Amico G, Bonamino M, Dander E, Marin V, Basso G, Balduzzi A, Biagi E, Biondi A. T cells stimulated by CD40L positive leukemic blasts-pulsed dendritic cells meet optimal functional requirements for adoptive T-cell therapy. Leukemia 2006; 20:2015-24. [PMID: 16990769 DOI: 10.1038/sj.leu.2404390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adoptive T-cell immunotherapy may provide complementary therapy for childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In this study, we have analyzed the functional characteristics of anti-BCP-ALL effector T cells generated by co-culturing T lymphocytes and dendritic cells (DC) from allogeneic human stem cell transplantation (HSCT) donors. After 21-day co-culture with DC pulsed with CD40L+ apoptotic BCP-ALL blasts, T cells presented with both effector and central memory phenotype, and showed high and specific cytotoxic activity against leukemic cells (average lysis = 77%), mostly mediated by CD8+ T cells. Noticeably, growth of CD4 T cells was maintained (45% of total cells), which actively produced Th1 cytokines (IFN-gamma, TNF-alpha, IL-2), but not IL-4, IL-5 and IL-10. Anti-BCP-ALL T cells expressed CD49d and CXCR4 (implicated in the recruitment to bone marrow), and CD62L and CCR7 (involved in the migration to lymphoid organs). In accordance with this profile, T cells significantly migrated in response to the chemokines CXCL12 and CCL19. In conclusion, stimulation of T cells with CD40L+BCP-ALL cells-loaded DC not only elicited the generation of potent and specific anti-leukemic cytotoxic effectors, but also the differentiation of specific and functional Th-1 CD4 lymphocytes. These effectors are fully equipped to reach leukemia-infiltrated tissues and have characteristics to support and orchestrate the anti-tumor immune-response.
Collapse
Affiliation(s)
- G D'Amico
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Monza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Soroosh P, Ine S, Sugamura K, Ishii N. OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5975-87. [PMID: 16670306 DOI: 10.4049/jimmunol.176.10.5975] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Signals through the OX40 costimulatory receptor on naive CD4 T cells are essential for full-fledged CD4 T cell activation and the generation of CD4 memory T cells. Because the ligand for OX40 is mainly expressed by APCs, including activated B cells, dendritic cells, and Langerhans cells, the OX40-OX40 ligand (OX40L) interaction has been thought to participate in T cell-APC interactions. Although several reports have revealed the expression of OX40L on T cells, the functional significance of its expression on them is still unclear. In this study, we demonstrate that Ag stimulation induced an increase in the surface expression and transcript levels of OX40L in CD4 T cells. Upon contact with OX40-expressing T cells, the cell surface expression of OX40L on CD4 T cells was markedly down-regulated, suggesting that OX40-OX40L binding occurs through a novel T cell-T cell interaction. To investigate the function of this phenomenon, we examined the proliferative response and survival of OX40L-deficient CD4 T cells when challenged with Ag. In vitro studies demonstrated markedly less CD3-induced proliferation of OX40L-deficient CD4 T cells compared with wild-type CD4 T cells. When using TCR transgenic CD4 T cells upon Ag stimulation, survival of OX40L-deficient T cells was impaired. Furthermore, we show that upon antigenic stimulation, fewer OX40L-deficient CD4 T cells than wild-type cells survived following transfer into wild-type and sublethally irradiated recipient mice. Taken together, our findings indicate that OX40L-expressing T cells have an autonomous machinery that provides OX40 signals through a T cell-T cell circuit, creating an additional mechanism for sustaining CD4 T cell longevity.
Collapse
Affiliation(s)
- Pejman Soroosh
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
36
|
Torrero MN, Xia X, Henk W, Yu S, Li S. Stat1 deficiency in the host enhances interleukin-12-mediated tumor regression. Cancer Res 2006; 66:4461-7. [PMID: 16618773 DOI: 10.1158/0008-5472.can-05-3554] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducer and activator of transcription 1 (Stat1) is considered a key transcription factor that inhibits tumorigenesis, and Stat1 activation in the host is required for interleukin-12 (IL-12)-mediated generation of CTL activity. Using syngeneic Stat1-/- C3H mice bearing SCCVII tumors in this study, we discovered opposite results. Stat1 deficiency in the host significantly enhances IL-12-mediated tumor regression, resulting in tumor eradication from 60% of SCCVII tumor-bearing mice and significant inhibition of tumor growth when compared with control treatment (P < 0.01). This effect is independent of both Stat1-activating cytokine IFN-gamma and Stat1-downstream effector molecule FasL because neither neutralization of IFN-gamma nor knocking out of FasL enhances or inhibits IL-12-mediated tumor regression. IL-12 induces a high intensity of tumor-specific CTL activity in Stat1-deficient mice (P < 0.01), increases the CD8 T-cell density in tumor bearing Stat1-/- mice, and induces a T-cell-dependent tumor regression. The increased CTL activity and the high-intensity infiltration of T cells into the tumors in IL-12-treated Stat1-/- mice are likely due to the longer survival than the same cells from wild-type mice. Together, the data show that inhibition of Stat1 expression in the host enhances tumor-local IL-12 gene therapy for regressing tumors. This conclusion provides a new concept for designing an effective treatment strategy.
Collapse
Affiliation(s)
- Marina N Torrero
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
37
|
Murata S, Ladle BH, Kim PS, Lutz ER, Wolpoe ME, Ivie SE, Smith HM, Armstrong TD, Emens LA, Jaffee EM, Reilly RT. OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T cell tolerance to an endogenous tumor antigen. THE JOURNAL OF IMMUNOLOGY 2006; 176:974-83. [PMID: 16393983 DOI: 10.4049/jimmunol.176.2.974] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell costimulation via OX40 is known to increase CD4+ T cell expansion and effector function and enhances the development of T cell memory. OX40 costimulation can also prevent, and even reverse, CD4+ T cell anergy. However, the role of OX40 in CD8+ T cell function is less well defined, particularly in the setting of immune tolerance. To determine the effects of OX40 costimulation on the induction of the host CD8+ T cell repertoire to an endogenous tumor Ag, we examined the fate of CD8+ T cells specific for the immunodominant rat HER-2/neu epitope, RNEU420-429, in FVB MMTV-neu (neu-N) mice, which express rat HER-2/neu protein in a predominantly mammary-restricted fashion. We show that the RNEU420-429-specific T cell repertoire in neu-N mice expands transiently after vaccination with a neu-targeted GM-CSF-secreting whole-cell vaccine, but quickly declines to an undetectable level. However, OX40 costimulation, when combined with GM-CSF-secreting tumor-targeted vaccination, can break established CD8+ T cell tolerance in vivo by enhancing the expansion, and prolonging the survival and effector function of CD8+ T cells specific for RNEU420-429. Moreover, we demonstrate that OX40 expression is up-regulated on both CD4+ and CD8+ T cells shortly after administration of a GM-CSF expressing vaccine. These studies highlight the increased efficacy of OX40 costimulation when combined with a GM-CSF-secreting vaccine, and define a new role for OX40 costimulation of CD8+ T cells in overcoming tolerance and boosting antitumor immunity.
Collapse
Affiliation(s)
- Satoshi Murata
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Biagi E, Rousseau R, Yvon E, Schwartz M, Dotti G, Foster A, Havlik-Cooper D, Grilley B, Gee A, Baker K, Carrum G, Rice L, Andreeff M, Popat U, Brenner M. Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res 2006; 11:6916-23. [PMID: 16203783 DOI: 10.1158/1078-0432.ccr-05-0484] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human CD40 ligand activates the malignant B-cell chronic lymphocytic leukemia cells and enhances their capacity to present tumor antigens. Human interleukin-2 further potentiates the immunogenicity of human CD40 ligand in preclinical murine models. EXPERIMENTAL DESIGN We prepared autologous B-cell chronic lymphocytic leukemia cells that expressed both human CD40 ligand (>90% positive) and human interleukin-2 (median secretion, 1,822 pg/mL/10(6) cells; range, 174-3,604 pg). Nine patients were enrolled in a phase I trial, receiving three to eight s.c. vaccinations. RESULTS Vaccinations were administered without evidence of significant local or systemic toxicity. A B-cell chronic lymphocytic leukemia-specific T-cell response was detected in seven patients. The mean frequencies of IFN-gamma, granzyme-B, and IL-5 spot-forming cells were 1/1,230, 1/1,450, and 1/4,500, respectively, representing a 43- to 164-fold increase over the frequency before vaccine administration. Three patients produced leukemia-specific immunoglobulins. Three patients had >50% reduction in the size of affected lymph nodes. Nonetheless, the antitumor immune responses were observed only transiently once immunization ceased. High levels of circulating CD4+/CD25+/LAG-3+/FoxP-3+ immunoregulatory T cells were present before, during and after treatment and in vitro removal of these cells increased the antileukemic T-cell reactivity. CONCLUSIONS These results suggest that immune responses to B-cell chronic lymphocytic leukemia can be obtained with human CD40 ligand/human interleukin-2-expressing s.c. vaccines but that these responses are transient. High levels of circulating regulatory T cells are present, and it will be of interest to see if their removal in vivo augments and prolongs the antitumor immune response.
Collapse
MESH Headings
- Aged
- Antigens, CD/biosynthesis
- Antineoplastic Agents/metabolism
- Area Under Curve
- B7-2 Antigen/biosynthesis
- CD3 Complex/biosynthesis
- CD4-Positive T-Lymphocytes/metabolism
- CD40 Ligand/metabolism
- Cancer Vaccines/chemistry
- Cell Line, Tumor
- Cell Proliferation
- Coculture Techniques
- Female
- Forkhead Transcription Factors/biosynthesis
- Humans
- Immune System
- Interleukin-2/metabolism
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocytes/metabolism
- Time Factors
- Treatment Outcome
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Ettore Biagi
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Secchiero P, Corallini F, Barbarotto E, Melloni E, di Iasio MG, Tiribelli M, Zauli G. Role of the RANKL/RANK system in the induction of interleukin-8 (IL-8) in B chronic lymphocytic leukemia (B-CLL) cells. J Cell Physiol 2006; 207:158-64. [PMID: 16270354 DOI: 10.1002/jcp.20547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
B chronic lymphocytic leukemia (B-CLL) cells express several members of the tumor necrosis factor (TNF) family, such as CD40L, CD30L, and TRAIL. By using the cDNA microarray technology, B-CLL samples were found to overexpress receptor activator of nuclear factor kB (NF-kB) ligand (RANKL), as compared to normal CD19(+) B cells. These findings were validated at the protein level by Western blot and flow cytometry analyses. Moreover, unlike primary normal B cells, leukemic B-CLL cells showed surface expression of RANK, the cognate transmembrane receptor of RANKL. When added in vitro to B-CLL cultures, either alone or in association with chlorambucil or fludarabine, recombinant RANKL did not significantly modulate cell viability, and it minimally affected the IL-8 expression/release. On the other hand, treatment with RANK-Fc chimera potently upregulated the release of IL-8 in the B-CLL culture supernatants, suggesting involvement of reverse signaling through transmembrane RANKL in IL-8 induction. In turn, exposure of B-CLL cells to recombinant IL-8 significantly decreased spontaneous apoptosis as well as chlorambucil- and fludarabine-mediated cytoxicity in B-CLL cells. Since IL-8 has been implicated in progression of B-CLL disease, our findings suggest that, by upregulating IL-8, the RANKL/RANK system may contribute to the pathogenesis of B-CLL.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cell Survival/drug effects
- Chlorambucil/pharmacology
- Flow Cytometry
- Gene Expression/genetics
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Immunoglobulin G/genetics
- Interleukin-1/pharmacology
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Interleukin-8/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Oligonucleotide Array Sequence Analysis
- Osteoprotegerin
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Up-Regulation/genetics
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Via Fossato di Mortara 66, Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Serghides L, Bukczynski J, Wen T, Wang C, Routy JP, Boulassel MR, Sekaly RP, Ostrowski M, Bernard NF, Watts TH. Evaluation of OX40 Ligand as a Costimulator of Human Antiviral Memory CD8 T Cell Responses: Comparison with B7.1 and 4-1BBL. THE JOURNAL OF IMMUNOLOGY 2005; 175:6368-77. [PMID: 16272289 DOI: 10.4049/jimmunol.175.10.6368] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CTL are important effectors of antiviral immunity. Designing adjuvants that can induce strong cytotoxic T cell responses in humans would greatly improve the effectiveness of an antiviral vaccination or therapeutic strategy. Recent evidence suggests that, in addition to its well-established role in costimulation of CD4 T cell responses, OX40L (CD134) can directly costimulate mouse CD8 T cells. In this study, we evaluated the role of OX40L in costimulation of human antiviral CD8 T cell responses and compared it with two other important costimulators, B7.1 (CD80) and 4-1BBL (CD137L). Delivery of OX40L to human monocytes using a recombinant replication-defective adenovirus led to greater expansion, up-regulation of perforin, enhanced cytolytic activity, and increased numbers of IFN-gamma- and TNF-alpha-producing antiviral memory CD8 T cells in cultures of total T cells. Synergistic or additive effects were observed when OX40L costimulation was combined with 4-1BBL (CD137L) or B7.1 (CD80) costimulation. In total T cell cultures, at low Ag dose, 4-1BBL provided the most potent costimulus for influenza-specific CD8 T cell expansion, followed by B7.1 (CD80) and then OX40L. For isolated CD8 T cells, 4-1BBL was also the most consistent costimulator, followed by B7.1. In contrast, OX40L showed efficacy in direct activation of memory CD8 T cells in only one of seven donors. Thus, OX40L costimulates human antiviral memory CD8 T cell responses largely through indirect effects and can enhance anti-influenza, anti-EBV, and anti-HIV responses, particularly in combination with 4-1BBL or B7.
Collapse
Affiliation(s)
- Lena Serghides
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Palena C, Foon KA, Panicali D, Yafal AG, Chinsangaram J, Hodge JW, Schlom J, Tsang KY. Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules. Blood 2005; 106:3515-23. [PMID: 16081691 PMCID: PMC1895050 DOI: 10.1182/blood-2005-03-1214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease of CD5(+) B lymphocytes (designated as CLL cells) that are inefficient antigen-presenting cells. Their poor ability to present antigens to the T cells, largely due to an inadequate costimulatory capacity, is manifested as a failure to stimulate proliferation of both allogeneic and autologous T cells. We have investigated the ability of in vitro manipulated CLL cells, via hyperexpression of a triad of costimulatory molecules (B7-1, intercellular adhesion molecule 1 [ICAM-1], and leukocyte-function-associated antigen 3 [LFA-3], designated TRICOM), to stimulate effective antitumor T-cell responses. A recombinant modified vaccinia virus strain Ankara (MVA), which is a highly attenuated, replication-impaired virus variant, was successfully used to infect and deliver the simultaneous expression of the 3 human costimulatory molecules in TRICOM on the surface of the CLL cells. Proliferation of allogeneic and autologous T cells was observed when MVA-TRICOM-infected CLL cells were used as stimulators in proliferation assays. Cytotoxic T lymphocytes, generated in vitro by stimulation of autologous T cells with MVA-TRICOM-infected CLL cells, showed cytotoxicity against unmodified/uninfected CLL cells. Therefore, our findings suggest that the use of CLL cells infected ex vivo with MVA-TRICOM or direct injection of MVA-TRICOM in patients with CLL has potential for the immunotherapy of CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Proliferation
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Female
- Genetic Vectors
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Vaccinia virus
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou J, Tagaya Y, Tolouei-Semnani R, Schlom J, Sabzevari H. Physiological relevance of antigen presentasome (APS), an acquired MHC/costimulatory complex, in the sustained activation of CD4+ T cells in the absence of APCs. Blood 2005; 105:3238-46. [PMID: 15637136 DOI: 10.1182/blood-2004-08-3236] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
T-cell interaction with antigen-presenting cells (APCs) results in activation and clonal expansion of naive T cells. CD80 expression/acquisition in T cells has been implicated in disease processes in patients with rheumatoid arthritis and multiple myeloma and patients infected with HIV. Our previous data indicate that antigen-specific activation of naive T cells results in T-cell acquisition of CD80 molecules from APCs. However, the functional relevance of the acquired CD80 by T cells in signal pathways has remained unresolved. This study aims to define for the first time the role of acquired CD80 in T-cell clonal expansion. We demonstrate the following: (1) T cells, upon CD80 acquisition, sustain their proliferative response in the absence of APCs; (2) T cells that acquire CD80 sustain the activity of transcriptional factors such as nuclear factor-κB (NFκB) and activator protein-1 (AP1) for 24 hours after separation from APCs and up-regulate signal transducer and activator of transcription-5 (Stat5) in the absence of APCs or exogenous signal 1; and (3) maintenance of these signals results in unique cytokine production. Collectively, our data support the unique concept that naive T cells sustain their activation by removing “antigen presentasome” (APS; eg, antigen-presenting complex) from APCs, thereby releasing the constraint of APC requirement for further activation. (Blood. 2005;105: 3238-3246)
Collapse
Affiliation(s)
- Jun Zhou
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|