1
|
Lo Presti V, Meringa A, Dunnebach E, van Velzen A, Moreira AV, Stam RW, Kotecha RS, Krippner-Heidenreich A, Heidenreich OT, Plantinga M, Cornel A, Sebestyen Z, Kuball J, van Til NP, Nierkens S. Combining CRISPR-Cas9 and TCR exchange to generate a safe and efficient cord blood-derived T cell product for pediatric relapsed AML. J Immunother Cancer 2024; 12:e008174. [PMID: 38580329 PMCID: PMC11002379 DOI: 10.1136/jitc-2023-008174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRβ (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.
Collapse
Affiliation(s)
- Vania Lo Presti
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelo Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alice van Velzen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelisa Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niek P van Til
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
A Novel Peptide-MHC Targeted Chimeric Antigen Receptor T Cell Forms a T Cell-like Immune Synapse. Biomedicines 2021; 9:biomedicines9121875. [PMID: 34944696 PMCID: PMC8699022 DOI: 10.3390/biomedicines9121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a promising form of adoptive cell therapy that re-engineers patient-derived T cells to express a hybrid receptor specific to a tumour-specific antigen of choice. Many well-characterised tumour antigens are intracellular and therefore not accessible to antibodies at the cell surface. Therefore, the ability to target peptide-MHC tumour targets with antibodies is key for wider applicability of CAR T cell therapy in cancer. One way to evaluate the effectiveness and efficiency of ligating tumour target cells is studying the immune synapse. Here we generated a second-generation CAR to targeting the HLA-A*02:01 restricted H3.3K27M epitope, identified as a possible therapeutic target in ~75% of diffuse midline gliomas, used as a model antigen to study the immune synapse. The pMHCI-specific CAR demonstrated specificity, potent activation, cytokine secretion and cytotoxic function. Furthermore, we characterised killing kinetics using live cell imaging as well as CAR synapse confocal imaging. Here we provide evidence of robust CAR targeting of a model peptide-MHC antigen and that, in contrast to protein-specific CARs, these CARs form a TCR-like immune synapse which facilitates TCR-like killing kinetics.
Collapse
|
5
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Shafat MS, Mehra V, Peggs KS, Roddie C. Cellular Therapeutic Approaches to Cytomegalovirus Infection Following Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1694. [PMID: 32849591 PMCID: PMC7411136 DOI: 10.3389/fimmu.2020.01694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cytomegalovirus (CMV) infection is common following allogeneic hematopoietic stem cell transplant (HSCT) and is a major cause of morbidity and increased mortality. Whilst pharmacotherapy can be effective in the prevention and treatment of CMV, these agents are often expensive, toxic and in some cases ineffective due to viral resistance mechanisms. Immunotherapeutic approaches are compelling and early clinical trials of adoptively transferred donor-derived virus-specific T (VST) cells against CMV have demonstrated efficacy. However, significant logistical challenges limit their broad application. Strategies to optimize VST manufacture and cell banking alongside scientific developments to enhance efficacy whilst minimizing toxicity are ongoing. This review will discuss the development of CMV-specific T-cell therapies, the challenges of widespread delivery of VSTs for CMV and explore how VST therapy can change outcomes in CMV infection following HSCT.
Collapse
Affiliation(s)
- Manar S Shafat
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Vedika Mehra
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Karl S Peggs
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Claire Roddie
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Weber EW, Maus MV, Mackall CL. The Emerging Landscape of Immune Cell Therapies. Cell 2020; 181:46-62. [PMID: 32243795 PMCID: PMC8900215 DOI: 10.1016/j.cell.2020.03.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Cell therapies present an entirely new paradigm in drug development. Within this class, immune cell therapies are among the most advanced, having already demonstrated definitive evidence of clinical benefits in cancer and infectious disease. Numerous features distinguish these "living therapies" from traditional medicines, including their ability to expand and contract in proportion to need and to mediate therapeutic benefits for months or years following a single application. Continued advances in fundamental immunology, genetic engineering, gene editing, and synthetic biology exponentially expand opportunities to enhance the sophistication of immune cell therapies, increasing potency and safety and broadening their potential for treatment of disease. This perspective will summarize the current status of immune cell therapies for cancer, infectious disease, and autoimmunity, and discuss advances in cellular engineering to overcome barriers to progress.
Collapse
Affiliation(s)
- Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Xu X, Li T, Shen S, Wang J, Abdou P, Gu Z, Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Am J Cancer Res 2019; 9:7889-7905. [PMID: 31695806 PMCID: PMC6831467 DOI: 10.7150/thno.38583] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy aims to utilize the host immune system to kill cancer cells. Recent representative immunotherapies include T-cell transfer therapies, such as chimeric antigen receptor T cell therapy, antibody-based immunomodulator therapies, such as immune checkpoint blockade therapy, and cytokine therapies. Recently developed therapies leveraging engineered cells for immunotherapy against cancers have been reported to enhance antitumor efficacy while reducing side effects. Such therapies range from biologically, chemically and physically -engineered cells to bioinspired and biomimetic nanomedicines. In this review, advances of engineering cells for cancer immunotherapy are summarized, and prospects of this field are discussed.
Collapse
|
10
|
Zhang P, Tey SK. Adoptive T Cell Therapy Following Haploidentical Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 10:1854. [PMID: 31447852 PMCID: PMC6691120 DOI: 10.3389/fimmu.2019.01854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Delayed immune reconstitution and the consequently high rates of leukemia relapse and infectious complications are the main limitations of haploidentical hematopoietic stem cell transplantation. Donor T cell addback can accelerate immune reconstitution but the therapeutic window between graft-vs.-host disease and protective immunity is very narrow in the haploidentical transplant setting. Hence, strategies to improve the safety and efficacy of adoptive T cell transfer are particularly relevant in this setting. Adoptive T cell transfer strategies in haploidentical transplantation include the use of antigen-specific T cells, allodepletion and alloanergy induction, immune modulation by the co-infusion of regulatory cell populations, and the use of safety switch gene-modified T cells. Whilst common principles apply, there are features that are unique to haploidentical transplantation, where HLA-mismatching directly impacts on immune reconstitution, and shared vs. non-shared HLA-allele can be an important consideration in antigen-specific T cell therapy. This review will also present an update on safety switch gene-modified T cells, which can be conditionally deleted in the event of severe graft- vs.-host disease or other adverse events. Herpes Virus Simplex Thymidine Kinase (HSVtk) and inducible caspase-9 (iCasp9) are safety switches that have undergone multicenter studies in haploidentical transplantation with encouraging results. These gene-modified cells, which are trackable long-term, have also provided important insights on the fate of adoptively transferred T cells. In this review, we will discuss the biology of post-transplant T cell immune reconstitution and the impact of HLA-mismatching, and the different cellular therapy strategies that can help accelerate T cell immune reconstitution after haploidentical transplantation.
Collapse
Affiliation(s)
- Ping Zhang
- Clinical Translational Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Siok-Keen Tey
- Clinical Translational Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Zhuang Y, Zhang C, Wu Q, Zhang J, Ye Z, Qian Q. Application of immune repertoire sequencing in cancer immunotherapy. Int Immunopharmacol 2019; 74:105688. [PMID: 31276974 DOI: 10.1016/j.intimp.2019.105688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
With the prominent breakthrough in the field of tumor immunology, diverse cancer immunotherapies have attracted great attention in the last decade. The immune checkpoint inhibitors, adoptive cell therapies, and therapeutic cancer vaccines have already achieved impressive clinical success. However, the fact that only a small subset of patients with specific tumor types can benefit from these treatments limits the application of cancer immunotherapy. To seek out the molecular mechanisms behind this challenge and to select cancer precision medicine for different individuals, researchers apply the immune repertoire sequencing (IRS) to evaluate genetic responses of each patient to current immunotherapies. This review summarizes the technical advances and recent applications of IRS in cancer immunotherapy, indicates the limitations of this technique, and predicts future perspectives both in basic studies and clinical trials.
Collapse
Affiliation(s)
- Yuan Zhuang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Changzheng Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qiong Wu
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Jing Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| |
Collapse
|
12
|
Audehm S, Glaser M, Pecoraro M, Bräunlein E, Mall S, Klar R, Effenberger M, Albers J, Bianchi HDO, Peper J, Yusufi N, Busch DH, Stevanović S, Mann M, Antes I, Krackhardt AM. Key Features Relevant to Select Antigens and TCR From the MHC-Mismatched Repertoire to Treat Cancer. Front Immunol 2019; 10:1485. [PMID: 31316521 PMCID: PMC6611213 DOI: 10.3389/fimmu.2019.01485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Adoptive transfer of T cells transgenic for tumor-reactive T-cell receptors (TCR) is an attractive immunotherapeutic approach. However, clinical translation is so far limited due to challenges in the identification of suitable target antigens as well as TCRs that are concurrent safe and efficient. Definition of key characteristics relevant for effective and specific tumor rejection is essential to improve current TCR-based adoptive T-cell immunotherapies. We here characterized in-depth two TCRs derived from the human leukocyte antigen (HLA)-mismatched allogeneic repertoire targeting two different myeloperoxidase (MPO)-derived peptides presented by the same HLA-restriction element side by side comprising state of the art biochemical and cellular in vitro, in vivo, and in silico experiments. In vitro experiments reveal comparable functional avidities, off-rates, and cytotoxic activities for both TCRs. However, we observed differences especially with respect to cytokine secretion and cross-reactivity as well as in vivo activity. Biochemical and in silico analyses demonstrate different binding qualities of MPO-peptides to the HLA-complex determining TCR qualities. We conclude from our biochemical and in silico analyses of peptide-HLA-binding that rigid and high-affinity binding of peptides is one of the most important factors for isolation of TCRs with high specificity and tumor rejection capacity from the MHC-mismatched repertoire. Based on our results, we developed a workflow for selection of such TCRs with high potency and safety profile suitable for clinical translation.
Collapse
Affiliation(s)
- Stefan Audehm
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Glaser
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Matteo Pecoraro
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Mall
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard Klar
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Effenberger
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Julian Albers
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrique de Oliveira Bianchi
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Janet Peper
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Nahid Yusufi
- Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Stefan Stevanović
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany.,Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Partner Site Munich, German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Jin Z, Xu L, Li Y. Approaches for generation of anti-leukemia specific T cells. CELL REGENERATION 2019; 7:40-44. [PMID: 30671229 PMCID: PMC6326242 DOI: 10.1016/j.cr.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
As three decades ago, it was reported that adoptive T cell immunotherapy by infusion of autologous tumor infiltrating lymphocytes (TILs) mediated objective cancer regression in patients with metastatic melanoma. A new era of T cell immunotherapy arose since the improvement and clinical use of anti-CD19 chimeric antigen receptor T cells (CAR-T) for the treatment of refractory and relapsed B lymphocyte leukemia. However, several challenges and difficulties remain on the way to reach generic and effective T cell immunotherapy, including lacking a generic method for generating anti-leukemia-specific T cells from every patient. Here, we summarize the current methods of generating anti-leukemia-specific T cells, and the promising approaches in the future.
Collapse
Key Words
- ACT, adoptive cellular immunotherapy
- APL, promyelocytic leukemia
- Anti-leukemia T cell
- B-ALL, cell acute lymphoblastic leukemia
- CAR-T
- CAR-T, chimeric antigen receptor T cells
- CML, chronic myelogenous leukemia
- CR, complete remission
- CTLs, cytotoxic T cells
- DLI, donor lymphocyte infusion
- FLT3-ITD, FLT3 internal tandem duplication
- GVHD, graft-versus-host disease
- GVL, graft-versus-leukemia
- HLA, human leukocyte antigen
- HPCs, hematopoietic progenitor cells
- IL-2, interleukin-2
- Ig, immunoglobulin
- T cell immunotherapy
- T cell reprogramming
- TAA, tumor-associated antigen
- TCR-T
- TCR-T, TCR gene-modified T cell
- TIL, infiltrating lymphocytes
- TKI, tyrosine kinase inhibitor
- WT1, Wilm's tumor antigen 1
- allo-HSCT, allogeneic hematopoietic stem cell transplantation
- hESC, human embryonic stem cell
- iPSCs, induced pluripotent stem cells
- iTs, induced functional T cells
- scFv, single-chain variable fragment
Collapse
Affiliation(s)
- Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
14
|
Inhibition of Heme Oxygenase-1 Activity Enhances Wilms Tumor-1-Specific T-Cell Responses in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20030482. [PMID: 30678050 PMCID: PMC6387130 DOI: 10.3390/ijms20030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor protein-1 (WT1) is an attractive target for adoptive T-cell therapy due to its expression in solid tumors and hematologic malignancies. However, T cells recognizing WT1 occur in low frequencies in the peripheral blood of healthy donors, limiting potential therapeutic possibilities. Tin mesoporphyrin (SnMP) is known to inhibit heme oxygenase-1 (HO-1), which has been shown to boost the activation and proliferation of human virus-specific T cells. We analyzed the influence of this effect on the generation of WT1-specific T cells and developed strategies for generating quantities of these cells from healthy donors, sufficient for adoptive T-cell therapies. HO-1 inhibition with SnMP increased WT1-specific T-cell frequencies in 13 (26%) of 50 healthy donors. To assess clinical applicability, we measured the enrichment efficiency of SnMP-treated WT1-specific T cells in response to a WT1-specific peptide pool and a HLA-A*02:01-restricted WT1 peptide by cytokine secretion assay. SnMP treatment resulted in a 28-fold higher enrichment efficacy with equal functionality. In conclusion, pharmacological inhibition of HO-1 activity with SnMP results in more efficient generation of functionally active WT1-specific T cells. This study demonstrates the therapeutic potentials of inhibiting HO-1 with SnMP to enhance antigen-specific T-cell responses in the treatment of cancer patients with WT1-positive disease.
Collapse
|
15
|
Zhang Y, Li Y. T cell receptor-engineered T cells for leukemia immunotherapy. Cancer Cell Int 2019; 19:2. [PMID: 30622438 PMCID: PMC6317187 DOI: 10.1186/s12935-018-0720-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022] Open
Abstract
At present, refractory and relapse are major issues for leukemia therapy and a major cause of allogeneic hematopoietic stem cell transplant failure. Over the last decade, many studies have demonstrated that adoptive cancer antigen-specific T cell therapy is an effective option for leukemia therapy. Recently, T cell immunotherapy studies have mainly focused on chimeric antigen receptor- and T cell receptor-engineered T cells. Clinical trials involving chimeric antigen receptor-engineered T cells have been a major breakthrough and became a novel therapy for leukemia. As another potential therapy for leukemia, clinical application of TCR-engineered T cells remains in its infancy. This article presents a review of the current status of anti-leukemia immunotherapy using leukemia antigen-specific TCR-engineered T cells.
Collapse
Affiliation(s)
- Yikai Zhang
- 1Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632 People's Republic of China.,2Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Yangqiu Li
- 1Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632 People's Republic of China.,2Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
16
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
17
|
Bujak JK, Pingwara R, Nelson MH, Majchrzak K. Adoptive cell transfer: new perspective treatment in veterinary oncology. Acta Vet Scand 2018; 60:60. [PMID: 30305130 PMCID: PMC6180494 DOI: 10.1186/s13028-018-0414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy is recently considered the most promising treatment for human patients with advanced tumors and could be effectively combined with conventional therapies such as chemotherapy or radiotherapy. Patients with hematological malignancies and melanoma have benefited greatly from immunotherapies such as, adoptive cell transfer therapy, experiencing durable remissions and prolonged survival. In the face of increasing enthusiasm for immunotherapy, particularly for the administration of tumor-specific T lymphocytes, the question arises whether this method could be employed to improve treatment outcomes for canine patients. It is warranted to determine whether veterinary clinical trials could support comparative oncology research and thus facilitate the development of new cell-based therapies for humans. Herein, we discuss adoptive transfer of T lymphocytes and lymphokine-activated cells for application in veterinary oncology, in the context of human medicine achievements. Furthermore, we discuss potential benefits of using domestic dog as a model for immunotherapy and its advantages for translational medicine. We also focus on an emerging genome-editing technology as a useful tool to improve a T cells’ phenotype.
Collapse
|
18
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Liu H, Zha Y, Choudhury N, Malnassy G, Fulton N, Green M, Park JH, Nakamura Y, Larson RA, Salazar AM, Odenike O, Gajewski TF, Stock W. WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia. Exp Hematol Oncol 2018; 7:1. [PMID: 29344432 PMCID: PMC5765712 DOI: 10.1186/s40164-018-0093-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 11/12/2022] Open
Abstract
Background The optimal strategy for vaccination to induce CD8+ T cell responses against WT1 is not known. Methods A pilot randomized study in HLA-A02+ patients to receive vaccination with WT1 in Montanide or in poly ICLC, a TLR3 agonist, to explore the novel immune adjuvant was conducted. Seven patients were randomized. Four patients received WT1 in Montanide, and three with WT1 in poly ICLC. Five patients were in morphologic remission and two had residual morphologic disease at the study entry. Results All patients finished the induction phase without any major toxicity except mild transient local injection reaction. One patient on the Montanide arm developed aseptic ulceration at two vaccine sites which healed without antibiotics. Three of 4 patients on the Montanide arm had a decreased expression of WT1 after WT1 vaccination, and two of them demonstrated generation of WT1-specific cytotoxic CD8+ T cell responses with biased TCR beta chain enrichment. In contrast, no obvious WT1-specific immune responses were detected in two patients on the poly ICLC arm, nor was there clonal enrichment by TCR alpha/beta sequencing; however, these patients did also have decreased WT1 expression and remained in remission several years after the initiation of treatment. Conclusions WT1 peptide vaccine with Montanide as an adjuvant induces detectable WT1-specific CD8+ T cell responses with clonal TCR enrichment, which may be capable of controlling leukemia recurrence in the setting of minimal residual disease. Poly ICLC may induce anti-leukemic activity in the absence of detectable WT1 specific CD8+ T cell responses. Trial registration NCT01842139, 7/3/2012 retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT01842139.
Collapse
Affiliation(s)
- Hongtao Liu
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Yuanyuan Zha
- 2HIM Facility at University of Chicago, University of Chicago Medical Center, Chicago, IL USA
| | - Noura Choudhury
- 3Internal Medicine Residency Program, The University of Chicago Medicine, Chicago, USA
| | - Gregory Malnassy
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Noreen Fulton
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Margaret Green
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Jae-Hyun Park
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Yusuke Nakamura
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Richard A Larson
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | | | - Olatoyosi Odenike
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Thomas F Gajewski
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| | - Wendy Stock
- 1Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland, MC 2115, Chicago, IL 60637-1470 USA
| |
Collapse
|
20
|
Cruz CRY, Bollard CM. Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 2017; 18:271-280. [PMID: 26648070 PMCID: PMC5016253 DOI: 10.2174/1389450117666160209143529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
The development of novel T cell therapies to target leukemia has facilitated the translation of this approach for hematologic malignancies. Different methods of manufacturing leukemia-specific T cells have evolved, along with additional measures to increase the safety of this therapy. This is an overview of expanded T cell therapeutics with a focus on how the manufacturing strategies have been refined, and where the research is heading.
Collapse
Affiliation(s)
- Conrad Russell Y. Cruz
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| | - Catherine M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| |
Collapse
|
21
|
A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunother 2016; 39:105-16. [PMID: 26938944 DOI: 10.1097/cji.0000000000000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies.
Collapse
|
22
|
Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 2016; 127:3305-11. [PMID: 27207802 DOI: 10.1182/blood-2015-11-629071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients.
Collapse
|
23
|
Coelho-Dos-Reis JG, Huang J, Tsao T, Pereira FV, Funakoshi R, Nakajima H, Sugiyama H, Tsuji M. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 2016; 168:6-15. [PMID: 27132023 DOI: 10.1016/j.clim.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation.
Collapse
Affiliation(s)
- Jordana G Coelho-Dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Minas Gerais 30192, Brazil.
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Felipe V Pereira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Federal University of Sao Paulo, Sao Paulo 04021, Brazil
| | - Ryota Funakoshi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
24
|
Holler A, Zech M, Ghorashian S, Pike R, Hotblack A, Veliça P, Xue SA, Chakraverty R, Morris EC, Stauss HJ. Expression of a dominant T-cell receptor can reduce toxicity and enhance tumor protection of allogeneic T-cell therapy. Haematologica 2016; 101:482-90. [PMID: 26802053 PMCID: PMC5004405 DOI: 10.3324/haematol.2015.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Due to the lack of specificity for tumor antigens, allogeneic T-cell therapy is associated with graft-versus-host disease. Enhancing the anti-tumor specificity while reducing the graft-versus-host disease risk of allogeneic T cells has remained a research focus. In this study, we demonstrate that the introduction of 'dominant' T-cell receptors into primary murine T cells can suppress the expression of endogenous T-cell receptors in a large proportion of the gene-modified T cells. Adoptive transfer of allogeneic T cells expressing a 'dominant' T-cell receptor significantly reduced the graft-versus-host toxicity in recipient mice. Using two bone marrow transplant models, enhanced anti-tumor activity was observed in the presence of reduced graft-versus-host disease. However, although transfer of T-cell receptor gene-modified allogeneic T cells resulted in the elimination of antigen-positive tumor cells and improved the survival of treated mice, it was associated with accumulation of T cells expressing endogenous T-cell receptors and the development of delayed graft-versus-host disease. The in-vivo deletion of the engineered T cells, mediated by endogenous mouse mammary tumor virus MTV8 and MTV9, abolished graft-versus-host disease while retaining significant anti-tumor activity of adoptively transferred T cells. Together, this study shows that the in-vitro selection of allogeneic T cells expressing high levels of a 'dominant' T-cell receptor can lower acute graft-versus-host disease and enhance anti-tumor activity of adoptive cell therapy, while the in-vivo outgrowth of T cells expressing endogenous T-cell receptors remains a risk factor for the delayed onset of graft-versus-host disease.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/methods
- Cell Line, Tumor
- Female
- Gene Expression
- Genes, Dominant
- Genetic Vectors/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/prevention & control
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Depletion/methods
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transgenes
- Transplantation, Homologous
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Angelika Holler
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Mathias Zech
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Sara Ghorashian
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Rebecca Pike
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Alastair Hotblack
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Pedro Veliça
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Shao-An Xue
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London Department of Haematology, Cancer Institute, University College London, UK
| | - Emma C Morris
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Hans J Stauss
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| |
Collapse
|
25
|
Maus MV, Levine BL. Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist. Oncologist 2016; 21:608-17. [PMID: 27009942 DOI: 10.1634/theoncologist.2015-0421] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED : The field of cancer immunotherapy has rapidly progressed in the past decade as several therapeutic modalities have entered into the clinic. One such immunotherapy that has shown promise in the treatment of cancer is the use of chimeric antigen receptor (CAR)-modified T lymphocytes. CARs are engineered receptors constructed from antigen recognition regions of antibodies fused to T-cell signaling and costimulatory domains that can be used to reprogram a patient's T cells to specifically target tumor cells. CAR T-cell therapy has demonstrated sustained complete responses for some patients with advanced leukemia, and a number of CAR therapies are being evaluated in clinical studies. CAR T-cell therapy-associated toxicities, including cytokine release syndrome, macrophage activation syndrome, and tumor lysis syndrome, have been observed and effectively managed in the clinic. In patients with significant clinical responses, sustained B-cell aplasia has also been observed and is a marker of CAR T-cell persistence that might provide long-term disease control. Education on CAR T-cell therapy efficacy and safety management is critical for clinicians and patients who are considering this novel type of treatment. In the present report, the current landscape of CAR T-cell therapy, the effective management of patients undergoing treatment, and which patients are the most suitable candidates for current trials are discussed. IMPLICATIONS FOR PRACTICE The present report describes the current status of chimeric antigen receptor (CAR) T lymphocytes as an immunotherapy for patients with relapsed or refractory B-cell malignancies. CAR T cells targeting CD19, a protein expressed on many B-cell malignancies, typically induce high complete response rates in patients with B-cell leukemia or lymphoma who have very limited therapeutic options. Recent clinical trial results of CD19 CAR T-cell therapies and the management of CAR T-cell-associated adverse events are discussed. The present report will therefore inform physicians regarding the efficacy and safety of CAR T cells as a therapy for B-cell malignancies.
Collapse
Affiliation(s)
- Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Abstract
In this chapter, the role of WT1 in childhood cancer is discussed, using the key examples Wilms' tumor, desmoplastic small round cell of childhood, and leukemia. The role of WT1 in each disease is described and mirrored to the role of WT1 in normal development.
Collapse
Affiliation(s)
- Jocelyn Charlton
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Kathy Pritchard-Jones
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Hugh and Catherine Stevenson Professor of Paediatric Oncology, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
27
|
Nicholson E, Peggs KS. Cytomegalovirus-specific T-cell therapies: current status and future prospects. Immunotherapy 2015; 7:135-46. [PMID: 25713989 DOI: 10.2217/imt.14.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adoptive transfer of T cells specific for viral pathogens offers an attractive method for hastening immune reconstitution and protective immunity in patients following stem cell transplantation. The largest experience to date has been in the context of treatment or prevention of cytomegalovirus or Epstein-Barr virus. A number of technical hurdles have now been overcome allowing consideration of more widespread application of products compliant with Good Manufacturing Practice regulations, and of the development of commercialization pathways for these products. This review summarizes progress to date and highlights some of the areas that remain problematic and that require further innovation and evaluation before more widespread adoption is considered.
Collapse
Affiliation(s)
- Emma Nicholson
- Department of Haematology, University College London Hospital, London, NW1 2BU, UK
| | | |
Collapse
|
28
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
29
|
Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 2015; 67:46-57. [DOI: 10.1016/j.molimm.2014.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023]
|
30
|
O'Reilly RJ, Koehne G, Hasan AN, Doubrovina E, Prockop S. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplant 2015; 50 Suppl 2:S43-50. [PMID: 26039207 PMCID: PMC4787269 DOI: 10.1038/bmt.2015.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allogeneic hematopoietic cell transplants adequately depleted of T-cells can reduce or prevent acute and chronic GVHD in both HLA-matched and haplotype-disparate hosts, without post-transplant prophylaxis with immunosuppressive drugs. Recent trials indicate that high doses of CD34+ progenitors from G-CSF mobilized peripheral blood leukocytes isolated and T-cell depleted by immunoadsorption to paramagnetic beads, when administered after myeloablative conditioning with TBI and chemotherapy or chemotherapy alone can secure consistent engraftment and abrogate GVHD in patients with acute leukemia without incurring an increased risk of a recurrent leukemia. Early clinical trials also indicate that high doses of in vitro generated leukemia-reactive donor T-cells can be adoptively transferred and can induce remissions of leukemia relapse without GVHD. Similarly, virus-specific T-cells generated from the transplant donor or an HLA partially matched third party, have induced remissions of Rituxan-refractory EBV lymphomas and can clear CMV disease or viremia persisting despite antiviral therapy in a high proportion of cases. Analyses of treatment responses and failures illustrate both the advantages and limitations of donor or banked, third party-derived T-cells, but underscore the potential of adoptive T-cell therapy in the absence of ongoing immunosuppression.
Collapse
Affiliation(s)
- R J O'Reilly
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - G Koehne
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A N Hasan
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Doubrovina
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Prockop
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Gilham DE, Anderson J, Bridgeman JS, Hawkins RE, Exley MA, Stauss H, Maher J, Pule M, Sewell AK, Bendle G, Lee S, Qasim W, Thrasher A, Morris E. Adoptive T-cell therapy for cancer in the United kingdom: a review of activity for the British Society of Gene and Cell Therapy annual meeting 2015. Hum Gene Ther 2015; 26:276-85. [PMID: 25860661 PMCID: PMC4442586 DOI: 10.1089/hum.2015.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022] Open
Abstract
Adoptive T-cell therapy is delivering objective clinical responses across a number of cancer indications in the early phase clinical setting. Much of this clinical activity is taking place at major clinical academic centers across the United States. This review focuses upon cancer-focused cell therapy activity within the United Kingdom as a contribution to the 2015 British Society of Gene and Cell Therapy annual general meeting. This overview reflects the diversity and expansion of clinical and preclinical studies within the United Kingdom while considering the background context of this work against new infrastructural developments and the requirements of nationalized healthcare delivery within the UK National Health Service.
Collapse
Affiliation(s)
- David Edward Gilham
- Clinical and Experimental Immunotherapy Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - John Anderson
- UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | - Robert Edward Hawkins
- Clinical and Experimental Immunotherapy Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
- Cellular Therapeutics Ltd., UMIC Bio-incubator, Manchester M13 9XX, United Kingdom
| | - Mark Adrian Exley
- MCCIR, Faculty of Medicine, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Hans Stauss
- Department of Immunology, University College London, Royal Free Hospital, London NW3 2PF, United Kingdom
| | - John Maher
- Department of Research Oncology, Bermondsey Wing, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Martin Pule
- Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, United Kingdom
| | - Andrew Kelvin Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital, Cardiff CF14 4XN, United Kingdom
| | - Gavin Bendle
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steven Lee
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Waseem Qasim
- Molecular and Cellular Immunology Institute, Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Adrian Thrasher
- Molecular and Cellular Immunology Institute, Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Emma Morris
- Department of Immunology, University College London, Royal Free Hospital, London NW3 2PF, United Kingdom
| |
Collapse
|
32
|
Iranparast S, Assarehzadegan MA, Heike Y, Hossienzadeh M, Khodadadi A. Wilms' Tumor Gene (WT1) Expression Correlates with Vascular Epithelial Growth Factor (VEGF) in Newly Acute Leukemia Patients Undergoing Chemotherapy. Asian Pac J Cancer Prev 2014; 15:9217-23. [DOI: 10.7314/apjcp.2014.15.21.9217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Oren R, Hod-Marco M, Haus-Cohen M, Thomas S, Blat D, Duvshani N, Denkberg G, Elbaz Y, Benchetrit F, Eshhar Z, Stauss H, Reiter Y. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. THE JOURNAL OF IMMUNOLOGY 2014; 193:5733-43. [PMID: 25362181 DOI: 10.4049/jimmunol.1301769] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of Ag-specific T lymphocytes is an attractive form of immunotherapy for cancers. However, acquiring sufficient numbers of host-derived tumor-specific T lymphocytes by selection and expansion is challenging, as these cells may be rare or anergic. Using engineered T cells can overcome this difficulty. Such engineered cells can be generated using a chimeric Ag receptor based on common formats composed from Ag-recognition elements such as αβ-TCR genes with the desired specificity, or Ab variable domain fragments fused with T cell-signaling moieties. Combining these recognition elements are Abs that recognize peptide-MHC. Such TCR-like Abs mimic the fine specificity of TCRs and exhibit both the binding properties and kinetics of high-affinity Abs. In this study, we compared the functional properties of engineered T cells expressing a native low affinity αβ-TCR chains or high affinity TCR-like Ab-based CAR targeting the same specificity. We isolated high-affinity TCR-like Abs recognizing HLA-A2-WT1Db126 complexes and constructed CAR that was transduced into T cells. Comparative analysis revealed major differences in function and specificity of such CAR-T cells or native TCR toward the same antigenic complex. Whereas the native low-affinity αβ-TCR maintained potent cytotoxic activity and specificity, the high-affinity TCR-like Ab CAR exhibited reduced activity and loss of specificity. These results suggest an upper affinity threshold for TCR-based recognition to mediate effective functional outcomes of engineered T cells. The rational design of TCRs and TCR-based constructs may need to be optimized up to a given affinity threshold to achieve optimal T cell function.
Collapse
Affiliation(s)
- Ravit Oren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moran Hod-Marco
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Haus-Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sharyn Thomas
- Department of Immunology, Institute of Immunity, Infection and Transplantation, Royal Free Hospital, University College London, London NW3 2PF, United Kingdom
| | - Dan Blat
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Nerri Duvshani
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | - Yael Elbaz
- Applied Immune Technologies, Haifa 32000, Israel
| | | | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Hans Stauss
- Department of Immunology, Institute of Immunity, Infection and Transplantation, Royal Free Hospital, University College London, London NW3 2PF, United Kingdom
| | - Yoram Reiter
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
34
|
Snauwaert S, Vandekerckhove B, Kerre T. Can immunotherapy specifically target acute myeloid leukemic stem cells? Oncoimmunology 2014; 2:e22943. [PMID: 23526057 PMCID: PMC3601163 DOI: 10.4161/onci.22943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence supports the role of leukemic stem cells (LSCs) in the high relapse rate of acute myeloid leukemia (AML) patients. The clinical relevance of LSCs, which were originally characterized in xenograft models, has recently been confirmed by the finding that stem cell-like gene expression signatures can predict the clinical outcome of AML patients. The targeted elimination of LSCs might hence constitute an efficient therapeutic approach to AML. Here, we review immunotherapeutic strategies that target LSC-associated antigens, including T cell-mediated and monoclonal antibody-based regimens. Attention is given to the issue of antigen specificity because this is relevant to the therapeutic window and determines the superiority of LSC-targeting immunotherapy.
Collapse
Affiliation(s)
- Sylvia Snauwaert
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University Hospital; Ghent, Belgium
| | | | | |
Collapse
|
35
|
Xue SA, Gao L, Ahmadi M, Ghorashian S, Barros RD, Pospori C, Holler A, Wright G, Thomas S, Topp M, Morris EC, Stauss HJ. Human MHC Class I-restricted high avidity CD4 + T cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo. Oncoimmunology 2014; 2:e22590. [PMID: 23483821 PMCID: PMC3583927 DOI: 10.4161/onci.22590] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, we generated human MHC Class I-restricted CD4+ T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TCR-coding genes generated CD4+ T cells that recognized HLA-A2/peptide multimers and produced cytokines when stimulated with MHC Class II-deficient cells presenting the relevant viral peptides in the context of HLA-A2. Peptide titration revealed that CD4+ T cells had a 10-fold lower avidity than CD8+ T cells expressing the same TCR. The impaired avidity of CD4+ T cells was corrected by simultaneously transferring TCR- and CD8-coding genes. The CD8 co-receptor did not alter the cytokine signature of CD4+ T cells, which remained distinct from that of CD8+ T cells. Using the xenogeneic NOD/SCID mouse model, we demonstrated that human CD4+ T cells expressing a specific TCR and CD8 can confer efficient protection against the growth of tumors expressing the EBV or CMV antigens recognized by the TCR. In summary, we describe a robust approach for generating therapeutic CD4+ T cells capable of providing MHC Class I-restricted immunity against MHC Class II-negative tumors in vivo.
Collapse
Affiliation(s)
- Shao-An Xue
- Department of Immunology; University College London; Royal Free Hospital; London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Filatenkov A, Baker J, Müller AM, Ahn GO, Kohrt H, Dutt S, Jensen K, Dejbakhsh-Jones S, Negrin RS, Shizuru JA, Engleman EG, Strober S. Treatment of 4T1 metastatic breast cancer with combined hypofractionated irradiation and autologous T-cell infusion. Radiat Res 2014; 182:163-9. [PMID: 24992165 DOI: 10.1667/rr13471.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to determine whether a combination of local tumor irradiation and autologous T-cell transplantation can effectively treat metastatic 4T1 breast cancer in mice. BALB/c mice were injected subcutaneously with luciferase-labeled 4T1 breast tumor cells and allowed to grow for 21 days, at which time metastases appeared in the lungs. Primary tumors were treated at that time with 3 daily fractions of 20 Gy of radiation each. Although this approach could eradicate primary tumors, tumors in the lungs grew progressively. We attempted to improve efficacy of the radiation by adding autologous T-cell infusions. Accordingly, T cells were purified from the spleens of tumor-bearing mice after completion of irradiation and cryopreserved. Cyclophosphamide was administered thereafter to induce lymphodepletion, followed by T-cell infusion. Although the addition of cyclophosphamide to irradiation did not improve survival or reduce tumor progression, the combination of radiation, cyclophosphamide and autologous T-cell infusion induced durable remissions and markedly improved survival. We conclude that the combination of radiation and autologous T-cell infusion is an effective treatment for metastatic 4T1 breast cancer.
Collapse
Affiliation(s)
- Alexander Filatenkov
- a Division of Immunology and Rheumatology, Department of Medicine, Stanford University, School of Medicine, Stanford, California 94305
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014; 2014:694-708. [PMID: 24987146 DOI: 10.1101/pdb.top073585] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery of the "nude" mouse more than 40 years ago, investigators have attempted to model human tumor growth in immunodeficient mice. Here, we summarize how the field has advanced over the ensuing years owing to improvements in the murine recipients of human tumors. These improvements include the discovery of the scid mutation and development of targeted mutations in the recombination-activating genes 1 and 2 (Rag1(null), Rag2(null)) that severely cripple the adaptive immune response of the murine host. More recently, mice deficient in adaptive immunity have been crossed with mice bearing targeted mutations designed to weaken the innate immune system, ultimately leading to the development of immunodeficient mice bearing a targeted mutation in the gene encoding the interleukin 2 (IL2) receptor common γ chain (IL2rg(null), also known in humans as cytokine receptor common subunit γ). The IL2rg(null) mutation has been used to develop several immunodeficient strains of mice, including the NOD-scid IL2rg(null) (NSG) strain. Using NSG mice as human xenograft recipients, it is now possible to grow almost all types of primary human tumors in vivo, including most solid tumors and hematological malignancies that maintain characteristics of the primary tumor in the patient. Programs to optimize patient-specific therapy using patient-derived xenograft tumor growth in NSG mice have been established at several institutions, including The Jackson Laboratory. Moreover, NSG mice can be engrafted with functional human immune systems, permitting for the first time the potential to study primary human tumors in vivo in the presence of a human immune system.
Collapse
Affiliation(s)
| | | | - Fumihiko Ishikawa
- The Laboratory for Human Disease Models, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | - Dale L Greiner
- University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
38
|
Abstract
Proof-of-concept studies have demonstrated the therapeutic potential of engineered T cells. Transfer of recombinant antigen-specific T cell receptors (TCR) and chimaeric antigen receptors (CARs) against tumour and viral antigens are under investigation by multiple approaches, including viral- and nonviral-mediated gene transfer into both autologous and allogeneic T cell populations. There have been notable successes recently using viral vector-mediated transfer of CARs specific for B cell antigens, but also reports of anticipated and unanticipated complications in these and other studies. We review progress in this promising area of cellular therapy, and consider developments in antigen receptor therapies including the application of emerging gene-editing technologies.
Collapse
Affiliation(s)
- Waseem Qasim
- Molecular & Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital Trust, London, UK
| | | |
Collapse
|
39
|
Dong W, Zhang J, Shao N, Tian T, Li L, Jian J, Zang S, Ma D, Ji C. Development and immunological evaluation of HLA-specific chronic myeloid leukemia polyepitope vaccine in Chinese population. Vaccine 2014; 32:3501-8. [PMID: 24793940 DOI: 10.1016/j.vaccine.2014.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/03/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND BCR/ABL and Wilms' tumor 1 (WT1) are an ideal tumor associated antigens which can be used to develop a potential chronic myeloid leukemia (CML) dentritic cell (DC) vaccine. Here, we constructed a novel polyepitope vaccine which used recombinant lentiviral vector carrying BCR/ABL and WT1 genes, and determined the immunological effects of this vaccine in vitro. METHODS The DC vaccine was constructed using lentiviral vector transduced DCs. T lymphocytes were stimulated with DC vaccine and then co-cultured in vitro with peripheral blood mononuclear cells (PBMCs) from CML or ALL patients, respectively. The cytotoxicity of proliferous cytotoxic T lymphocytes (CTLs) was determined by the LDH assay. The IFN-γ production of CTLs was detected using ELISPOT assay. RESULTS We constructed an lentiviral vector encoding 50 different epitopes from BCR/ABL and WT1 antigens, and transferred it into DCs to prepare the DC vaccine successfully. The in vivo stimulation of CTLs with this DC vaccine were proved to show strong cytotoxicity and produce high level of IFN-γ. CONCLUSIONS The novel recombinant lentiviral polyepitope DC vaccine is a promising candidate for clinical trials and may be an effective approach for CML immunotherapy.
Collapse
Affiliation(s)
- Wenhao Dong
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Tian Tian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lu Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jimo Jian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
40
|
Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunology 2014; 3:e16. [PMID: 25505964 PMCID: PMC4232070 DOI: 10.1038/cti.2014.7] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies are emerging as highly promising approaches for the treatment of cancer. In these approaches, a variety of materials are used to boost immunity against malignant cells. A key component of many of these approaches is functional tumor-specific T cells, but the existence and activity of sufficient T cells in the immune repertoire is not always the case. Recent methods of generating tumor-specific T cells include the genetic modification of patient lymphocytes with receptors to endow them with tumor specificity. These T cells are then expanded in vitro followed by infusion of the patient in adoptive cell transfer protocols. Genes used to modify T cells include those encoding T-cell receptors and chimeric antigen receptors. In this review, we provide an introduction to the field of genetic engineering of T cells followed by details of their use against cancer in the clinic.
Collapse
Affiliation(s)
- Michael H Kershaw
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne , Melbourne, Victoria, Australia ; Department of Immunology, Monash University , Prahran, Victoria, Australia
| | - Jennifer A Westwood
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne , Melbourne, Victoria, Australia
| | - Clare Y Slaney
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne , Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne , Melbourne, Victoria, Australia ; Department of Immunology, Monash University , Prahran, Victoria, Australia
| |
Collapse
|
41
|
Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia 2014; 28:2355-66. [PMID: 24736212 DOI: 10.1038/leu.2014.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/26/2022]
Abstract
T cells have been proven to be therapeutically effective in patients with relapsed leukemias, although target antigens on leukemic cells as well as T-cell receptors (TCRs), potentially recognizing those antigens, are mostly unknown. We have applied an immunopeptidomic approach and isolated human leukocyte antigen (HLA) ligands from primary leukemia cells. We identified a number of ligands derived from different genes that are restrictedly expressed in the hematopoietic system. We exemplarily selected myeloperoxidase (MPO) as a potential target and isolated a high-avidity TCR with specificity for a HLA-B*07:02-(HLA-B7)-restricted epitope of MPO in the single HLA-mismatched setting. T cells transgenic for this TCR demonstrated high peptide and antigen specificity as well as leukemia reactivity in vitro and in vivo. In contrast, no significant on- and off-target toxicity could be observed. In conclusion, we here demonstrate, exemplarily for MPO, that leukemia-derived HLA ligands can be selected for specific effector tool development to redirect T cells to be used for graft manipulation or adoptive T-cell therapies in diverse transplant settings. This approach can be extended to other HLA ligands and HLA molecules in order to provide better treatment options for this life-threatening disease.
Collapse
|
42
|
Abstract
Treatment of acute myeloid leukemia (AML) with current chemotherapy regimens is still disappointing, with overall survival rates of ≤40% at 5 years. It is now well established that AML cells can evade the immune system through multiple mechanisms, including the expression of the enzyme indoleamine 2,3 dioxygenase. Immunotherapeutic strategies, including both active, such as vaccination with leukemia-associated antigens, and passive, such as adoptive transfer of allogeneic natural killer cells, may overcome leukemia escape and lead to improved cure. Allogeneic hemopoeitic stem cell transplantation, the most effective treatment of AML, is the best known model of immunotherapy. Following transplant, recipient AML cells are eradicated by donor immune cells through the graft-versus-leukemia (GVL) effect. However, GVL is clinically associated with graft-versus-host disease, the major cause of mortality after transplant. GVL is mediated by donor T cells recognizing either leukemia-associated antigens or minor as well as major histocompatibility antigens. Several innovative strategies have been devised to generate leukemia reactive T cells so as to increase GVL responses with no or little graft-versus-host disease.
Collapse
Affiliation(s)
- Mario Arpinati
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| | - Antonio Curti
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| |
Collapse
|
43
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
44
|
Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 2013; 4:244. [PMID: 23970885 PMCID: PMC3748443 DOI: 10.3389/fimmu.2013.00244] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional αβ T cell receptor (TCR) against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR) consisting of a single-chain antibody as an Fv fragment linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the αβ TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher-affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher-affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois , Urbana, IL , USA
| | | |
Collapse
|
45
|
Abstract
T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Collapse
Affiliation(s)
- Michael H Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. michael.kershaw@ petermac.org
| | | | | |
Collapse
|
46
|
Field AC, Vink C, Gabriel R, Al-Subki R, Schmidt M, Goulden N, Stauss H, Thrasher A, Morris E, Qasim W. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer. PLoS One 2013; 8:e68201. [PMID: 23840834 PMCID: PMC3695921 DOI: 10.1371/journal.pone.0068201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022] Open
Abstract
Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.
Collapse
Affiliation(s)
- Anne-Christine Field
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Conrad Vink
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Roua Al-Subki
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Nicholas Goulden
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Hans Stauss
- Institute of Immunity & Transplantation, Royal Free Campus University College London, London, United Kingdom
| | - Adrian Thrasher
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Emma Morris
- Institute of Immunity & Transplantation, Royal Free Campus University College London, London, United Kingdom
| | - Waseem Qasim
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Lichtenegger FS, Schnorfeil FM, Hiddemann W, Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy 2013; 5:63-78. [PMID: 23256799 DOI: 10.2217/imt.12.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prognosis of acute myeloid leukemia, particularly when associated with adverse chromosomal or molecular aberrations, is poor due to a high relapse rate after induction chemotherapy. Postremission therapy for elimination of minimal residual disease remains a major challenge. Allogeneic hematopoietic stem cell transplantation has proven to provide a potent antileukemic effect. Novel strategies are needed for patients ineligible for this treatment. Here current immunotherapeutic concepts in acute myeloid leukemia in a nonallogeneic hematopoietic stem cell transplantation setting are reviewed. Data gathered with different monoclonal antibodies are discussed. Adoptive transfer of NK and T cells is reviewed, including evolving data on T-cell engineering. Results of systemic cytokine administration and of therapeutic vaccinations with peptides, modified leukemic cells and dendritic cells are presented. One particular focus of this review is the integration of currently running clinical trials. Recent immunotherapeutic studies have been encouraging and further interesting results are to be expected.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | |
Collapse
|
48
|
Promising role of reduced-toxicity hematopoietic stem cell transplantation (PART-I). Stem Cell Rev Rep 2013; 8:1254-64. [PMID: 22836809 DOI: 10.1007/s12015-012-9401-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains a potential curative option for many patients with hematological malignancies (HM). However, the high rate of transplantation-related mortality (TRM) restricted the use of standard myeloablative HSCT to a minority of young and fit patients. Over the past few years, it has become evident that the alloreactivity of the immunocompetent donor cells mediated anti-malignancy effects independent of the action of high dose chemoradiotherapy. The use of reduced intensity conditioning (RIC) regimens has allowed a graft-versus-malignancy (GvM) effect to be exploited in patients who were previously ineligible for HSCT on the grounds of age and comorbidity. Retrospective analysis showed that RIC has been associated with lower TRM but a higher relapse rate leading to similar intermediate term overall and progression-free survivals when compared to standard myeloablative HSCT. However, the long term antitumor effect of this approach is less well established. Prospective studies are ongoing to define which patients might most benefit from reduced toxicity stem cell transplant (RT-SCT) and which transplant protocols are suitable for the different types of HM. The advent of RT-SCT permits the delivery of a potentially curative GvM effect to the majority of patients with HM whose outcome with conventional chemotherapy would be dismal. Remaining challenges include development of effective strategies to reduce relapse rates by augmenting GvM effects without increasing toxicity.
Collapse
|
49
|
Israyelyan A, La Rosa C, Tsai W, Kaltcheva T, Srivastava T, Aquino L, Li J, Kim Y, Palmer J, Streja L, Senitzer D, Zaia JA, Rosenwald A, Forman SJ, Nakamura R, Diamond DJ. Detection and preliminary characterization of CD8+T lymphocytes specific for Wilms' tumor antigen in patients with non-Hodgkin lymphoma. Leuk Lymphoma 2013; 54:2490-9. [PMID: 23480492 DOI: 10.3109/10428194.2013.783910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wilms' tumor antigen (WT1) is overexpressed in many different solid tumors and hematologic malignancies. However, little is known about WT1 expression or WT1-specific immune responses in patients with non-Hodgkin lymphoma (NHL). In a cross-sectional survey study, we investigated the immune recognition of WT1 by patients with NHL. Utilizing a WT1 overlapping peptide library, we discovered that a large percentage of patients with NHL of all grades maintain WT1-specific T cells. Ex vivo frequencies of these T cells measured from unfractionated samples by the CD137 activation marker assay were high in many patients (some > 1% CD8+). Using standard in vitro techniques we discovered that they were cytotoxic to WT1 peptide library-loaded T2 cells and WT1 antigen-primed autologous Epstein-Barr virus-transformed B cell lines (EBV-LCLs) and expressed interferon gamma (IFN-γ). In addition, we detected WT1 mRNA transcripts in diseased lymph node tissues of patients with NHL utilizing real-time quantitative polymerase chain reaction (RT-qPCR) technology. These results are the first example of strong T cell reactivity against WT1 in patients with NHL which also demonstrate strong cytotoxicity against peptide-loaded tumor cells. The potential for developing WT1 as a target for immunotherapy in NHL deserves further exploration.
Collapse
|
50
|
Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Ther 2013; 20:861-7. [PMID: 23364317 DOI: 10.1038/gt.2013.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/31/2012] [Indexed: 01/13/2023]
Abstract
T-cell receptor (TCR) gene transfer is an attractive strategy to equip T cells with defined antigen-specific TCRs using short-term in vitro procedures to target both hematological malignancies and solid tumors. TCR gene transfer poses different safety issues that might warrant the inclusion of a suicide gene. High affinity TCRs may result in on-target toxicity, and off-target reactivity directed against healthy tissue can be observed due to mixed TCR dimers. Inclusion of a suicide gene as a safety switch may abrogate these unwanted toxicities. Human CD20 has been proposed as a nonimmunogenic suicide gene targeted by widely used clinical-grade anti-CD20 antibodies that can additionally function as a selection marker. However, transduction of T cells with a multi-cistronic vector encoding both TCR and CD20 resulted in poor coexpression. In this study, we demonstrated that codon optimization of TCR and CD20 resulted in profound coexpression of both the preferentially expressed antigen in melanoma (PRAME)-TCR and CD20, allowing selective as well as efficient elimination of these engineered T cells in vitro. These results demonstrate the great potential of codon optimized CD20 to be broadly used in clinical trials as a safety switch.
Collapse
|