1
|
Galieni P, Troiani E, Picardi P, Angelini M, Mestichelli F, Dalsass A, Maravalle D, Camaioni E, Bigazzi C, Caraffa P, Ruggieri M, Mazzotta S, Mattioli S, Angelini S. Unmutated IGHV at diagnosis in patients with early stage CLL independently predicts for shorter follow-up time to first treatment (TTFT). Leuk Res 2024; 143:107541. [PMID: 38905908 DOI: 10.1016/j.leukres.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The mutational status of the IGHV gene is routinely assessed in patients with chronic lymphocytic leukaemia (CLL), since it is both prognostic of clinical outcome and predictive of response to treatment. This study evaluates the IGHV mutational status, assessed in newly diagnosed CLL patients, as a stand-alone predictor of time to first treatment (TTFT). We analysed the data of 236 CLL patients, diagnosed at our centre between January 2004 and September 2020, with a minimum follow-up period of 3.0 years, Binet A-B and Rai 0-II stages. IGHV was unmutated in 38.1 % and mutated in 61.9 % of cases. The univariate analysis showed a statistically significant difference (p < 0.001) in TTFT based on unmutated (85.2 % at 14 years, 95 % CI = 63.3-94.5 %) or mutated (41.3 % at 14 years, 95 % CI = 29.5-51.8 %) and the need for treatment at 1, 3 and 5 years was of 20.0 % vs 4.1 % (p < 0.001), 42.7 % vs 11.4 % (p < 0.001) and 55.8 % vs 20.0 % (p < 0.001) in unmutated and mutated IGHV patients, respectively. Multivariate analysis confirmed that unmutated IGHV status negatively affects TTFT (p < 0.001), in addition to high-risk genomic aberration (p = 0.025), Rai stage I (p = 0.007) and II (p-value < 0.001). The difference in TTFT based on unmutated or mutated IGHV status remains statistically significant also when considering the subgroups by the genomic aberrations and Rai stages. Our findings suggest that, with the single analysis of the IGHV mutational status at CLL diagnosis, along with clinical and laboratory data, and without karyotype and TP53 data, clinicians will have prognostic and predictive indications for the first clinical treatment and appropriate follow-up of patients.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Female
- Middle Aged
- Aged
- Mutation
- Follow-Up Studies
- Prognosis
- Adult
- Aged, 80 and over
- Immunoglobulin Heavy Chains/genetics
- Time-to-Treatment
- Immunoglobulin Variable Region/genetics
- Neoplasm Staging
- Retrospective Studies
Collapse
Affiliation(s)
- Piero Galieni
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy.
| | - Emanuela Troiani
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paola Picardi
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Mario Angelini
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Francesca Mestichelli
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Alessia Dalsass
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Denise Maravalle
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Elisa Camaioni
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Catia Bigazzi
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Patrizia Caraffa
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Miriana Ruggieri
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Serena Mazzotta
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Silvia Mattioli
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Stefano Angelini
- Department of Haematology and Stem Cell Transplantation Unit, C. e G. Mazzoni Hospital, Ascoli Piceno, Italy
| |
Collapse
|
2
|
Kamaso J, Puiggros A, Salido M, Melero C, Rodríguez-Rivera M, Gimeno E, Martínez L, Arenillas L, Calvo X, Román D, Abella E, Ramos-Campoy S, Lorenzo M, Ferrer A, Collado R, Moro-García MA, Espinet B. Complex Karyotype Detection in Chronic Lymphocytic Leukemia: A Comparison of Parallel Cytogenetic Cultures Using TPA and IL2+DSP30 from a Single Center. Cancers (Basel) 2024; 16:2258. [PMID: 38927962 PMCID: PMC11202013 DOI: 10.3390/cancers16122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Current CLL guidelines recommend a two parallel cultures assessment using TPA and IL2+DSP30 mitogens for complex karyotype (CK) detection. Studies comparing both mitogens for CK identification in the same cohort are lacking. We analyzed the global performance, CK detection, and concordance in the complexity assessment of two cytogenetic cultures from 255 CLL patients. IL2+DSP30 identified more altered karyotypes than TPA (50 vs. 39%, p = 0.031). Moreover, in 71% of those abnormal by both, IL2+DSP30 identified more abnormalities and/or abnormal metaphases. CK detection was similar for TPA and IL2+DSP30 (10% vs. 11%). However, 11/33 CKs (33%) were discordant, mainly due to the detection of a normal karyotype or no metaphases in the other culture. Patients requiring treatment within 12 months after sampling (active CLL) displayed significantly more CKs than those showing a stable disease (55% vs. 12%, p < 0.001). Disease status did not impact cultures' concordance (κ index: 0.735 and 0.754 for stable and active). Although CK was associated with shorter time to first treatment (TTFT) using both methods, IL2+DSP30 displayed better accuracy than TPA for predicting TTFT (C-index: 0.605 vs. 0.580, respectively). In summary, the analysis of two parallel cultures is the best option to detect CKs in CLL. Nonetheless, IL2+DSP30 could be prioritized above TPA to optimize cytogenetic assessment in clinical practice.
Collapse
Affiliation(s)
- Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
- Applied Clinical Research in Hematological Malignances Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Laia Martínez
- Hematology Service, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain;
| | - Leonor Arenillas
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - David Román
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eugènia Abella
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
| | - Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Lorenzo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario Valencia, 46014 Valencia, Spain;
| | | | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| |
Collapse
|
3
|
Akkari Y, Baughn LB, Kim A, Karaca E, Raca G, Shao L, Mikhail FM. Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet Med 2024; 26:101054. [PMID: 38349293 DOI: 10.1016/j.gim.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
Collapse
Affiliation(s)
- Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Annette Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Lin D, Zou Y, Li X, Wang J, Xiao Q, Gao X, Lin F, Zhang N, Jiao M, Guo Y, Teng Z, Li S, Wei Y, Zhou F, Yin R, Zhang S, Xing L, Xu W, Wu X, Yang B, Xiao K, Wu C, Tao Y, Yang X, Zhang J, Hu S, Dong S, Li X, Ye S, Hong Z, Pan Y, Yang Y, Sun H, Cao G. MGA-seq: robust identification of extrachromosomal DNA and genetic variants using multiple genetic abnormality sequencing. Genome Biol 2023; 24:247. [PMID: 37904244 PMCID: PMC10614391 DOI: 10.1186/s13059-023-03081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Genomic abnormalities are strongly associated with cancer and infertility. In this study, we develop a simple and efficient method - multiple genetic abnormality sequencing (MGA-Seq) - to simultaneously detect structural variation, copy number variation, single-nucleotide polymorphism, homogeneously staining regions, and extrachromosomal DNA (ecDNA) from a single tube. MGA-Seq directly sequences proximity-ligated genomic fragments, yielding a dataset with concurrent genome three-dimensional and whole-genome sequencing information, enabling approximate localization of genomic structural variations and facilitating breakpoint identification. Additionally, by utilizing MGA-Seq, we map focal amplification and oncogene coamplification, thus facilitating the exploration of ecDNA's transcriptional regulatory function.
Collapse
Affiliation(s)
- Da Lin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyue Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaochen Gao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Lin
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ningyuan Zhang
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ming Jiao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Guo
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaowei Teng
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shiyi Li
- Baylor College of Medicine, Houston, TX, USA
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siheng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingyu Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaofeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ke Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingfeng Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqing Yang
- Hospital of Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwei Ye
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhidan Hong
- Dapartment of Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yihang Pan
- Precision Medicine Center, Scientific Research Center, School of Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixiang Sun
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
7
|
Clonal evolution in chronic lymphocytic leukemia is associated with an unmutated IGHV status and frequently leads to a combination of loss of TP53 and TP53 mutation. Mol Biol Rep 2022; 49:12247-12252. [PMID: 36169893 DOI: 10.1007/s11033-022-07888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Chromosomal abnormalities and gene mutations determine the prognosis of patients with chronic lymphocytic leukemia (CLL). Genetic lesions can be acquired by clonal evolution (CE) likely correlating with clinical progression. METHODS AND RESULTS Samples of 169 CLL patients were analyzed for cytogenetic clonal evolution (CCE) and CE affecting the genes TP53 and SF3B1. Moreover, the mutational status of IGHV and the clinical outcome was evaluated. CCE was observed in 35% of CLL patients. The most frequently gained cytogenetic aberration was a deletion of TP53. Acquired TP53 deletion was more frequent in patients with SF3B1 mutations compared to those without (19% vs. 7%). CCE showed a tendency to occur more frequently in patients with an aberrant karyotype at first investigation than in patients with a normal karyotype. In 73% of patients with CCE (p = 0.002) and 92% of patients with CE affecting the genes TP53 and SF3B1 (p < 0.001) an unmutated IGHV status was present. CCE and CE affecting the genes TP53 and SF3B1 were significantly associated with each other (p < 0.001). In 7% of patients, CE resulted in the co-occurrence of TP53 deletion and TP53 mutation resulting in a significantly shorter overall survival. CONCLUSIONS The most frequently gained cytogenetic aberration during CCE was a deletion of TP53, which was associated with SF3B1 mutations. Moreover, CCE was associated with an unmutated IGHV status. Our results indicate the importance of re-evaluation of the TP53 status during the course of the disease to ensure correct treatment guidance.
Collapse
|
8
|
Yılmaz M, Kuru RD, Erdoğan I, Soysal T, Hacıhanefioglu S, Baykara O. Investigation of 13q14.3 deletion by cytogenetic analysis and FISH technique and miRNA-15a and miRNA-16-1 by real time PCR in chronic lymphocytic leukemia. Afr Health Sci 2022; 22:173-182. [PMID: 36910369 PMCID: PMC9993287 DOI: 10.4314/ahs.v22i3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The most frequent cytogenetic aberration is 13q14.3 deletion in Chronic Lymphocytic Leukemia (CLL). HsamiR-15a/hsa-miR-16-1 are tumor suppressor miRNAs encoded from 13q14.3 region. Objectives The aim of this study was to investigate the 13q14.3 deletion using molecular and cytogenetic techniques and association with miRNA-15a/miRNA-16-1. Materials And Methods We used peripheral blood samples of 30 CLL patients who were either induced and or non-induced with DSP30+IL-2 to determine 13q14.3 deletion by karyotyping and iFISH. Expression levels of hsa-miR-15a/miR-16-1 were measured using qRT PCR and compared with deletions. Results 13q14.3 deletion was detected in 8.6% of cases by karyotyping and in 65% by iFISH. Mosaic forms (monoallelic+biallelic) were observed in 50% of cases. Besides determining common chromosome abnormalities such as add(2)(q37), t(2;7) (p11.2;q22), del(6)(q13q21), del(6)(q25), add(9)(q21), del(11)(q23), t(11;14)(q13;q32), del(13)(q11q12), del(13)(q12q14), add(14) (q23), del(14)(q23), t(14;19)(q32;q13.1), del(15)(q23), del(17)(p12), t(18;22)(q21;q11.2), add(21)(p13) and t(17;21)(q11.2;122), we also determined t(1;13)(q32;q34), inv(2)(p25q21), del(13)(q22q32), t(14;19)(q24;q13), dup(17)(q21q23), der(21;21)(p13;p13) which have not been reported previously. Mitotic index data was found statistically significant and DSP30+IL-2 increased mitotic index by 2.5 folds. Association between decreased miR-16-1 expression and deletions was statistically significant. Conclusion We suggest that cytogenetic and iFISH analyses are complementary and use of DSP30+IL-2 is effective .in CLL. Decreased expression of hsa-miR-16-1 is remarkable.
Collapse
Affiliation(s)
- Melike Yılmaz
- Istanbul University Institute of Experimental Medical Research, Genetic Department, Istanbul, Turkey
| | - R Dilhan Kuru
- Istanbul University- Cerrahpasa, Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul, Turkey
| | - Isil Erdoğan
- Istanbul University -Cerrahpasa, Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Teoman Soysal
- Istanbul University -Cerrahpasa, Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Seniha Hacıhanefioglu
- Istanbul University- Cerrahpasa, Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul, Turkey
| | - Onur Baykara
- Istanbul University- Cerrahpasa, Cerrahpasa Medical Faculty, Medical Biology Department, Istanbul, Turkey
| |
Collapse
|
9
|
Puiggros A, Ramos-Campoy S, Kamaso J, de la Rosa M, Salido M, Melero C, Rodríguez-Rivera M, Bougeon S, Collado R, Gimeno E, García-Serra R, Alonso S, Moro-García MA, García-Malo MD, Calvo X, Arenillas L, Ferrer A, Mantere T, Hoischen A, Schoumans J, Espinet B. Optical Genome Mapping: A Promising New Tool to Assess Genomic Complexity in Chronic Lymphocytic Leukemia (CLL). Cancers (Basel) 2022; 14:cancers14143376. [PMID: 35884436 PMCID: PMC9317182 DOI: 10.3390/cancers14143376] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Novel treatments in chronic lymphocytic leukemia (CLL) have generated interest regarding the clinical impact of genomic complexity, currently assessed by chromosome banding analysis (CBA) and chromosomal microarray analysis (CMA). Optical genome mapping (OGM), a novel technique based on imaging of long DNA molecules labeled at specific sites, allows the identification of multiple cytogenetic abnormalities in a single test. We aimed to determine whether OGM is a suitable alternative to cytogenomic assessment in CLL, especially focused on genomic complexity. Cytogenomic OGM aberrations from 42 patients were compared with CBA, FISH, and CMA information. Clinical−biological characteristics and time to first treatment (TTFT) were analyzed according to the complexity detected by OGM. Globally, OGM identified 90.3% of the known alterations (279/309). Discordances were mainly found in (peri-)centromeric or telomeric regions or subclonal aberrations (<15−20%). OGM underscored additional abnormalities, providing novel structural information on known aberrations in 55% of patients. Regarding genomic complexity, the number of OGM abnormalities had better accuracy in predicting TTFT than current methods (C-index: 0.696, 0.602, 0.661 by OGM, CBA, and CMA, respectively). A cut-off of ≥10 alterations defined a complex OGM group (C-OGM, n = 12), which included 11/14 patients with ≥5 abnormalities by CBA/CMA and one patient with chromothripsis (Kappa index = 0.778; p < 0.001). Moreover, C-OGM displayed enrichment of TP53 abnormalities (58.3% vs. 3.3%, p < 0.001) and a significantly shorter TTFT (median: 2 vs. 43 months, p = 0.014). OGM is a robust technology for implementation in the routine management of CLL patients, although further studies are required to define standard genomic complexity criteria.
Collapse
Affiliation(s)
- Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: (A.P.); (B.E.)
| | - Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Mireia de la Rosa
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Sandrine Bougeon
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario, 46014 Valencia, Spain; (R.C.); (R.G.-S.)
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain;
- Applied Clinical Research in Hematological Malignances, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Rocío García-Serra
- Department of Hematology, Consorcio Hospital General Universitario, 46014 Valencia, Spain; (R.C.); (R.G.-S.)
- Research Foundation from Hospital General Universitario, 46014 Valencia, Spain
| | - Sara Alonso
- Department of Hematology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | | | | | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Leonor Arenillas
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, 6500 Nijmegen, The Netherlands; (T.M.); (A.H.)
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 Nijmegen, The Netherlands; (T.M.); (A.H.)
- Radboud Center for Infectious Diseases (RCI), Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6532 Nijmegen, The Netherlands
| | - Jacqueline Schoumans
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: (A.P.); (B.E.)
| |
Collapse
|
10
|
Ondroušková E, Bohúnová M, Závacká K, Čech P, Šmuhařová P, Boudný M, Oršulová M, Panovská A, Radová L, Doubek M, Plevová K, Jarošová M. Duplication of 8q24 in Chronic Lymphocytic Leukemia: Cytogenetic and Molecular Biologic Analysis of MYC Aberrations. Front Oncol 2022; 12:859618. [PMID: 35814434 PMCID: PMC9263084 DOI: 10.3389/fonc.2022.859618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) with cytogenetics findings, such as complex karyotype and deletions of TP53 or ATM, is associated with adverse clinical outcomes. Additional chromosomal abnormalities further stratify patients into groups with diverse prognoses. Gain of 8q24 is one of the abnormalities considered as prognostically unfavorable. In our study, we performed a FISH analysis in an initial cohort of 303 consecutive CLL patients and determined the frequency of +8q to be 6.3 %. Our analysis confirmed the association with TP53/ATM aberrations and CK, as the frequency of +8q reached 26.7 % in an extended delTP53/ATM+CK cohort. M-FISH analysis enabled the identification of partner chromosomes where the segment of the duplicated 8q arm was localized. More detailed mapping of the gained 8q region using the M-BAND method determined the smallest amplified region 8q23-8qter. We observed significantly shorter overall survival (OS; 9.0 years in +8q-positive vs. 10.6 years in +8q-negative; p=0.02) and detected slightly higher MYC mRNA/protein levels in +8q-positive vs. +8q-negative patients.
Collapse
Affiliation(s)
- Eva Ondroušková
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michaela Bohúnová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kristýna Závacká
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Patrik Čech
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Šmuhařová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Miroslav Boudný
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Martina Oršulová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Anna Panovská
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lenka Radová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Karla Plevová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Jarošová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: Marie Jarošová,
| |
Collapse
|
11
|
Li Q, Xing S, Zhang H, Mao X, Xiao M, Wang Y. IGH Translocations in Chinese Patients With Chronic Lymphocytic Leukemia: Clinicopathologic Characteristics and Genetic Profile. Front Oncol 2022; 12:858523. [PMID: 35720006 PMCID: PMC9201519 DOI: 10.3389/fonc.2022.858523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin heavy chain translocations (IGH-t) have occasionally been reported in Chinese patients with chronic lymphocytic leukemia (CLL). The objective of the present study was to identify the clinicopathologic features of patients with IGH-t CLL and compare them with those of patients with non-IGH-t CLL. We performed fluorescence in situ hybridization (FISH) based on a routine CLL prognostic FISH panel using IGH, IGH-BCL2, BCL3, IGH-CMYC, and BCL6 FISH probes. Furthermore, we retrospectively evaluated the clinical features of 138 newly diagnosed CLL patients via chromosome banding analysis (CBA), FISH, and targeted next-generation sequencing. IGH-t was identified in 25 patients (18.1%). Patients with IGH-t CLL had lower flow scores than those with non-IGH-t CLL. The most frequent translocation was t(14;18) (10 patients), followed by t(14;19) (3 patients), and t(2;14)(p13;q32), t(7;14)(q21.2;q12), t(9;14)(p13;q32) (3 patients). The remaining nine patients included three with abnormal karyotypes without translocation involving 14q32, four with a normal karyotype, and two who failed CBA. The most frequently concomitant FISH-detected aberrations were 13q deletion, followed by +12 and TP53 deletion, while one case involved ATM deletion. Complex karyotypes were detected in five patients with IGH-t CLL, in whom all partner genes were non-BCL2. Available mutational information indicated that KMT2D mutation was the most frequent mutation among tested 70 patients, while TP53 mutation was the most frequent mutation in the IGH-t group. Moreover, the IGH-t group had higher FBXW7 (P=0.014) and ATM (P=0.004) mutations than the non-IGH-t group, and this difference was statistically significant. Our study demonstrates that IGH-t is not uncommon among Chinese CLL patients, and that its partner genes are multiple. The gene mutational profile of the IGH-t group was distinct from that of the non-IGH-t group, and the concomitant chromosomal abnormalities within the IGH-t CLL group differed. Thus, identification of IGH-t and its partner genes in CLL patients may help further refine risk stratification and strengthen the accurate management in CLL patients.
Collapse
Affiliation(s)
- Qinlu Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations. Hemasphere 2022; 6:e707. [PMID: 35392482 PMCID: PMC8984316 DOI: 10.1097/hs9.0000000000000707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence underscores the clinical value of cytogenetic analysis in chronic lymphocytic leukemia (CLL), particularly as it allows the identification of complex karyotype, that has recently emerged as a prognostic and potentially predictive biomarker. That said, explicit recommendations regarding the methodology and clinical interpretation of either chromosome banding analysis (CBA) or chromosome microarray analysis (CMA) are still lacking. We herein present the consensus of the Cytogenetic Steering Scientific Committee of ERIC, the European Research Initiative on CLL, regarding methodological issues as well as clinical interpretation of CBA/CMA and discuss their relevance in CLL. ERIC considers CBA standardized and feasible for CLL on the condition that standards are met, extending from the use of novel mitogens to the accurate interpretation of the findings. On the other hand, CMA, is also standardized, however, robust data on its clinical utility are still scarce. In conclusion, cytogenetic analysis is not yet mature enough to guide treatment choices in CLL. That notwithstanding, ERIC encourages the wide application of CBA, and potentially also CMA, in clinical trials in order to obtain robust evidence regarding the predictive value of specific cytogenetic profiles towards refining risk stratification and improving the management of patients with CLL.
Collapse
|
13
|
TP53 Expression and Mutational Analysis in Hematological Malignancy in Jeddah, Saudi Arabia. Diagnostics (Basel) 2022; 12:diagnostics12030724. [PMID: 35328276 PMCID: PMC8946951 DOI: 10.3390/diagnostics12030724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor protein 53 (TP53) is a tumor-suppressor gene and plays an essential role in apoptosis, cell cycle arrest, genomic stability, and DNA repair. Although it is the most often mutated gene in human cancer, it has respectively low frequency in hematological malignancy but is significantly linked with complex karyotype, poor prognosis, and chemotherapeutic response. Nevertheless, the prevalence and prognostic role of TP53 mutations in hematological malignancy in Saudi patients are not well reported. We, therefore, aim to assess the frequency of TP53 mutations in hematological malignancies in Saudi Arabia. Method: 20 different hematological malignancy samples were tested using fluorescence in situ hybridization (FISH) technique for TP53 deletion detection and next-generation sequencing (NGS) targeted panel was applied on 10 samples for mutations identification specifically TP53 mutation. Results: TP53 deletion was detected in 6 of 20 samples by FISH. Most of the 6 patients with TP53 deletion had acute lymphoblastic leukemia (ALL), and majority of them were child. NGS result revealed one heterozygous missense mutation in exon 5 of the TP53 gene (c. G9963A, p.H175R). Conclusion: To the best of our knowledge, the TP53 mutation is novel variant, and the first time we are reporting their association with myelodysplastic syndromic individual with complex karyotype. This study recommends further analysis of genomic mutations on bigger cohorts, utilizing high throughput technologies.
Collapse
|
14
|
Chauzeix J, Pastoret C, Donaty L, Gachard N, Fest T, Feuillard J, Rizzo D. A reduced panel of eight genes (ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53) as an estimator of the tumor mutational burden in chronic lymphocytic leukemia. Int J Lab Hematol 2021; 43:683-692. [PMID: 33325634 PMCID: PMC8451785 DOI: 10.1111/ijlh.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mutational complexity or tumor mutational burden (TMB) influences the course of chronic lymphocytic leukemia (CLL). However, this information is not routinely used because TMB is usually obtained from whole genome or exome, or from large gene panel high-throughput sequencing. METHODS Here, we used the C-Harrel concordance index to determine the minimum panel of genes for which mutations predict treatment-free survival (TFS) as well as large resequencing panels. RESULTS An eight gene estimator was defined encompassing ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53. TMB estimated from either a large panel of genes or the eight gene estimator was increased in treated patients or in those with a short TFS (<2 years), unmutated IGHV gene or with an unfavorable karyotype. Being an independent prognostic parameter, any mutation in the eight gene estimator predicted a shorter TFS better than Binet stage and IGHV mutational status among patients with an apparently non-progressive disease (TFS >6 months). Strikingly, the eight gene estimator was also highly informative for patients with Binet stage A CLL or with a good prognosis karyotype. CONCLUSION These results suggest that the eight gene estimator, that is easily achievable by high-throughput resequencing, brings robust and valuable information that predicts evolution of untreated patients at diagnosis better than any other parameter.
Collapse
Affiliation(s)
- Jasmine Chauzeix
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Cédric Pastoret
- InsermMICMAC ‐ UMR_S 1236CHU RennesUniversité Rennes 1RennesFrance
| | - Lucie Donaty
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Nathalie Gachard
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - Thierry Fest
- InsermMICMAC ‐ UMR_S 1236CHU RennesUniversité Rennes 1RennesFrance
| | - Jean Feuillard
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| | - David Rizzo
- Laboratoire d'Hématologie etUMR CNRS 7276/INSERM 1262CRIBLCentre de Biologie et de Recherche en SantéCHU et Université de LimogesLimogesFrance
| |
Collapse
|
15
|
The impact of increasing karyotypic complexity and evolution on survival in CLL patients treated with ibrutinib. Blood 2021; 138:2372-2382. [PMID: 34314481 DOI: 10.1182/blood.2020010536] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Complex karyotype defined as ≥3 cytogenetic abnormalities is prognostic of survival in patients treated with ibrutinib or venetoclax in relapsed/refractory (RR) chronic lymphocytic leukemia (CLL). Recent studies re-evaluating this dichotomous variable have shown that higher numbers of cytogenetic abnormalities (i.e. ≥5) have a worse overall survival in patients treated with chemoimmunotherapy. We sought to determine if increasing karyotypic complexity, treated as a continuous variable, was prognostic of survival for patients treated with ibrutinib for CLL. We conducted a retrospective analysis of all patients with CLL treated with single-agent ibrutinib or in combination with an anti-CD20 antibody at our institution. We included 456 patients with both treatment-naïve (TN) and RR disease. Median number of prior therapies was 2 (range 0-13), 30% of patients had del(17p), and 75% were IGHV unmutated. 50% had ≥3 cytogenetic abnormalities including 30% with ≥5. In a multivariable analysis, increasing karyotypic complexity was an independent predictor of shorter progression-free survival (HR 1.07 (95% CI 1.04-1.10), p<0.0001) and overall survival (HR 1.09 (95% CI 1.05-1.12), p<0.0001). Furthermore, we found that presence of clonal evolution determined by cytogenetic analysis at progression was prognostic of subsequent survival (p=0.02). This solidifies karyotypic complexity as an important prognostic factor for CLL patients treated with ibrutinib. Further research should consider sequential karyotypic analysis as a determination of risk of progression and death in patients with CLL.
Collapse
|
16
|
Heerema NA, Muthusamy N, Zhao Q, Ruppert AS, Breidenbach H, Andritsos LA, Grever MR, Maddocks KJ, Woyach J, Awan F, Long M, Gordon A, Coombes C, Byrd JC. Prognostic significance of translocations in the presence of mutated IGHV and of cytogenetic complexity at diagnosis of chronic lymphocytic leukemia. Haematologica 2021; 106:1608-1615. [PMID: 32414849 PMCID: PMC8168513 DOI: 10.3324/haematol.2018.212571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/08/2020] [Indexed: 11/09/2022] Open
Abstract
Mutations of the IGH variable region in patients with chronic lymphocytic leukemia (CLL) are associated with a favorable prognosis. Cytogenetic complexity (>3 unrelated aberrations) and translocations have been associated with an unfavorable prognosis. While mutational status of IGHV is stable, cytogenetic aberrations frequently evolve. However, the relationships of these features as prognosticators at diagnosis are unknown. We examined the CpG-stimulated metaphase cytogenetic features detected within one year of diagnosis of CLL and correlated these features with outcome and other clinical features including IGHV. Of 329 untreated patients, 53 (16.1%) had a complex karyotype (16.1%), and 85 (25.8%) had a translocation. Median time to first treatment (TFT) was 47 months. In univariable analyses, significant risk factors for shorter TFT (p3.5, log-transformed WBC, unmutated IGHV, complex karyotype, translocation, and FISH for trisomy 8, del(11q) and del(17p). In multivariable analysis, there was significant effect modification of IGHV status on the relationship between translocation and TFT (p=0.002). In IGHV mutated patients, those with a translocation had over 3.5 times higher risk of starting treatment than those without a translocation (p.
Collapse
Affiliation(s)
- Nyla A. Heerema
- Department of Pathology, The Ohio State University Wexner Medical Center
| | - Natarajan Muthusamy
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qiuhong Zhao
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amy S. Ruppert
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Leslie A. Andritsos
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael R. Grever
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kami J. Maddocks
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jennifer Woyach
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Farrukh Awan
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Meixiao Long
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amber Gordon
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Caitlin Coombes
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John C. Byrd
- Department of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
17
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by extreme genomic heterogeneity. Numerous recurrent genetic abnormalities are associated with dismal clinical outcome in patients treated with chemo(immuno)therapy, with aberrations of the TP53 gene being the main genomic abnormalities that dictate treatment choice. In the era of novel agents the predictive significance of the genomic aberrations is highly challenged as the results of the clinical trials performed thus far question the previously established unfavorable impact of genomic aberrations, even that of the TP53 gene. The prognostic and predictive value of the most common genomic abnormalities is discussed in the present review.
Collapse
|
18
|
Jondreville L, Krzisch D, Chapiro E, Nguyen‐Khac F. The complex karyotype and chronic lymphocytic leukemia: prognostic value and diagnostic recommendations. Am J Hematol 2020; 95:1361-1367. [PMID: 32777106 DOI: 10.1002/ajh.25956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal abnormalities are frequently observed in patients with chronic lymphocytic leukemia (CLL) and have prognostic value. Deletions of the short arm of chromosome 17 (and/or mutations TP53) predict resistance to chemoimmunotherapy and shorter progression-free survival after targeted therapies. Although the complex karyotype (CK) is strongly predictive of a poor prognosis in hematologic malignancies such acute myeloid leukemia or myelodysplastic syndrome, its value in CLL is subject to debate. Here, we review the literature on the CK in CLL and examine its prognostic value with different treatments. We also propose a standardized method for defining a CK in all types of hematopoietic neoplasm.
Collapse
Affiliation(s)
- Ludovic Jondreville
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
| | - Daphné Krzisch
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
| | - Elise Chapiro
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
- Service dʼHématologie Biologique Sorbonne Université, Hôpital Pitié‐Salpêtrière, APHP Paris France
| | - Florence Nguyen‐Khac
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
- Service dʼHématologie Biologique Sorbonne Université, Hôpital Pitié‐Salpêtrière, APHP Paris France
| |
Collapse
|
19
|
Morabito F, Gentile M, Monti P, Recchia AG, Menichini P, Skafi M, Atrash M, De Luca G, Bossio S, Al-Janazreh H, Galimberti S, Salah Z, Morabito L, Mujahed A, Hindiyeh M, Dono M, Fais F, Cutrona G, Neri A, Tripepi G, Fronza G, Ferrarini M. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opin Investig Drugs 2020; 29:869-880. [PMID: 32551999 DOI: 10.1080/13543784.2020.1783239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Patients with TP53 dysfunction, assessed by del(17p) or TP53 mutations, respond poorly to chemo-immunotherapy and fare better with the new therapies (BCR and BCL-2 inhibitors); however, it is unclear whether their response is similar to that of patients without anomalies or whether there is currently an adequate determination of TP53 dysfunction. AREA COVERED A literature search was undertaken on clinical trials and real-world experience data on patients with TP53 dysfunction treated with different protocols. Moreover, data on the TP53 biological function and on the tests currently employed for its assessment were reviewed. EXPERT OPINION Although TP53 dysfunction has less negative influence on the new biological therapies, patients with these alterations, particularly those with biallelic inactivation of TP53, have a worst outcome with these therapies than those without alterations. At present, a determination of TP53, particularly with next generation sequencing (NGS) methodologies, may be sufficient for the identifications of the patients unsuitable for chemo-immunotherapy, although integration with del(17p) would be advisable. For the future, more extensive determinations of the TP53 status, including functional assays, may become part of the current armamentarium for a better patient stratification and treatment with newer protocols.
Collapse
Affiliation(s)
- Fortunato Morabito
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel.,Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Massimo Gentile
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy.,Hematology Unit, Hematology and Oncology Department , Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | | | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Mamdouh Skafi
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Moien Atrash
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Sabrina Bossio
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Hamdi Al-Janazreh
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | | | - Zaidoun Salah
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School , Jerusalem, Israel
| | - Lucio Morabito
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Alham Mujahed
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Musa Hindiyeh
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy.,Department of Experimental Medicine, University of Genoa , Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan, Italy
| | | | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa , Genoa, Italy
| |
Collapse
|
20
|
Liu HF, Huang HW, Bai SX, Gong YL, Wu CX, Jin ZM, Wang YY, Yang Q, Zhang J, Qiu HY, Chen SN, Pan JL. [Chromosomal aberrations detection in chronic lymphocytic leukemia by conventional cytogenetics using DSP30 and IL-2]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:143-148. [PMID: 32135632 PMCID: PMC7357944 DOI: 10.3760/cma.j.issn.0253-2727.2020.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Objective: To study the value of unmethylated cytosine guanine dinucleotide oligodeoxynucleotide (DSP30) and IL-2 in the conventional cytogenetic (CA) detection of the chromosomal aberrations in chronic lymphocytic leukemia (CLL) . Methods: Bone marrow or peripheral blood cells of CLL patients were cultured with DSP30 plus IL-2 for 72 h, following which R-banding analysis was conducted. Fluorescence in situ hybridization (FISH) was performed in 85 patients. CA results were compared with data obtained by FISH. Results: Among 89 CLL patients, the success rate of chromosome analysis was 94.38% (84/89) . Clonal aberrations were detected in 51 patients (51/84, 60.71%) . Of them, 27 (27/51, 52.94%) were complex karyotype. Among 85 CLL patients tested by FISH, chromosomal abnormalities were detected in 74 (74/85, 87.06%) patients, of which 2 (2/74) patients were complex karyotypes, accounting for 2.70%. Of the 85 CLL patients examined by FISH, 50 had abnormal karyotype analysis, 30 had normal karyotype, 5 failed to have chromosome analysis. Among them, 25 cases showed clonal aberrations by FISH assay but normal by CA, and 4 cases were normal by FISH but displayed aberrations in chromosome analysis, and totally 78 (91.76%) cases with abnormality detected by the combination of the two methods. The frequency of 13q- abnormality detected by FISH was significantly higher than that by CA analysis (69.41%vs 16.67%, P<0.001) , while the frequency of 11q-,+12 and 17p- detected by two methods showed no significant difference (P>0.05) . The detection rate of complex abnormalities in conventional karyotype analysis was higher than that in FISH (50.98%vs 2.70%) . In addition, 11 low-risk and 9 intermediate-risk patients according to FISH results showed complex karyotype by cytogenetics, and were classified into high-risk cytogenetic subgroup. Conclusion: DSP30 and IL-2 are effective in improving the detection rate of CA in CLL patients (60.71%) and CA is more effective to detect complex karyotype. However, FISH had a higher overall abnormality detection rate (87.06%) than CA, especially for 13q-. The combination of CA and FISH not only enhanced the detection rate of clonal aberrations to 91.76%, but also provided more precise prognosis stratification for CLL patients, thus to provide more information for clinical implication.
Collapse
Affiliation(s)
- H F Liu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hu B, Patel KP, Chen HC, Wang X, Luthra R, Routbort MJ, Kanagal-Shamanna R, Medeiros LJ, Yin CC, Zuo Z, Ok CY, Loghavi S, Tang G, Tambaro FP, Thompson P, Burger J, Jain N, Ferrajoli A, Bose P, Estrov Z, Keating M, Wierda WG. Association of gene mutations with time-to-first treatment in 384 treatment-naive chronic lymphocytic leukaemia patients. Br J Haematol 2019; 187:307-318. [PMID: 31243771 DOI: 10.1111/bjh.16042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023]
Abstract
This study correlated somatic mutation results and known prognostic factors with time-to-first treatment (TTFT) in 384 treatment-naïve (TN) chronic lymphocytic leukaemia (CLL) patients to help determine disease-specific drivers of early untreated CLL. CLL DNA from either peripheral blood or bone marrow underwent next generation targeted sequencing with a 29-gene panel. Gene mutation data and concurrent clinical characteristics, such as Rai/Binet stage, fluorescence in situ hybridisation (FISH), ZAP70/CD38, karyotype and IGHV mutation, status were analysed in univariable and multivariable analyses to identify associations with TTFT. TTFT was defined as time from diagnosis to initial treatment. In univariable analyses, mutated ATM (P < 0·001), NOTCH1 (P < 0·001) and SF3B1 (P = 0·002) as well as unmutated IGHV (P < 0·001), del(11q) (P < 0·001) and trisomy 12 (P < 0·001) by hierarchal FISH and advanced Rai (P = 0·05) and Binet (P < 0·001) stages were associated with shorter TTFT. Importantly, del(17p), mutated TP53 and complex karyotype were not associated with shorter TTFT. In a reduced multivariable analysis, mutated ATM (P < 0·001) and unmutated IGHV status (P < 0·001) remained significant, showing their importance in early leukaemogenesis. High-risk prognostic markers such as del(17p), mutated TP53 and complex karyotype, were not correlated with TTFT, suggesting that these abnormalities have limited roles in early disease progression but are more important in relapsed CLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease-Free Survival
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Boyu Hu
- Division of Hematology/Hematologic Malignancies, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hsiang-Chun Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Y Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Philip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Senouci A, Smol T, Tricot S, Bakala J, Moulessehoul S, Quilichini B, Penther D, Herbaux C, Daudignon A. Cytogenetic landscape in 1012 newly diagnosed chronic lymphocytic leukemia. Eur J Haematol 2019; 103:607-613. [PMID: 31512291 DOI: 10.1111/ejh.13329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) stratification mainly relies on FISH markers according to Döhner's hierarchical model which includes high-risk FISH markers, intermediate FISH, or low-risk FISH. Recently, complex karyotype (CK) has been demonstrated as an independent negative prognostic factor in CLL. METHODS A series of 1012 untreated CLL patients have been investigated with both FISH and chromosome banding analysis (CBA) on the same pellet obtained from interleukin IL-2-CPG DSP30 oligonucleotide-stimulated cultured cells. RESULTS Combining both FISH and CBA has led to refine prognostic categories with identification of 30% of CK in low-risk and intermediate FISH group. This raises the issue of switching them to a high-risk group. While this series confirmed the significant association between CK and high-risk FISH (P = .003), 33% of CK present no ATM or TP53 deletion. Three groups characterized by significant association between FISH markers and CBA have emerged: CK with TP53 loss and monosomy 15; CK with ATM loss and 14q32 translocation; and CK without ATM or TP53 losses but trisomies 12, 18, and 19 or t(14;18)(q32;q21). CONCLUSION We have observed that in addition to FISH analysis, the CBA allows detection of many abnormalities with potential impact on patient follow-up and treatment, mainly CK.
Collapse
Affiliation(s)
- Amel Senouci
- Laboratoire de Bio-toxicologie, Université de Sidi Bel Abbès, Sidi Bel Abbès, Algeria
| | - Thomas Smol
- Institut de Génétique Médicale, CHU de Lille, Lille, France
| | - Sabine Tricot
- Service d'Hématologie Clinique, CH de Valenciennes, Valenciennes, France
| | - Jania Bakala
- Service d'Hématologie Clinique, CH de Lens, Lens, France
| | - Soraya Moulessehoul
- Laboratoire de Bio-toxicologie, Université de Sidi Bel Abbès, Sidi Bel Abbès, Algeria
| | | | - Dominique Penther
- Service de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | | | | |
Collapse
|
23
|
Complex karyotype as a predictor of high-risk chronic lymphocytic leukemia: A single center experience over 12 years. Leuk Res 2019; 85:106218. [PMID: 31476701 DOI: 10.1016/j.leukres.2019.106218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A complex karyotype (CK) is considered a poor prognostic marker in chronic lymphocytic leukemia (CLL). METHODS The study analyzed 644 untreated CLL patients (pts) using conventional/molecular cytogenetics to reveal the presence of a CK and its composition and to assess its predictive value. The mutational status ofTP53 was detected by next generation sequencing. RESULTS A CK was detected in 79 pts (12.3%). Patients with a CK showed shorter overall survival (OS) compared to those without a CK (77 months vs. 115 months, p < 0.0001). Chromosomes most frequently included in a CK were 13, 11, 17, 8, 2, and 6. The most common aberrations in a CK were translocations, numerical changes and dicentric chromosomes (with no effect on OS). Patients with aberrations ofTP53 and ATM were shown to have adverse prognosis comparable to patients with a CK without these abnormalities. A stronger impact of a CK on OS of female and older CLL patients was observed. CONCLUSIONS The determining of the presence of a CK is essential in modern clinical CLL practice. According to recent studies, the presence of a CK affects clinical and treatment decision-making.
Collapse
|
24
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019; 33:1851-1867. [PMID: 30696948 PMCID: PMC6756035 DOI: 10.1038/s41375-019-0378-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Collapse
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University medical center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca,Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Prague Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
25
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol 2019; 186:668-684. [DOI: 10.1111/bjh.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyle Crassini
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - William S. Stevenson
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - Stephen P. Mulligan
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| | - O. Giles Best
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| |
Collapse
|
26
|
Culture and Harvest of CpG-Stimulated Peripheral Blood or Bone Marrow in Chronic Lymphocytic Leukemia. Methods Mol Biol 2019; 1881:27-34. [PMID: 30350195 DOI: 10.1007/978-1-4939-8876-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Chromosome analysis of chronic lymphocytic leukemia (CLL) is an important clinical tool for evaluating prognosis and disease progression. Visualizing chromosomes microscopically using traditional cytogenetic techniques requires dividing cells to be arrested during metaphase. The major challenge for performing this analysis on CLL samples is stimulating the cells to divide in culture. Stimulation of CLL cells with CpG oligodeoxynucleotides has improved our ability to perform chromosome analysis for this leukemia. This protocol should help the reader successfully culture CLL samples for clinical chromosome analysis.
Collapse
|
27
|
Kostopoulou F, Gabillaud C, Chapiro E, Grange B, Tran J, Bouzy S, Degaud M, Ghamlouch H, Le Garff-Tavernier M, Maloum K, Choquet S, Leblond V, Gabarre J, Lavaud A, Morel V, Roos-Weil D, Uzunov M, Guieze R, Bernard OA, Susin SA, Tournilhac O, Nguyen-Khac F. Gain of the short arm of chromosome 2 (2p gain) has a significant role in drug-resistant chronic lymphocytic leukemia. Cancer Med 2019; 8:3131-3141. [PMID: 31066214 PMCID: PMC6558483 DOI: 10.1002/cam4.2123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
The different types of drug resistance encountered in chronic lymphocytic leukemia (CLL) cannot be fully accounted for by the 17p deletion (and/or TP53 mutation), a complex karyotype (CK), immunoglobulin heavy‐chain variable region genes (IGHV) status and gene mutations. Hence, we sought to assess the associations between recurrent genomic abnormalities in CLL and the disease's development and outcome. To this end, we analyzed 64 samples from patients with CLL and gain of the short arm of chromosome 2 (2p+), which is frequent in late‐stage and relapsed/refractory CLL. We found that fludarabine/cyclophosphamide/rituximab (a common first‐line treatment in CLL) is not effective in removing the 2p+ clone ‐ even in samples lacking a CK, the 17p deletion or unmutated IGHV. Our results suggest strongly that patients with CLL should be screened for 2p+ (using karyotyping and fluorescence in situ hybridization) before a treatment option is chosen. Longer follow‐up is now required to evaluate bendamustine‐rituximab, ibrutinib, and idelalisib‐rituximab treatments.
Collapse
Affiliation(s)
- Fotini Kostopoulou
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,Molecular Diagnostics Laboratory, KARYO Ltd, Thessaloniki, Greece
| | - Clementine Gabillaud
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Elise Chapiro
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Beatrice Grange
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Julie Tran
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Simon Bouzy
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Michael Degaud
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Hussein Ghamlouch
- Gustave Roussy, INSERM U1170, Université Paris-Saclay, Villejuif, France
| | - Magali Le Garff-Tavernier
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Sylvain Choquet
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Veronique Leblond
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Jean Gabarre
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Anne Lavaud
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Veronique Morel
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Damien Roos-Weil
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Madalina Uzunov
- Service d'Hématologie Clinique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Romain Guieze
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier A Bernard
- Gustave Roussy, INSERM U1170, Université Paris-Saclay, Villejuif, France
| | - Santos A Susin
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Olivier Tournilhac
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | | |
Collapse
|
28
|
Hu B, Patel KP, Chen H, Wang X, Wang F, Luthra R, Routbort MJ, Kanagal‐Shamanna R, Medeiros LJ, Yin CC, Zuo Z, Ok CY, Loghavi S, Tang G, Tambaro FP, Thompson P, Burger J, Jain N, Ferrajoli A, Bose P, Estrov Z, Keating MJ, Wierda WG. Routine sequencing inCLLhas prognostic implications and provides new insight into pathogenesis and targeted treatments. Br J Haematol 2019; 185:852-864. [DOI: 10.1111/bjh.15877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Boyu Hu
- Division of Hematology and Hematologic Malignancies Huntsman Cancer Institute/University of Utah Salt Lake City UT USA
| | - Keyur P. Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Hsiang‐Chun Chen
- Department of Biostatistics the University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xuemei Wang
- Department of Biostatistics the University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Feng Wang
- Department of Genomic Medicine the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Mark J. Routbort
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | - Leonard J. Medeiros
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Cheng C. Yin
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Zhuang Zuo
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Chi Y. Ok
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Sanam Loghavi
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Guilin Tang
- Department of Hematopathology The University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | - Philip Thompson
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Jan Burger
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Nitin Jain
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Alessandra Ferrajoli
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Prithviraj Bose
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Zeev Estrov
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - Michael J. Keating
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| | - William G. Wierda
- Department of Leukemia the University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
29
|
Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood 2019; 133:1205-1216. [PMID: 30602617 DOI: 10.1182/blood-2018-09-873083] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.
Collapse
|
30
|
De Paoli E, Bandiera L, Ravano E, Cesana C, Grillo G, Mancini V, De Canal G, Bonoldi E, Soriani S. A double-hit High-grade B-cell lymphoma with three-way translocation t(3;8;14)(q27;q24;q32) involving BCL6, MYC, and IGH. Clin Case Rep 2018; 6:2411-2415. [PMID: 30564339 PMCID: PMC6293148 DOI: 10.1002/ccr3.1871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022] Open
Abstract
We describe an High-grade B-cell lymphoma case, in which a complex translocation t(3;8;14) with effects on the genes BCL6, MYC, and IGH, was detected. This case could be the first double-hit lymphoma with a single chromosome rearrangement causing the double effect with three genes involved.
Collapse
Affiliation(s)
- Elena De Paoli
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Laura Bandiera
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Emanuele Ravano
- Division of HematologyASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Clara Cesana
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Giovanni Grillo
- Division of HematologyASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Valentina Mancini
- Division of HematologyASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Gabriella De Canal
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Emanuela Bonoldi
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | - Silvia Soriani
- Department of Laboratory MedicineASST Grande Ospedale Metropolitano NiguardaMilanItaly
| |
Collapse
|
31
|
Analysis of Common Abnormalities Seen in Chronic Lymphocytic Leukemia Using Fluorescence In Situ Hybridization. Methods Mol Biol 2018. [PMID: 30350196 DOI: 10.1007/978-1-4939-8876-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since fluorescence in situ hybridization (FISH) was used to define a prognostic heierarchy for chronic lymphocytic leukemia (CLL) in 2000, the method has been employed widely in cytogenetics laboratories worldwide. This chapter describes techniques and trouble-shooting to maximize the efficiency of microscope slide preparation for FISH analysis in CLL.
Collapse
|
32
|
Vetro C, Haferlach T, Jeromin S, Stengel A, Zenger M, Nadarajah N, Baer C, Weissmann S, Kern W, Meggendorfer M, Haferlach C. Identification of prognostic parameters in CLL with no abnormalities detected by chromosome banding and FISH analyses. Br J Haematol 2018; 183:47-59. [PMID: 30022491 DOI: 10.1111/bjh.15498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
Chronic Lymphocytic Leukaemia (CLL) is a heterogeneous disease with a clinical course dependent on cytogenetic features. However, in 15-20% of cases both chromosome banding and fluorescence in situ hybridisation analyses do not show any kind of abnormality. With the aim to identify dependable molecular prognostic factors in this subgroup, we performed a comprehensive analysis on 171 patients including genomic arrays (comparative genomic hybridisation and single nucleotide polymorphism), immunoglobulin heavy chain variable region genes (IGHV) status, flow cytometry and targeted sequencing. Genomic arrays detected 73 aberrations in 39 patients (23%). Most frequently, patients had 1 aberration (25/171; 15%), while 14 patients (8%) had at least 2 aberrations. IGHV status was unmutated in 53/171 (31%) patients. SF3B1 was the most frequently mutated gene (26/171 patients; 15%), followed by NOTCH1 (15/171; 9%). At univariate analysis, an adverse impact on time to treatment (TTT) was evident for SF3B1 mutations, higher white blood cell count, higher CLL cells percentage by flow cytometry, CD38 positivity, IGHV unmutated status and at least 2 genomic array abnormalities. Of these, SF3B1 mutations, CLL cells percentage, IGHV unmutated status and number of genomic array aberrations maintained their impact in multivariate analysis. In conclusion, by integrating genomic and molecular data, we identified patients at higher risk for treatment need.
Collapse
Affiliation(s)
| | | | | | - Anna Stengel
- MLL Munich Leukaemia Laboratory, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Crassini K, Pyke T, Shen Y, Stevenson WS, Christopherson RI, Mulligan SP, Best OG. Inhibition of the Raf-1 kinase inhibitory protein (RKIP) by locostatin induces cell death and reduces the CXCR4-mediated migration of chronic lymphocytic leukemia cells. Leuk Lymphoma 2018; 59:2917-2928. [PMID: 29911936 DOI: 10.1080/10428194.2018.1455974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Raf-1 kinase inhibitory protein (RKIP) is an important regulatory element in multiple signaling pathways, including MAPK-ERK1/2. We investigated whether targeted disruption of RKIP is a therapeutic option for chronic lymphocytic leukemia (CLL). The RKIP inhibitor locostatin-induced apoptosis of CLL cells, irrespective of poor prognostic indications or treatment history. Locostatin down-regulated MAPK-ERK1/2 and AKT phosphorylation, decreased expression of the chemokine receptor CXCR4 (p = .04) and reduced the migratory capacity of CLL cells toward stroma-derived factor 1α (SDF-1α, p = .02). Immuno-blotting and immuno-precipitation showed that RKIP is constitutively phosphorylated and highly expressed in CLL cells and that the actions of locostatin may be mediated by binding of G-protein receptor kinase-2 (GRK2) to MEK1 and AKT. Collectively, our data suggest that inhibition of RKIP may be effective against CLL, reducing the survival and migratory capacity of the leukemic cells through down-regulation of MAPK-ERK1/2 and AKT-mediated signaling.
Collapse
Affiliation(s)
- Kyle Crassini
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | - Tahni Pyke
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | - Yandong Shen
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| | - William S Stevenson
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | | | - Stephen P Mulligan
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| | - Oliver Giles Best
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| |
Collapse
|
34
|
Autore F, Strati P, Laurenti L, Ferrajoli A. Morphological, immunophenotypic, and genetic features of chronic lymphocytic leukemia with trisomy 12: a comprehensive review. Haematologica 2018; 103:931-938. [PMID: 29748447 PMCID: PMC6058775 DOI: 10.3324/haematol.2017.186684] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia is an extremely heterogeneous disease and prognostic factors such as chromosomal abnormalities are important predictors of time to first treatment and survival. Trisomy 12 is the second most frequent aberration detected by fluorescence in situ hybridization at the time of diagnosis (10-25%), and it confers an intermediate prognostic risk, with a median time to first treatment of 33 months and a median overall survival of 114 months. Here, we review the unique morphological, immunophenotypic, and genetic characteristics of patients with chronic lymphocytic leukemia and trisomy 12. These patients carry a significantly higher expression of CD19, CD22, CD20, CD79b, CD24, CD27, CD38, CD49d, sIgM, sIgk, and sIgλ and lower expression of CD43 compared with patients with normal karyotype. Circulating cells show increased expression of the integrins CD11b, CD18, CD29, and ITGB7, and of the adhesion molecule CD323. Patients with chronic lymphocytic leukemia and trisomy 12 frequently have unmutated IGHV, ZAP-70 positivity, and closely homologous stereotyped B-cell receptors. They rarely show TP53 mutations but frequently have NOTCH1 mutations, which can be identified in up to 40% of those with a rapidly progressive clinical course.
Collapse
MESH Headings
- Biomarkers
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 12
- Combined Modality Therapy
- Genetic Association Studies
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunophenotyping/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Pancytopenia/pathology
- Phenotype
- Prognosis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Treatment Outcome
- Trisomy
Collapse
Affiliation(s)
- Francesco Autore
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Strati
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Laurenti
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Rigolin GM, Formigaro L, Cavallari M, Quaglia FM, Lista E, Urso A, Guardalben E, Martinelli S, Saccenti E, Bassi C, Lupini L, Bardi MA, Volta E, Tammiso E, Melandri A, Negrini M, Cavazzini F, Cuneo A. An extensive molecular cytogenetic characterization in high-risk chronic lymphocytic leukemia identifies karyotype aberrations and TP53 disruption as predictors of outcome and chemorefractoriness. Oncotarget 2018; 8:28008-28020. [PMID: 28427204 PMCID: PMC5438626 DOI: 10.18632/oncotarget.15883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients. Mutations were detected in 56 cases and were associated with unmutated IGHV status (p = 0.040) and complex karyotype (p = 0.047). TP53 disruption (i.e. TP53 mutations and/or 17p13 deletion by FISH) correlated with the presence of ≥ 2 mutations (p = 0.001) and a complex karyotype (p = 0.012). By multivariate analysis, an advanced Binet stage (p < 0.001) and an unfavorable karyotype (p = 0.001) predicted a shorter time to first treatment. TP53 disruption (p = 0.019) and the unfavorable karyotype (p = 0.028) predicted a worse overall survival. A shorter time to chemorefractoriness was associated with TP53 disruption (p = 0.001) and unfavorable karyotype (p = 0.025). Patients with both unfavorable karyotype and TP53 disruption presented a dismal outcome (median overall survival and time to chemorefractoriness of 28.7 and 15.0 months, respectively). In conclusion, karyotype analysis refines risk stratification in high-risk CLL patients and could identify a subset of patients with highly unfavorable outcome requiring alternative treatments.
Collapse
Affiliation(s)
- Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Luca Formigaro
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Maria Quaglia
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Enrico Lista
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Urso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Emanuele Guardalben
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Sara Martinelli
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria Antonella Bardi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Eleonora Volta
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Tammiso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Aurora Melandri
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Abur Ü, Oğur G, Akar ÖS, Altundağ E, Aymelek HS, Özatlı D, Turgut M. Impact of Fluorescent In Situ Hybridization Aberrations and CLLU1 Expression on the Prognosis of Chronic Lymphocytic Leukemia: Presentation of 156 Patients from Turkey. Turk J Haematol 2018; 35:61-65. [PMID: 29129824 PMCID: PMC5843776 DOI: 10.4274/tjh.2017.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE This study evaluates the impact of CLLU1 expression and fluorescent in situ hybridization (FISH) analysis of a group of Turkish chronic lymphocytic leukemia (CLL) patients. MATERIALS AND METHODS A total of 156 CLL patients were analyzed by FISH method; 47 of them were also evaluated for CLLU1 expression. Results were correlated with clinical parameters. RESULTS FISH aberrations were found in 62% of patients. These aberrations were del13q14 (67%), trisomy 12 (27%), del11q22 (19%), del17p (8%), and 14q32 rearrangements (20%). Overall del11q22 and del17p were associated with the highest mortality rates, shortest overall survival (OS), and highest need for medication. Homozygous del13q14, 14q32 rearrangements, and higher CLLU1 expression correlated with shorter OS. CONCLUSION Cytogenetics/FISH analysis is still indicated for routine evaluation of CLL. Special consideration is needed for the poor prognostic implications of del11q22, del17p, 14q32 rearrangements, and homozygous del13q14. The impact of CLLU1 expression is not yet clear and it requires more data before becoming routine in genetic testing in CLL patients.
Collapse
Affiliation(s)
- Ümmet Abur
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Genetics, Samsun, Turkey
| | - Gönül Oğur
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Genetics, Samsun, Turkey
| | - Ömer Salih Akar
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Genetics, Samsun, Turkey
| | - Engin Altundağ
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Genetics, Samsun, Turkey
| | - Huri Sema Aymelek
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Genetics, Samsun, Turkey
| | - Düzgün Özatlı
- Ondokuz Mayıs University Faculty of Medicine, Department of Hematology, Samsun, Turkey
| | - Mehmet Turgut
- Ondokuz Mayıs University Faculty of Medicine, Department of Hematology, Samsun, Turkey
| |
Collapse
|
37
|
Dun KA, Riley LA, Diano G, Adams LB, Chiu E, Sharma A. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden. Genes Chromosomes Cancer 2018; 57:260-267. [PMID: 29349871 DOI: 10.1002/gcc.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/11/2022] Open
Abstract
Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease.
Collapse
Affiliation(s)
- Karen A Dun
- Cytogenetics Laboratory, Royal Hobart Hospital, Tasmania, Australia
| | - Louise A Riley
- Cytogenetics Laboratory, Royal Hobart Hospital, Tasmania, Australia
| | - Giuseppe Diano
- Cytogenetics Laboratory, Royal Hobart Hospital, Tasmania, Australia
| | - Leanne B Adams
- Cytogenetics Laboratory, Royal Hobart Hospital, Tasmania, Australia
| | - Eleanor Chiu
- Cytogenetics Laboratory, Royal Hobart Hospital, Tasmania, Australia
| | - Archna Sharma
- Department of Haematology, Royal Hobart Hospital, Tasmania, Australia
| |
Collapse
|
38
|
Gassner FJ, Schubert M, Rebhandl S, Spandl K, Zaborsky N, Catakovic K, Blaimer S, Hebenstreit D, Greil R, Geisberger R. Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia. Mol Cancer Res 2017; 16:428-438. [PMID: 29222170 DOI: 10.1158/1541-7786.mcr-17-0373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Cancer is a genetic disease caused by mutations and chromosomal abnormalities that contribute to uncontrolled cell growth. In addition, cancer cells can rapidly respond to conventional and targeted therapies by accumulating novel and often specific genetic lesions leading to acquired drug resistance and relapsing disease. In chronic lymphocytic leukemia (CLL), however, diverse chromosomal aberrations often occur. In many cases, improper repair of DNA double-strand breaks (DSB) is a major source for genomic abnormalities. Therefore, this study examined the repair of DNA DSBs by nonhomologous end joining (NHEJ) in CLL by performing plasmid-based repair assays in primary CLL cells and normal B cells, isolated from patients, as well as TALEN/Cas9-induced chromosomal deletions in the CLL cell line Mec1. It is demonstrated that DNA repair is aberrant in CLL cells, featuring perturbed DNA break structure preference with efficient joining of noncohesive ends and more deletions at repair junctions. In addition, increased microhomology-mediated end joining (MMEJ) of DNA substrates was observed in CLL together with increased expression of MMEJ-specific repair factors. In summary, these data identify major differences in DNA repair efficiency between CLL cells and normal B cells isolated from patients.Implications: This study suggests inherently aberrant DNA DSB repair in the acquisition of subclonal genomic structural variations important for clonal evolution and treatment resistance in CLL. Mol Cancer Res; 16(3); 428-38. ©2017 AACR.
Collapse
Affiliation(s)
- Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Karina Spandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stephanie Blaimer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Hebenstreit
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
39
|
Mina A, Sandoval Sus J, Sleiman E, Pinilla-Ibarz J, Awan FT, Kharfan-Dabaja MA. Using prognostic models in CLL to personalize approach to clinical care: Are we there yet? Blood Rev 2017; 32:159-166. [PMID: 29122300 DOI: 10.1016/j.blre.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/14/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023]
Abstract
Four decades ago, two staging systems were developed to help stratify CLL into different prognostic categories. These systems, the Rai and the Binet staging, depended entirely on abnormal exam findings and evidence of anemia and thrombocytopenia. Better understanding of biologic, genetic, and molecular characteristics of CLL have contributed to better appreciating its clinical heterogeneity. New prognostic models, the GCLLSG prognostic index and the CLL-IPI, emerged. They incorporate biologic and genetic information related to CLL and are capable of predicting survival outcomes and cases anticipated to need therapy earlier in the disease course. Accordingly, these newer models are helping develop better informed surveillance strategies and ultimately tailor treatment intensity according to presence (or lack thereof) of certain prognostic markers. This represents a step towards personalizing care of CLL patients. We anticipate that as more prognostic factors continue to be identified, the GCLLSG prognostic index and CLL-IPI models will undergo further revisions.
Collapse
Affiliation(s)
- Alain Mina
- Dept. of Internal Medicine, Kansas University Medical Ctr, Kansas City, KS, USA
| | | | - Elsa Sleiman
- Faculty of Medicine, American Univ. of Beirut, Beirut, Lebanon
| | - Javier Pinilla-Ibarz
- Dept. of Malignant Hematology, Moffitt Cancer Ctr, Tampa, FL, USA; Department of Oncologic Sciences, Moffitt Cancer Ctr, Univ. of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Farrukh T Awan
- Div. of Hematology, Dept. of Internal Medicine, The Ohio State Univ. Comprehensive Cancer Ctr, Columbus, OH, USA
| | - Mohamed A Kharfan-Dabaja
- Department of Oncologic Sciences, Moffitt Cancer Ctr, Univ. of South Florida Morsani College of Medicine, Tampa, FL, USA; Dept. of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Ctr, Tampa, FL, USA.
| |
Collapse
|
40
|
Mestichelli F, Dalsass A, Ferretti S, Camaioni E, Angelini M, Mei S, Pezzoni V, Travaglini F, Troiani E, Angelini S, Galieni P. Array CGH analysis reveals deletion of chromosome 22q11 in CLL with normal karyotype and no fish alterations. Br J Haematol 2017; 183:152-155. [DOI: 10.1111/bjh.14949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Alessia Dalsass
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | - Silvia Ferretti
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | - Elisa Camaioni
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | - Mario Angelini
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | - Sabrina Mei
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | - Valerio Pezzoni
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| | | | | | | | - Piero Galieni
- U.O.C Ematologia, Ospedale C.G. Mazzoni; Ascoli Piceno Italy
| |
Collapse
|
41
|
Hernández-Rivas JÁ, González-Gascón Y Marín I. Genetic Heterogeneity in Chronic Lymphocytic Leukemia: What Can Conventional Cytogenetics Add? Acta Haematol 2017; 138:31-32. [PMID: 28668960 DOI: 10.1159/000477997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Affiliation(s)
- José-Ángel Hernández-Rivas
- Hematology Department, Hospital Universitario Infanta Leonor, and Medicine Department, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
42
|
Koczkodaj D, Filip AA. Chromosome Preparation for Chronic Lymphoid Malignancies. Methods Mol Biol 2016; 1541:33-41. [PMID: 27910012 DOI: 10.1007/978-1-4939-6703-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Conventional cytogenetics is invariably one of the most important methods used in diagnostics of chronic lymphoproliferations. It complements fluorescence in situ hybridization (FISH) and molecular analysis. Presence of particular chromosomal alterations in chronic lymphocytic leukemia enables patients' stratification into appropriate cytogenetic risk groups and influences treatment decisions. In other non-Hodgkin lymphomas cytogenetic analyses are employed also in minimal residual disease assessment.As lymphocytes in chronic lymphoid malignancies are characterized by low proliferation rate in vitro, it is critical to induce their division in the culture properly. Here, we describe methods of lymphocyte isolation from patient's samples, conditions of cell culture, and the most commonly used mitogens for B- and T-lymphocytes in hemato-oncologic analyses.
Collapse
Affiliation(s)
- Dorota Koczkodaj
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland.
| | - Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland
| |
Collapse
|
43
|
Genetic characterization of MYD88-mutated lymphoplasmacytic lymphoma in comparison with MYD88-mutated chronic lymphocytic leukemia. Leukemia 2016; 31:1355-1362. [DOI: 10.1038/leu.2016.330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
|
44
|
Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia 2016; 31:705-711. [PMID: 27680515 DOI: 10.1038/leu.2016.263] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022]
Abstract
Alterations in TP53 have been described in many cancer types including hematological neoplasms. We aimed at comparing TP53 mutations (mut) and deletions (del) in a large cohort of patients with hematological malignancies (n=3307), including AML (n=858), MDS (n=943), ALL (n=358), CLL (n=1148). Overall, alterations in TP53 were detected in 332/3307 cases (10%). The highest frequency was observed in ALL (total: 19%; mut+del: 6%; mut only: 8%; del only: 5%) and AML (total: 13%; mut+del: 5%; mut only: 7%; del only: 1%), whereas TP53 alterations occurred less frequently in CLL (total: 8%) and MDS (total: 7%). TP53 mutations were significantly more frequent in patients ⩾60 vs <60 years in AML (9% vs 2%, P<0.001) and ALL (12% vs 6%, P<0.001). TP53mut+del had a significant negative impact on overall survival in all entities, whereas differences were observed regarding TP53mut only or TP53del only: TP53mut only impacted survival in AML (36 vs 9 months, P<0.001) and MDS (65 vs 19 months, P<0.001), TP53del only in CLL (not reached vs 64 months, P=0.008) and MDS (65 vs 24 months, P=0.011). As substantial differences between the entities are observed regarding correlation to age and survival, we suggest evaluation of both TP53 deletion and mutation status.
Collapse
Affiliation(s)
- A Stengel
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - W Kern
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - T Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | | - A Fasan
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - C Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| |
Collapse
|
45
|
Le Bris Y, Struski S, Guièze R, Rouvellat C, Prade N, Troussard X, Tournilhac O, Béné MC, Delabesse E, Ysebaert L. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol 2016; 35:664-670. [PMID: 27678008 DOI: 10.1002/hon.2349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 11/05/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder of remarkable heterogeneity as demonstrated by cytogenetics and molecular analyses. Complex karyotype (CK), TP53 deletions and/or mutations (TP53 disruption), IGVH mutational status, and, more recently, recurrent somatic mutations have been identified as prognostic markers in CLL. On a cohort of 110 patients with CLL treated with first-line fludarabin, cyclophosphamide, and rituximab treatment compared with 33 untreated (watch and wait) patients with CLL, we report more frequent complex karyotypes (34 vs 15%; P = .05), unmutated IGHV (70 vs 21%; P < .0001), ATM deletion (25 vs 6%, P = .02), and NOTCH mutation (3 vs 17%, P = .04). Among treated patients, 39 relapsed during the follow-up period. These patients were characterized before treatment by a higher incidence of trisomy 12 (38 vs 11%, P < .001) and TP53 disruption (31 vs 4%, P = .0002). A significantly shorter 5-year overall survival was found for treated patients with CK (72.4 vs 85.8%; P = .007), unmutated IGHV (70 vs 100%; P = .04), or TP53 disruption (55.7 vs 82.7%; P < .0001). Three risk groups were defined based on the status of TP53 disruption or unmutated IGVH, which differed significantly in terms of 5-year overall survival. Moreover, the presence of CK impacted pejoratively 5-year overall survival and progression-free survival in all these 3 groups. Conventional karyotyping therefore appears to be of value, CK being an additional factor, undetectable in classical FISH, in patients with CLL at the stage when therapy becomes required.
Collapse
Affiliation(s)
- Yannick Le Bris
- Laboratoire d'Hématologie, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France.,Service d'Hématologie Biologique, CHU de Nantes, Nantes, France
| | - Stéphanie Struski
- Laboratoire d'Hématologie, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Romain Guièze
- Service d'Hématologie Clinique, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Caroline Rouvellat
- Laboratoire d'Hématologie, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Naïs Prade
- Laboratoire d'Hématologie, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | | | - Olivier Tournilhac
- Service d'Hématologie Clinique, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie C Béné
- Service d'Hématologie Biologique, CHU de Nantes, Nantes, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Loïc Ysebaert
- Service d'Hématologie Clinique, CHU de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
46
|
Holmes PJ, Peiper SC, Uppal GK, Gong JZ, Wang ZX, Bajaj R. Efficacy of DSP30-IL2/TPA for detection of cytogenetic abnormalities in chronic lymphocytic leukaemia/small lymphocytic lymphoma. Int J Lab Hematol 2016; 38:483-9. [PMID: 27565124 DOI: 10.1111/ijlh.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia in the Western Hemisphere. Cytogenetic abnormalities in CLL are used for diagnosis, prognosis and treatment. However, detecting these is difficult because mature B cells do not readily divide in culture. Here, we present data on two mitogen cocktails: CpG-oligonucleotide DSP30/Interleukin-2 (IL-2) and DSP30/IL-2 in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA). METHODS We analysed 165 cases of CLL with FISH and cytogenetics from January 2011 to June 2013. In 2011, three cultures were set-up: unstimulated, DSP30/IL-2-stimulated and TPA-stimulated. In 2012-2013, two cultures were set-up: unstimulated and stimulated with TPA/DSP30/IL-2. RESULTS In 2011, FISH had a detection rate of 91% and cytogenetics using DSP30/IL2 had a detection rate of 91% (n = 22). In 2012-2013, FISH had a detection rate of 79% and cytogenetics using TPA/DSP30/IL-2 had a detection rate of 98% (n = 40). The percentage of cases with normal FISH but abnormal cytogenetics increased from 9% in 2011 to 21% in 2012-2013. The TPA/DSP30/IL-2 cultures in 2012-2013 detected more novel abnormalities (n = 5) as compared to DSP30/IL-2 alone (n = 3). CONCLUSIONS TPA/DSP30/IL2 was as good as or better than DSP30/IL2 alone. TPA/DSP30/IL-2 offers a high detection rate for CLL abnormalities with a single stimulated culture and may increase detection of clinically significant abnormalities.
Collapse
Affiliation(s)
- P J Holmes
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - S C Peiper
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - G K Uppal
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - J Z Gong
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Z-X Wang
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - R Bajaj
- The Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Lin X, Chen J, Huang H. Immunostimulation by cytosine-phosphate-guanine oligodeoxynucleotides in combination with IL-2 can improve the success rate of karyotype analysis in chronic lymphocytic leukaemia. Br J Biomed Sci 2016; 73:110-114. [PMID: 27327088 DOI: 10.1080/09674845.2016.1188970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To assess whether immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN) combined with interleukin-2 (IL-2) improves the number of mitotic metaphases and the detection rate of chromosomal abnormalities in chronic lymphocytic leukaemia (CLL). MATERIALS AND METHODS Bone marrow specimens were collected from 36 patients with CLL. CLL cells were cultured with CpG-ODN type DSP30 plus IL-2 for 72 h, following which R-banding analysis was conducted. Conventional culture without the immunostimulant served as the control group. The incidence of genetic abnormalities was measured by fluorescence in situ hybridisation (FISH) using a panel of five specific probes: D13S25 (13q14.3), RB1 (13q14), P53 (17p13), ATM (11q22.3) and CSP12 (trisomy 12, +12). RESULTS In the control group, chromosome analysis achieved a success rate of only 22.2, and 11.1% of abnormal karyotypes were detected. After immunostimulation with DSP30 plus IL-2, chromosome analysis achieved a success rate of up to 91.6, and 41.6% of abnormal karyotypes were detected. FISH analysis detected 77.7% of abnormalities. FISH combined with CpG-ODN DSP30 plus IL-2 improved the detection rate of chromosomal abnormalities in CLL to 83.3%. CONCLUSION CpG-ODN DSP30 combined with IL-2 is effective in improving the detection rate of chromosomal abnormalities in CLL cells. This combination with FISH analysis is conducive to increasing the detection rate of genetic abnormalities in CLL.
Collapse
Affiliation(s)
- Xiaolan Lin
- a Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology , Fujian Medical University Union Hospital , Fujian , China
| | - Jiadi Chen
- a Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology , Fujian Medical University Union Hospital , Fujian , China
| | - Huifang Huang
- a Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology , Fujian Medical University Union Hospital , Fujian , China
| |
Collapse
|
48
|
Metaphase Cytogenetics in Chronic Lymphocytic Leukemia. CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood 2016; 128:395-404. [PMID: 27226433 DOI: 10.1182/blood-2016-01-691550] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
Genetic instability is a feature of chronic lymphocytic leukemia (CLL) with adverse prognosis. We hypothesized that chromosomal translocations or complex karyotypes and distinct somatic mutations may impact outcome after first-line chemoimmunotherapy of CLL patients. We performed metaphase karyotyping and next-generation sequencing (NGS) of 85 genes in pretreatment blood samples obtained from 161 patients registered for CLL11, a 3-arm phase 3 trial comparing frontline chlorambucil (Clb) vs Clb plus rituximab (Clb-R) or Clb plus obinutuzumab in CLL patients with significant comorbidity. Chromosomal aberrations as assessed by karyotyping were observed in 68.8% of 154 patients, 31.2% carried translocations, and 19.5% showed complex karyotypes. NGS revealed 198 missense/nonsense mutations and 76 small indels in 76.4% of patients. The most frequently mutated genes were NOTCH1, SF3B1, ATM, TP53, BIRC3, POT1, XPO1, and KRAS Sole chemotherapy, treatment with Clb-R, or genetic lesions in TP53 (9.9% of patients) and KRAS (6.2% of patients) were significantly associated with nonresponse to study therapy. In multivariate models, complex karyotypes and POT1 mutations (8.1% of patients) represented significant prognostic factors for an unfavorable survival, independently of IGHV mutation status, Binet stage, and serum β-2-microglobuline. Patients with the copresence of complex karyotypes and deletions/mutations involving TP53 demonstrated a particularly short survival. In summary, this is the first prospective, controlled study in CLL patients that shows a role of complex karyotype aberrations as an independent prognostic factor for survival after front-line therapy. Moreover, the study identifies mutations in KRAS and POT1 as novel determinants of outcome after chemoimmunotherapy using chlorambucil and anti-CD20 treatment.
Collapse
|
50
|
DE BRAEKELEER MARC, TOUS CORINE, GUÉGANIC NADIA, LE BRIS MARIEJOSÉE, BASINKO AUDREY, MOREL FRÉDÉRIC, DOUET-GUILBERT NATHALIE. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature. Mol Clin Oncol 2016; 4:682-694. [PMID: 27123263 PMCID: PMC4840758 DOI: 10.3892/mco.2016.793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive the optimal treatment.
Collapse
Affiliation(s)
- MARC DE BRAEKELEER
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - CORINE TOUS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NADIA GUÉGANIC
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
| | - MARIE-JOSÉE LE BRIS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - AUDREY BASINKO
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - FRÉDÉRIC MOREL
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NATHALIE DOUET-GUILBERT
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| |
Collapse
|