1
|
Sykes M. Tolerance in intestinal transplantation. Hum Immunol 2024; 85:110793. [PMID: 38580539 PMCID: PMC11144570 DOI: 10.1016/j.humimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Intestinal transplantation (ITx) is highly immunogenic, resulting in the need for high levels of immunosuppression, with frequent complications along with high rejection rates. Tolerance induction would provide a solution to these limitations. Detailed studies of alloreactive T cell clones as well as multiparameter flow cytometry in the graft and peripheral tissues have provided evidence for several tolerance mechanisms that occur spontaneously following ITx, which might provide targets for further interventions. These include the frequent occurrence of macrochimerism and engraftment in the recipient bone marrow of donor hematopoietic stem and progenitor cells carried in the allograft. These phenomena are seen most frequently in recipients of multivisceral transplants and are associated with reduced rejection rates. They reflect powerful graft-vs-host responses that enter the peripheral lymphoid system and bone marrow after expanding within and emigrating from the allograft. Several mechanisms of tolerance that may result from this lymphohematopoietic graft-vs-host response are discussed. Transcriptional profiling in quiescent allografts reveals tolerization of pre-existing host-vs-graft-reactive T cells that enter the allograft mucosa and become tissue-resident memory cells. Dissection of the pathways driving and maintaining this tolerant tissue-resident state among donor-reactive T cells will allow controlled tolerance induction through specific therapeutic approaches.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Lee S, Lee K, Bae H, Lee K, Lee J, Ma J, Lee YJ, Lee BR, Park WY, Im SJ. Defining a TCF1-expressing progenitor allogeneic CD8 + T cell subset in acute graft-versus-host disease. Nat Commun 2023; 14:5869. [PMID: 37737221 PMCID: PMC10516895 DOI: 10.1038/s41467-023-41357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a severe complication of hematopoietic stem cell transplantation driven by activated allogeneic T cells. Here, we identify a distinct subset of T cell factor-1 (TCF1)+ CD8+ T cells in mouse allogeneic and xenogeneic transplant models of acute GvHD. These TCF1+ cells exhibit distinct characteristics compared to TCF1- cells, including lower expression of inhibitory receptors and higher expression of costimulatory molecules. Notably, the TCF1+ subset displays exclusive proliferative potential and could differentiate into TCF1- effector cells upon antigenic stimulation. Pathway analyses support the role of TCF1+ and TCF1- subsets as resource cells and effector cells, respectively. Furthermore, the TCF1+ CD8+ T cell subset is primarily present in the spleen and exhibits a resident phenotype. These findings provide insight into the differentiation of allogeneic and xenogeneic CD8+ T cells and have implications for the development of immunotherapeutic strategies targeting acute GvHD.
Collapse
Affiliation(s)
- Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kunhee Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjin Bae
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungmin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junghwa Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Lee
- GENINUS Inc., Seoul, Republic of Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Sykes M. Leveraging the lymphohematopoietic graft-versus-host reaction (LGVHR) to achieve allograft tolerance and restore self tolerance with minimal toxicity. IMMUNOTHERAPY ADVANCES 2023; 3:ltad008. [PMID: 37426630 PMCID: PMC10327628 DOI: 10.1093/immadv/ltad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Mixed allogeneic chimerism has considerable potential to advance the achievement of immune tolerance to alloantigens for transplantation and the restoration of self-tolerance in patients with autoimmune disease. In this article, I review evidence that graft-versus-host (GVH) alloreactivity without graft-vs-host disease (GVHD), termed a lymphohematopoietic graft-vs-host reaction (LGVHR), can promote the induction of mixed chimerism with minimal toxicity. LGVHR was originally shown to occur in an animal model when non-tolerant donor lymphocytes were administered to mixed chimeras in the absence of inflammatory stimuli and was found to mediate powerful graft-vs-leukemia/lymphoma effects without GVHD. Recent large animal studies suggest a role for LGVHR in promoting durable mixed chimerism and the demonstration that LGVHR promotes chimerism in human intestinal allograft recipients has led to a pilot study aiming to achieve durable mixed chimerism.
Collapse
Affiliation(s)
- Megan Sykes
- Correspondence: Megan Sykes, Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, Suite 1512, New York, NY 10032, USA.
| |
Collapse
|
6
|
Khanolkar RA, Tripathi G, Dharmani-Khan P, Dabas R, Kinzel M, Kalra A, Puckrin R, Jimenez-Zepeda V, Jamani K, Duggan PR, Chaudhry A, Bryant A, Stewart DA, Khan FM, Storek J. Incomplete chimerism following myeloablative and anti-thymocyte globulin-conditioned hematopoietic cell transplantation is a risk factor for relapse and chronic graft-versus-host disease. Cytotherapy 2022; 24:1225-1231. [PMID: 36057497 DOI: 10.1016/j.jcyt.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS The value of routine chimerism determination after myeloablative hematopoietic cell transplantation (HCT) is unclear, particularly in the setting of anti-thymocyte globulin (ATG)-based graft-versus-host disease (GVHD) prophylaxis. METHODS Blood samples were collected at 3 months post-HCT from 558 patients who received myeloablative conditioning and ATG-based GVHD prophylaxis. Chimerism was assessed using multiplex polymerase chain reaction of short tandem repeats in sorted T cells (CD3+) and leukemia lineage cells (CD13+CD33+ for myeloid malignancies and CD19+ for B-lymphoid malignancies). ATG exposure was determined using a flow cytometry-based assay. The primary outcomes of interest were relapse and chronic GVHD (cGVHD). RESULTS Incomplete (<95%) T-cell chimerism and leukemia lineage chimerism were present in 17% and 4% of patients, respectively. Patients with incomplete T-cell chimerism had a significantly greater incidence of relapse (36% versus 22%, subhazard ratio [SHR] = 2.03, P = 0.001) and lower incidence of cGVHD (8% versus 25%, SHR = 0.29, P < 0.001) compared with patients with complete chimerism. In multivariate modeling, patients with high post-transplant ATG area under the curve and any cytomegalovirus (CMV) serostatus other than donor/recipient seropositivity (non-D+R+) had an increased likelihood of incomplete T-cell chimerism. Patients with incomplete leukemia lineage chimerism had a significantly greater incidence of relapse (50% versus 23%, SHR = 2.70, P = 0.011) and, surprisingly, a greater incidence of cGVHD (45% versus 20%, SHR = 2.64, P = 0.003). CONCLUSIONS High post-transplant ATG exposure and non-D+R+ CMV serostatus predispose patients to incomplete T-cell chimerism, which is associated with an increased risk of relapse. The increased risk of cGVHD with incomplete B-cell/myeloid chimerism is a novel finding that suggests an important role for recipient antigen-presenting cells in cGVHD pathogenesis.
Collapse
Affiliation(s)
- Rutvij A Khanolkar
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1.
| | - Gaurav Tripathi
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Poonam Dharmani-Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Rosy Dabas
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Megan Kinzel
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Amit Kalra
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Robert Puckrin
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Victor Jimenez-Zepeda
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Kareem Jamani
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Peter R Duggan
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Ahsan Chaudhry
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Adam Bryant
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Douglas A Stewart
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Faisal M Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Jan Storek
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| |
Collapse
|
7
|
Immune landscape after allo-HSCT: TIGIT- and CD161-expressing CD4 T cells are associated with subsequent leukemia relapse. Blood 2022; 140:1305-1321. [PMID: 35820057 DOI: 10.1182/blood.2022015522] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective treatment for selected patients with acute myeloid leukemia (AML) and relies on a "graft-versus-leukemia" effect (GVL) where donor T lymphocytes mediate control of malignant cell growth. However, relapse remains the major cause of death after allo-HSCT. In various malignancies, several immunoregulatory mechanisms have been shown to restrain antitumor immunity, including ligand-mediated engagement of inhibitory receptors (IRs) on effector cells, and induction of immunosuppressive cell subsets, such as regulatory T cells (Tregs) or myeloid-derived suppressor cells (MDSCs). Relapse after HSCT remains a major therapeutic challenge, but immunoregulatory mechanisms involved in restraining the GVL effect must be better deciphered in humans. We used mass cytometry to comprehensively characterize circulating leukocytes in 2 cohorts of patients after allo-HSCT. We first longitudinally assessed various immunoregulatory parameters highlighting specific trends, such as opposite dynamics between MDSCs and Tregs. More generally, the immune landscape was stable from months 3 to 6, whereas many variations occurred from months 6 to 12 after HSCT. Comparison with healthy individuals revealed that profound alterations in the immune equilibrium persisted 1 year after HSCT. Importantly, we found that high levels of TIGIT and CD161 expression on CD4 T cells at month 3 after HSCT were distinct features significantly associated with subsequent AML relapse in a second cross-sectional cohort. Altogether, these data provide global insights into the reconstitution of the immunoregulatory landscape after HSCT and highlight non-canonical IRs associated with relapse, which could open the path to new prognostic tools or therapeutic targets to restore subverted anti-AML immunity.
Collapse
|
8
|
Daull AM, Dubois V, Labussière-Wallet H, Venet F, Barraco F, Ducastelle-Lepretre S, Larcher MV, Balsat M, Gilis L, Fossard G, Ghesquières H, Heiblig M, Ader F, Alcazer V. Class I/Class II HLA Evolutionary Divergence Ratio Is an Independent Marker Associated With Disease-Free and Overall Survival After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Front Immunol 2022; 13:841470. [PMID: 35309346 PMCID: PMC8931406 DOI: 10.3389/fimmu.2022.841470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Class I Human Leukocyte Antigen (HLA) evolutionary divergence (HED) is a metric which reflects immunopeptidome diversity and has been associated with immune checkpoint inhibitor responses in solid tumors. Its impact and interest in allogeneic hematopoietic stem cell transplantation (HCT) have not yet been thoroughly studied. This study analyzed the clinical and immune impact of class I and II HED in 492 acute myeloid leukemia (AML) recipients undergoing HCT. The overall cohort was divided into a training (n=338) and a testing (n=132) set. Univariate cox screening found a positive impact of a high class I HED and a negative impact of a high class II HED on both disease-free (DFS) and overall survival (OS). These results were combined in a unique marker, class I/class II HED ratio, and assessed in the testing cohort. The final multivariate cox model confirmed the positive impact of a high versus low class I/class II HED ratio on both DFS (Hazard Ratio (HR) 0.41 [95% CI 0.2-0.83]; p=0.01) and OS (HR 0.34 [0.19-0.59]; p<0.001), independently of HLA matching and other HCT parameters. No significant association was found between the ratio and graft-versus-host disease (GvHD) nor with neutrophil and platelet recovery. A high class I HED was associated with a tendency for an increase in NK, CD8 T-cell, and B cell recovery at 12 months. These results introduce HED as an original and independent prognosis marker reflecting immunopeptidome diversity and alloreactivity after HCT.
Collapse
Affiliation(s)
- Anne-Marie Daull
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Valérie Dubois
- Laboratory of histocompatibility, Etablissement Français du Sang, Lyon, France
| | - Hélène Labussière-Wallet
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology laboratory, Edouard Herriot Hospital, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Fiorenza Barraco
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | | | - Marie-Virginie Larcher
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Marie Balsat
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Lila Gilis
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Gaëlle Fossard
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Hervé Ghesquières
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
- UR LIB “Lymphoma Immuno-Biology”, Université Claude Bernard Lyon I, Lyon, France
| | - Florence Ader
- Hospices Civils de Lyon, Immunology laboratory, Edouard Herriot Hospital, Lyon, France
- Hospices Civils de Lyon, Department of infectious diseases, Croix-Rousse hospital, Lyon, France
- LegioPath team, CIRI INSERM U1111 CNRS UMR 5308, Lyon, France
| | - Vincent Alcazer
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
- UR LIB “Lymphoma Immuno-Biology”, Université Claude Bernard Lyon I, Lyon, France
- *Correspondence: Vincent Alcazer,
| |
Collapse
|
9
|
Monlish DA, Beezhold KJ, Chiaranunt P, Paz K, Moore NJ, Dobbs AK, Brown RA, Ozolek JA, Blazar BR, Byersdorfer CA. Deletion of AMPK minimizes graft-versus-host disease through an early impact on effector donor T cells. JCI Insight 2021; 6:e143811. [PMID: 34291733 PMCID: PMC8410053 DOI: 10.1172/jci.insight.143811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a viable treatment for multiple hematologic diseases, but its application is often limited by graft-versus-host disease (GVHD), where donor T cells attack host tissues in the skin, liver, and gastrointestinal tract. Here, we examined the role of the cellular energy sensor AMP kinase (AMPK) in alloreactive T cells during GVHD development. Early posttransplant, AMPK activity increased more than 15-fold in allogeneic T cells, and transplantation of T cells deficient in both AMPKα1 and AMPKα2 decreased GVHD severity in multiple disease models. Importantly, a lack of AMPK lessened GVHD without compromising antileukemia responses or impairing lymphopenia-driven immune reconstitution. Mechanistically, absence of AMPK decreased both CD4+ and CD8+ effector T cell numbers as early as day 3 posttransplant, while simultaneously increasing regulatory T cell (Treg) percentages. Improvements in GVHD resulted from cell-intrinsic perturbations in conventional effector T cells as depletion of donor Tregs had minimal impact on AMPK-related improvements. Together, these results highlight a specific role for AMPK in allogeneic effector T cells early posttransplant and suggest that AMPK inhibition may be an innovative approach to mitigate GVHD while preserving graft-versus-leukemia responses and maintaining robust immune reconstitution.
Collapse
Affiliation(s)
- Darlene A Monlish
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin J Beezhold
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pailin Chiaranunt
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katelyn Paz
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan J Moore
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rebecca A Brown
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Ozolek
- Department of Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Tu H, Wu Z, Xia Y, Chen H, Hu H, Ding Z, Zhou F, Guo S. Profiling of immune-cancer interactions at the single-cell level using a microfluidic well array. Analyst 2021; 145:4138-4147. [PMID: 32409799 DOI: 10.1039/d0an00110d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has achieved great success in hematological cancers. However, immune cells are a highly heterogeneous population and can vary highly in clonal expansion, migration and function status, making it difficult to evaluate and predict patient response to immune therapy. Conventional technologies only yield information on the average population information of the treatment, masking the heterogeneity of the individual T cell activation status, the formation of immune synapse, as well as the efficacy of tumor cell killing at the single-cell level. To fully interrogate these single-cell events in detail, herein, we present a microfluidic microwell array device that enables the massive parallel analysis of the immunocyte's heterogeneity upon its interaction pairs with tumor cells at the single-cell level. By precisely controlling the number and ratio of tumor cells and T cells, our technique can interrogate the dynamics of the CD8+ T cell and leukemia cell interaction inside 6400 microfluidic wells simultaneously. We have demonstrated that by investigating the interactions of T cell and tumor cell pairs at the single-cell level using our microfluidic chip, details hidden in bulk investigations, such as heterogeneity in T cell killing capacity, time-dependent killing dynamics, as well as drug treatment-induced dynamic shifts, can be revealed. This method opens up avenues to investigate the efficacy of cancer immunotherapy and resistance at the single-cell level and can explore our understanding of fundamental cancer immunity as well as determine cancer immunotherapy efficacy for personalized therapy.
Collapse
Affiliation(s)
- Honglei Tu
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hui Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Fuling Zhou
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Şahin U, Demirer T. Graft-versus-cancereffect and innovative approaches in thetreatment of refractory solid tumors. Turk J Med Sci 2020; 50:1697-1706. [PMID: 32178508 PMCID: PMC7672351 DOI: 10.3906/sag-1911-112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background/aim Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used for the treatment of various refractory solid tumors during the last two decades. After the demonstration of graft-versus-leukemia (GvL) effect in a leukemic murine model following allo-HSCT from other strains of mice, graft-versus-tumor (GvT) effect in a solid tumor after allo-HSCT has also been reported in a murine model in 1984. Several trials have reported the presence of a GvT effect in patients with various refractory solid tumors, including renal, ovarian and colon cancers, as well as soft tissue sarcomas [1]. The growing data on haploidentical transplants also indicate GvT effect in some pediatric refractory solid tumors. Novel immunotherapy-based treatment modalities aim at inducing an allo-reactivity against the metastatic solid tumor via a GvT effect. Recipient derived immune effector cells (RDICs) in the antitumor reactivity following allo-HSCT have also been considered as an emerging therapy for advanced refractory solid tumors. Conclusion This review summarizes the background, rationale, and clinical results of immune-based strategies using GvT effect for the treatment of various metastatic and refractory solid tumors, as well as innovative approaches such as haploidentical HSCT, CAR-T cell therapies and tumor infiltrating lymphocytes (TIL).
Collapse
Affiliation(s)
- Uğur Şahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Taner Demirer
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Kwon YR, Kim HJ, Sohn MJ, Lim JY, Park KS, Lee S, Chung NG, Jeong DC, Min CK, Kim YJ. Effects of decitabine on allogeneic immune reactions of donor lymphocyte infusion via activation of dendritic cells. Exp Hematol Oncol 2020; 9:22. [PMID: 32908796 PMCID: PMC7470611 DOI: 10.1186/s40164-020-00178-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 11/15/2022] Open
Abstract
Background Successful prevention of post-transplantation relapse after donor lymphocyte infusion (DLI) depends on its capability to mediate an effective graft-versus-leukemia (GVL) response while minimizing DLI-related toxicity, including graft-versus-host disease (GVHD). Methods We assessed the effects of decitabine (DEC), a hypomethylating agent, upon allogeneic immune reaction in a murine model of DLI. Results Significantly greater tumor growth retardation and survival prolongation occurred in mice administered with 1.0 mg/kg DEC for 5 days (DEC-1.0) than in control or DEC-0.1 mice. Upon prompt DEC and DLI co-administration, dendritic cells (DCs) were activated; DEC-1.0/DLI induced severe GVHD, and survival was significantly lower than with DLI alone or DEC-0.1/DLI treatments. IFN-γ and CD28 levels were higher in splenic DCs of DEC-1.0 mice than in those of control mice. Assessment of delayed DLI co-administration with DEC, when IFN-γ levels were normalized to control levels, revealed that DEC-1.0/DLI successfully facilitated tumor management without causing severe GVHD. Conclusions Our results suggest that DEC primes allogeneic immune reactions of DLI via DC activation, and GVHD and GVL effects are separable through optimal DLI timing based on DEC-induced increase in IFN-γ expression levels.
Collapse
Affiliation(s)
- Yong-Rim Kwon
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Hye Joung Kim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Min-Jung Sohn
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Ji-Young Lim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Kyung-Shin Park
- Department of Clinical Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Seok Lee
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Nack-Gyun Chung
- Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea.,Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Chul Jeong
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Yoo-Jin Kim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
14
|
Roerden M, Nelde A, Heitmann JS, Klein R, Rammensee HG, Bethge WA, Walz JS. HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers (Basel) 2020; 12:cancers12071835. [PMID: 32650450 PMCID: PMC7408841 DOI: 10.3390/cancers12071835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The diversity of human leukocyte antigens (HLAs) enables the presentation of immense repertoires of peptides, including tumor-associated antigens (TAAs). As a surrogate for immunopeptidome diversity, the HLA evolutionary divergence (HED) between individual HLA alleles might directly define the ability to present TAAs, a prerequisite for graft-versus-leukemia effects. We therefore analyzed the impact of HED on survival within a cohort of 171 acute myeloid leukemia (AML) patients after matched donor allogeneic hematopoietic stem cell transplantation (HSCT). Low HED (<25th percentile) of HLA class I (HEDclass I) or HLA-DR antigens (HEDDR) was a strong determinant for adverse overall survival after allogeneic HSCT (OS), with a hazard ratio for death of 1.9 (95% CI 1.2–3.2) and 2.1 (95% CI 1.3–3.4), respectively. Defining a cutoff value for the combined HEDtotal (HEDclass I and HEDDR), the respective 5 year OS was 29.7% and 64.9% in patients with low and high HEDtotal (p < 0.001), respectively. Furthermore, the risk of relapse was significantly higher in patients with low HEDtotal (hazard ratio (HR) 2.2, 95% CI 1.3–3.6) and event-free survival (EFS) was significantly reduced (5 year EFS 25.7% versus 54.4%, p < 0.001). We here introduce HED, a fundamental metric of immunopeptidome diversity, as a novel prognostic factor for AML patients undergoing allogeneic HSCT.
Collapse
Affiliation(s)
- Malte Roerden
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; (R.K.); (W.A.B.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany; (A.N.); (J.S.H.)
- Correspondence: (M.R.); (J.S.W.)
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany; (A.N.); (J.S.H.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany;
| | - Jonas S. Heitmann
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany; (A.N.); (J.S.H.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; (R.K.); (W.A.B.)
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, 72076 Tübingen, Germany
| | - Wolfgang A. Bethge
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; (R.K.); (W.A.B.)
| | - Juliane S. Walz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; (R.K.); (W.A.B.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany; (A.N.); (J.S.H.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence: (M.R.); (J.S.W.)
| |
Collapse
|
15
|
The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease. Blood 2020; 134:2139-2148. [PMID: 31697827 DOI: 10.1182/blood.2019000823] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022] Open
Abstract
Allogeneic stem cell transplantation is a cornerstone of curative therapy for high-risk and/or advanced hematological malignancies but remains limited by graft-versus-host disease (GVHD). GVHD is initiated by the interaction between recipient antigen-presenting cells (APCs) and donor T cells, culminating in T-cell differentiation along pathogenic type-1 and type-17 paradigms at the expense of tolerogenic regulatory T-cell patterns. Type-1 and type-17 T cells secrete cytokines (eg, granulocyte-macrophage colony-stimulating factor and interferon-γ) critical to the cytokine storm that amplifies expansion of donor APCs and their alloantigen presentation. It has become increasingly clear that pathogenic donor T-cell differentiation is initiated by both professional recipient APCs (eg, dendritic cells [DCs]) and nonprofessional APCs (eg, epithelial and mesenchymal cells), particularly within the gastrointestinal (GI) tract. In the immediate peritransplantation period, these APCs are profoundly modified by pathogen-associated molecular pattern (PAMP)/damage-associated molecular pattern (DAMP) signals derived from conditioning and intestinal microbiota. Subsequently, donor DCs in the GI tract are activated by DAMP/PAMP signals in the colon that gain access to the lamina propria once the mucosal barrier mucosa is compromised by GVHD. This results in donor DC expansion and alloantigen presentation in the colon and subsequent migration into the mesenteric lymph nodes. Here, new donor T cells are primed, expanded, differentiated, and imprinted with gut-homing integrins permissive of migration into the damaged GI tract, resulting in the lethal feed-forward cascade of GVHD. These new insights into our understanding of the cellular and molecular factors initiating GVHD, both spatially and temporally, give rise to a number of logical therapeutic targets, focusing on the inhibition of APC function in the GI tract.
Collapse
|
16
|
Abstract
This review focuses on our recent studies involving nonmyeloablative bone marrow transplantation as an approach to inducing organ allograft tolerance across MHC barriers in nonhuman primates and in patients. The clinical studies are focused on mechanisms of tolerance involved in a protocol carried out at Massachusetts General Hospital in HLA-mismatched haploidentical combinations for the induction of renal allograft tolerance. These studies, in which chimerism was only transient and GVHD did not occur, suggest an early role for donor-specific regulatory T cells in tolerance induction, followed by partial and gradual deletion of donor-reactive T cells. We utilized high-throughput sequencing methodologies in a novel way to identify and track large numbers of alloreactive T cell receptors (TCRs). This method has been shown to identify biologically significant alloreactive TCRs in transplant patients and pointed to clonal deletion as a major mechanism of long-term tolerance in these patients. More recently, we adapted this sequencing method to optimally identify the donor-specific regulatory T cell (Treg) repertoire. Interrogation of the early posttransplant repertoire demonstrated expansion of donor-specific Tregs in association with tolerance. Our studies suggest a role for the kidney graft in tolerance by these mechanisms in patients who had only transient chimerism. Nonhuman primate studies indicate that other organs, including the heart, the lungs and the liver, are less readily tolerated following a period of transient mixed chimerism. Our efforts to extend the reach of mixed chimerism for tolerance induction beyond the kidney are therefore focused on the addition of recipient Tregs to the protocol. This approach has the potential to enhance chimerism while further reducing the risk of GVHD.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Medical Center, New York, NY, USA.
| | - Adam D Griesemer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
17
|
During acute graft versus host disease CD28 deletion in donor CD8+, but not CD4+, T cells maintain antileukemia responses in mice. Eur J Immunol 2018; 48:2055-2067. [DOI: 10.1002/eji.201847669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
|
18
|
Sykes M. Immune monitoring of transplant patients in transient mixed chimerism tolerance trials. Hum Immunol 2018; 79:334-342. [PMID: 29289741 PMCID: PMC5924718 DOI: 10.1016/j.humimm.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
This review focuses on mechanistic studies performed in recipients of non-myeloablative bone marrow transplant regimens developed at Massachusetts General Hospital in HLA-identical and HLA-mismatched haploidentical combinations, initially as a platform for treatment of hematologic malignancies with immunotherapy in the form of donor leukocyte infusions, and later in combination with donor kidney transplantation for the induction of allograft tolerance. In patients with permanent mixed chimerism, central deletion may be a major mechanism of long-term tolerance. In patients in whom donor chimerism is only transient, the kidney itself plays a significant role in maintaining long-term tolerance. A high throughput sequencing approach to identifying and tracking a significant portion of the alloreactive T cell receptor repertoire has demonstrated biological significance in transplant patients and has been useful in pointing to clonal deletion as a long-term tolerance mechanism in recipients of HLA-mismatched combined kidney and bone marrow transplants with only transient chimerism.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, NY, USA; Department of Medicine, Columbia University Medical Center, NY, USA; Department of Microbiology & Immunology, Columbia University Medical Center, NY, USA; Department of Surgery, Columbia University Medical Center, NY, USA.
| |
Collapse
|
19
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
CTLA4-CD28 chimera gene modification of T cells enhances the therapeutic efficacy of donor lymphocyte infusion for hematological malignancy. Exp Mol Med 2017; 49:e360. [PMID: 28751785 PMCID: PMC5565951 DOI: 10.1038/emm.2017.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Donor lymphocyte infusion (DLI) followed by hematopoietic stem cell transplantation has served as an effective prevention/treatment modality against the relapse of some hematologic tumors, such as chronic myeloid leukemia (CML). However, the therapeutic efficacies of DLI for other types of leukemia, including acute lymphocytic leukemia (ALL), have been limited thus far. Therefore, we examined whether increasing the reactivity of donor T cells by gene modification could enhance the therapeutic efficacy of DLI in a murine model of ALL. When a CTLA4-CD28 chimera gene (CTC28) in which the intracellular signaling domain of CTLA4 was replaced with the CD28 signaling domain was introduced into CD4 and CD8 T cells in DLI, the graft-versus-tumor (GVT) effect was significantly increased. This effect was correlated with an increased expansion of donor CD8 T cells in vivo, and the depletion of CD8 T cells abolished this effect. The CD8 T cell expansion and the enhanced GVT effect were dependent on the transduction of both CD4 and CD8 T cells with CTC28, which emphasizes the role of dual modification in this therapeutic effect. The CTC28-transduced T cells that expanded in vivo also exhibited enhanced functionality. Although the potentiation of the GVT effect mediated by the CTC28 gene modification of T cells was accompanied by an increase of graft-versus-host disease (GVHD), the GVHD was not lethal and was mitigated by treatment with IL-10 gene-modified third-party mesenchymal stem cells. Thus, the combined genetic modification of CD4 and CD8 donor T cells with CTC28 could be a promising strategy for enhancing the therapeutic efficacy of DLI.
Collapse
|
21
|
Karadurmus N, Sahin U, Basgoz BB, Arpaci F, Demirer T. Review of allogeneic hematopoietic stem cell transplantation with reduced intensity conditioning in solid tumors excluding breast cancer. World J Transplant 2016; 6:675-681. [PMID: 28058217 PMCID: PMC5175225 DOI: 10.5500/wjt.v6.i4.675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
Solid tumors in adults constitute a heterogeneous group of malignancy originating from various organ systems. Solid tumors are not completely curable by chemotherapy, even though some subgroups are very chemo-sensitive. Recently, oncologists have focused on the use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) with reduced intensity conditioning (RIC) for the treatment of some refractory solid tumors. After the demonstration of allogeneic graft-versus-leukemia effect in patients with hematological malignancies who received allo-HSCT, investigators evaluated this effect in patients with refractory metastatic solid tumors. According to data from experimental animal models and preliminary clinical trials, a graft-versus-tumor (GvT) effect may also be observed in the treatment of some solid tumors (e.g., renal cell cancer, colorectal cancer, etc.) after allo-HSCT with RIC. The use of RIC regimens offers an opportunity of achieving full-donor engraftment with GvT effect, as well as, a reduced transplant-related mortality. Current literature suggests that allo-HSCT with RIC might become a choice for elderly and medically fragile patients with refractory metastatic solid tumors.
Collapse
|
22
|
Lilly CL, Villa NY, Lemos de Matos A, Ali HM, Dhillon JKS, Hofland T, Rahman MM, Chan W, Bogen B, Cogle C, McFadden G. Ex Vivo Oncolytic Virotherapy with Myxoma Virus Arms Multiple Allogeneic Bone Marrow Transplant Leukocytes to Enhance Graft versus Tumor. MOLECULAR THERAPY-ONCOLYTICS 2016; 4:31-40. [PMID: 28345022 PMCID: PMC5363758 DOI: 10.1016/j.omto.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/04/2016] [Indexed: 12/17/2022]
Abstract
Allogeneic stem cell transplant-derived T cells have the potential to seek and eliminate sites of residual cancer that escaped primary therapy. Oncolytic myxoma virus (MYXV) exhibits potent anti-cancer efficacy against human cancers like multiple myeloma (MM) and can arm transplant-derived T cells to become more effective cancer killers in vitro and in an immunodeficient xenotransplant murine model. Here, we tested ex vivo MYXV virotherapy against residual murine MM in immunocompetent mice using an allogeneic mouse-mouse model. In contrast to all human MM cell lines previously tested, the murine MM cell line tested here was highly resistant to direct MYXV infection and oncolysis in vitro. Despite this in vitro resistance, we found that ex vivo MYXV-armed allogeneic bone marrow (BM) transplantation dramatically ablated pre-seeded residual MM in vivo. Unexpectedly, we show that both neutrophils and activated T cells from the donor function as virus-armed carrier cells, and MYXV-preloaded cells enhanced MM killing. Our results demonstrate a novel therapeutic paradigm for residual cancer, in which multiple classes of allotransplant leukocytes can be armed by MYXV ex vivo to enhance the graft-versus-tumor effects.
Collapse
Affiliation(s)
- Cameron L Lilly
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Y Villa
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Ana Lemos de Matos
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Haider M Ali
- College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jess-Karan S Dhillon
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Tom Hofland
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, 1105 the Netherlands
| | - Masmudur M Rahman
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | | | - Bjarne Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0313 Oslo, Norway; KG Jebsen Centre for Influenza Vaccine Research, University of Oslo, 0313 Oslo, Norway
| | - Christopher Cogle
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Grant McFadden
- Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Ogonek J, Kralj Juric M, Ghimire S, Varanasi PR, Holler E, Greinix H, Weissinger E. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:507. [PMID: 27909435 PMCID: PMC5112259 DOI: 10.3389/fimmu.2016.00507] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT.
Collapse
Affiliation(s)
- Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Mateja Kralj Juric
- BMT, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sakhila Ghimire
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Pavankumar Reddy Varanasi
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | | | - Eva Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Duran-Struuck R, Matar AJ, Crepeau RL, Teague AGS, Horner BM, Pathiraja V, Spitzer TR, Fishman JA, Bronson RT, Sachs DH, Huang CA. Donor Lymphocyte Infusion-Mediated Graft-versus-Host Responses in a Preclinical Swine Model of Haploidentical Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:1953-1960. [PMID: 27543159 DOI: 10.1016/j.bbmt.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
We previously described successful hematopoietic stem cell engraftment across MHC barriers in miniature swine without graft-versus-host disease (GVHD) using novel reduced-intensity conditioning regimens consisting of partial transient recipient T cell-depletion, thymic or low-dose total body irradiation, and a short course of cyclosporine A. Here we report that stable chimeric animals generated with these protocols are strongly resistant to donor leukocyte infusion (DLI)-mediated GVH effects. Of 33 total DLIs in tolerant chimeras at clinical doses, 21 failed to induce conversion to full donor hematopoietic chimerism or cause GVHD. We attempted to overcome this resistance to conversion through several mechanisms, including using sensitized donor lymphocytes, increasing the DLI dose, removing chimeric host peripheral blood cells through extensive recipient leukapheresis before DLI, and using fully mismatched lymphocytes. Despite our attempts, the resistance to conversion in our model was robust, and when conversion was achieved, it was associated with GVHD in most animals. Our studies suggest that delivery of unmodified hematopoietic stem cell doses under reduced-intensity conditioning can induce a potent, GVHD-free, immune tolerant state that is strongly resistant to DLI.
Collapse
Affiliation(s)
- Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania; Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts.
| | - Abraham J Matar
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts; College of Medicine, University of Central Florida, Orlando, Florida
| | - Rebecca L Crepeau
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| | - Alexander G S Teague
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| | - Benjamin M Horner
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| | - Vimukthi Pathiraja
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| | - Thomas R Spitzer
- Bone Marrow Transplant Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jay A Fishman
- Massachusetts General Hospital, MGH Transplantation Center and Transplant Infectious Disease & Compromised Host Program, Boston, Massachusetts
| | | | - David H Sachs
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| | - Christene A Huang
- Massachusetts General Hospital, Transplantation Biology Research Center, Boston, Massachusetts
| |
Collapse
|
25
|
Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, Lieberman SR, Jay HV, Ahr KF, Rodriguez KAP, Xu K, Calarfiore M, Poeck H, Caballero S, Devlin SM, Rapaport F, Dudakov JA, Hanash AM, Gyurkocza B, Murphy GF, Gomes C, Liu C, Moss EL, Falconer SB, Bhatt AS, Taur Y, Pamer EG, van den Brink MR, Jenq RR. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 2016; 8:339ra71. [PMID: 27194729 PMCID: PMC4991773 DOI: 10.1126/scitranslmed.aaf2311] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin-treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam-treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin-treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa D. Docampo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan U. Peled
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Medical College of Cornell University, New York, New York
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suelen M. Perobelli
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Enrico Velardi
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jennifer J. Tsai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann E. Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Odette M. Smith
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lauren F. Young
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jyotsna Gupta
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sophia R. Lieberman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hillary V. Jay
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katya F. Ahr
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kori A. Porosnicu Rodriguez
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ke Xu
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marco Calarfiore
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hendrik Poeck
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Caballero
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Franck Rapaport
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jarrod A. Dudakov
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Alan M. Hanash
- Weill Medical College of Cornell University, New York, New York
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Boglarka Gyurkocza
- Weill Medical College of Cornell University, New York, New York
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - George F. Murphy
- Program in Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Camilla Gomes
- Program in Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chen Liu
- Departments of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University, Newark, New Jersey
| | - Eli L. Moss
- Department of Medicine and Genetics, Stanford University, Stanford, California
| | - Shannon B. Falconer
- Department of Medicine and Genetics, Stanford University, Stanford, California
| | - Ami S. Bhatt
- Department of Medicine and Genetics, Stanford University, Stanford, California
| | - Ying Taur
- Weill Medical College of Cornell University, New York, New York
- Infectious Diseases Service, Lucille Castori Center for Microbes, Inflammation & Cancer, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric G. Pamer
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Medical College of Cornell University, New York, New York
- Infectious Diseases Service, Lucille Castori Center for Microbes, Inflammation & Cancer, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Medical College of Cornell University, New York, New York
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert R. Jenq
- Weill Medical College of Cornell University, New York, New York
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Sykes M. Immune tolerance in recipients of combined haploidentical bone marrow and kidney transplantation. Bone Marrow Transplant 2016; 50 Suppl 2:S82-6. [PMID: 26039215 DOI: 10.1038/bmt.2015.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of allogeneic hematopoietic cell transplantation (HCT) has been limited by transplant-associated toxicities related to the conditioning regimens used and to graft-vs-host disease (GVHD). The frequency and severity of GVHD observed when extensive HLA barriers are transgressed has greatly impeded the routine use of extensively HLA-mismatched HCT. Allogeneic HCT also has potential as an approach to organ allograft tolerance induction, but this potential has not been previously realized because of the toxicity associated with traditional conditioning. This paper reviews an approach to HCT involving reduced intensity conditioning that demonstrated sufficient safety in patients with hematologic malignancies, even in the HLA-mismatched transplant setting, to be applied for the induction of kidney allograft tolerance in humans with no other indication for HCT. These studies provided the first successful example of intentional organ allograft tolerance induction across HLA barriers in humans. Current data and hypotheses on the mechanisms of tolerance in these patients are reviewed.
Collapse
Affiliation(s)
- M Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Zhao K, Ruan S, Yin L, Zhao D, Chen C, Pan B, Zeng L, Li Z, Xu K. Dynamic regulation of effector IFN-γ-producing and IL-17-producing T cell subsets in the development of acute graft-versus-host disease. Mol Med Rep 2015; 13:1395-403. [PMID: 26647759 DOI: 10.3892/mmr.2015.4638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Graft-versus-host disease (GVHD) as the predominant complication of allogeneic hematopoietic stem cell transplantation remains to be fully understood. It is known that the cytokines produced by allogeneic reactive effector CD4+ and CD8+ T cells are involved in GVHD. However, the regulation and coordination of IFN-γ-producing and IL-17-producing effector T cells remain unclear. The present study aimed to investigate the dynamic changes of alloantigen-specific effector CD4+ T and CD8+ T cell subsets by flow cytometry, which produce inflammatory cytokines involved in the multistep GVHD pathogenesis progress. The results demonstrated that IL-17-producing CD8+ T (Tc17) cells and IFN-γ+CD8+ T (Tc1) cells were detected in the early stage of GVHD. The differentiation of CD4+ T cells into Th1 cell (IFN-γ+CD4+ T) and Th17 (IL-17+CD4+ T) cells was later than that of the Tc1 and Tc17 cells. The effector CD4+ T and CD8+ T cell subsets either became exhausted or became memory cells, exhibiting a CD62L-CD44+ phenotype following marked expansion during GVHD. Furthermore, T cell-associated type I (IL-2 and IFN-γ) and type II (IL-4 and IL-10) classical cytokines exhibited coordinated dynamic regulation. It was concluded that the differentiation of cytokine-producing Tc1 and Tc17 cells may be the key step in the initiation of GVHD, whereas CD4+ effector Th1 and Th17 cells are considered to be pathophysiological factors leading to the continuous aggravation of GVHD.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Suhong Ruan
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingling Yin
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Dongmei Zhao
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong Chen
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Bin Pan
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingyu Zeng
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
28
|
Eikmans M, van Halteren AGS, van Besien K, van Rood JJ, Drabbels JJM, Claas FHJ. Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. CHIMERISM 2015; 5:24-39. [PMID: 24762743 DOI: 10.4161/chim.28908] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microchimerism represents a condition where one individual harbors genetically distinct cell populations, and the chimeric population constitutes <1% of the total number of cells. The most common natural source of microchimerism is pregnancy. The reciprocal cell exchange between a mother and her child often leads to the stable engraftment of hematopoietic and non-hematopoietic stem cells in both parties. Interaction between cells from the mother and those from the child may result in maternal immune cells becoming sensitized to inherited paternal alloantigens of the child, which are not expressed by the mother herself. Vice versa, immune cells of the child may become sensitized toward the non-inherited maternal alloantigens of the mother. The extent of microchimerism, its anatomical location, and the sensitivity of the techniques used for detecting its presence collectively determine whether microchimerism can be detected in an individual. In this review, we focus on the clinical consequences of microchimerism in solid organ and hematopoietic stem cell transplantation, and propose concepts derived from data of epidemiologic studies. Next, we elaborate on the latest molecular methodology, including digital PCR, for determining in a reliable and sensitive way the extent of microchimerism. For the first time, tools have become available to isolate viable chimeric cells from a host background, so that the challenges of establishing the biologic mechanisms and function of these cells may finally be tackled.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Astrid G S van Halteren
- Immunology Laboratory; Willem Alexander Children's Hospital; Leiden University Medical Center; Leiden, the Netherlands
| | | | - Jon J van Rood
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands; Europdonor Foundation; Leiden, the Netherlands
| | - Jos J M Drabbels
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| |
Collapse
|
29
|
Li HW, Andreola G, Carlson AL, Shao S, Lin CP, Zhao G, Sykes M. Rapid Functional Decline of Activated and Memory Graft-versus-Host-Reactive T Cells Encountering Host Antigens in the Absence of Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1282-92. [PMID: 26085679 DOI: 10.4049/jimmunol.1401511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Giovanna Andreola
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Alicia L Carlson
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Steven Shao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Charles P Lin
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129;
| |
Collapse
|
30
|
Guerrero AD, Moyes JS, Cooper LJN. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. CHINESE JOURNAL OF CANCER 2015; 33:421-33. [PMID: 25189715 PMCID: PMC4190432 DOI: 10.5732/cjc.014.10100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Alan D Guerrero
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
31
|
Toubai T, Guoqing H, Rossi C, Mathewson N, Oravecz-Wilson K, Cummings E, Wu J, Sun Y, Choi S, Reddy P. Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncoimmunology 2015; 4:e1016699. [PMID: 26140241 PMCID: PMC4485841 DOI: 10.1080/2162402x.2015.1016699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 10/25/2022] Open
Abstract
The graft-versus-leukemia (GVL) effect following allogeneic hematopoietic stem cell transplantation (allo-HCT) is critical for its curative potential. Hwever, GVL is tightly linked to graft-versus-host disease (GVHD). Among hematological malignancies, acute lymphoblastic leukemia (ALL) is the most resistant to GVL, although the reasons for this remain poorly understood. Clinical studies have identified alterations in Ikaros (Ik) transcription factor as the major marker associated with poor outcomes in ALL. We have shown that the absence of Ik in professional host-derived hematopoietic antigen-presenting cells (APCs) exacerbates GVHD. However, whether Ik expression plays a role in resistance to GVL is not known. In this study we used multiple clinically relevant murine models of allo-HCT to explore whether Ik expression in hematopoietic APCs and/or leukemic cells is critical for increasing resistance to GVL and thus inducing relapse. We found that Ik deficiency in host APCs failed to enhance GVL despite increased GVHD severity. Mechanistic studies with bone marrow (BM) chimeras and tetramer analyses demonstrated reduced tumor-specific immunodominant (gag+) antigen responses in the [B6Ik-/-→B6] group. Loss of GVL was observed when both the leukemia cells and the host APCs were deficient in Ik. We found that calreticulin (CRT) expression in host antigen-presenting dendritic cells (DCs) of Ik-/- animals was significantly lower than in wild-type animals. Rescuing CRT expression in Ik-/- DCs improved leukemic-specific cytotoxic T cell function. Together, our data demonstrate that the absence of Ikaros in host hematopoietic cells promotes resistance to GVL despite increasing GVHD and thus provides a potential mechanism for the poor outcome of Ik-/- ALL patients.
Collapse
Key Words
- 51Cr, Chromium-51
- ALL, acute lymphoblastic leukemia
- APC, allophycocyanin
- APCs, antigen-presenting cells
- Allo-HCT, allogeneic hematopoietic stem cell transplantation
- BC, blast crisis
- BLI, bioluminescence imaging
- BM, bone marrow
- BMDCs, bone marrow derived dendritic cells
- BMT, bone marrow transplantation
- CML, chronic myeloid leukemia
- CRT, calreticulin
- CTL, cytotoxic T cell
- DCs, dendritic cells
- FACS, Fluorescence-activated cell sorting
- FBS, fatal bovine serum
- FITC, fluorescein isothiocyanate
- GVHD, graft-versus-host-disease
- GVL, graft-versus-leukemia
- HCT, hematopoietic stem cell transplantation
- ICAM-1, intracellular adhesion molecule 1
- Ik DN, Ikaros dominant negative
- Ik, Ikaros
- Ikaros
- MACS, magnetic- activated cell sorting
- MBL-2, moloney-murine sarcoma virus-induced MBL-2 lymphoma cells
- MHC, major histocompatibility complex
- MLR, mixed lymphocyte reaction
- MiHAs, multiple minor histocompatibility antigens
- PBS, phosphate buffered saline
- PE, phycoerythrin
- SIRP-α, signal regulatory protein α
- TCD-BM, T cell depleted bone marrow
- TSA, tumor specific antigen
- Tregs, regulatory T cells
- UCUCA, University Committee on Use and Care of Animals
- WT, wild-type
- antigen-presenting cells
- bone marrow transplantation
- graft-versus-leukemia
- luc+, luciferase+
- mAbs, monoclonal antibodies
- mCRT, murine calreticulin
Collapse
Affiliation(s)
- Tomomi Toubai
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Hou Guoqing
- Department of Pediatrics and Communicable Diseases; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Corrine Rossi
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Nathan Mathewson
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Emily Cummings
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Julia Wu
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Yaping Sun
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Sung Choi
- Department of Pediatrics and Communicable Diseases; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Pavan Reddy
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| |
Collapse
|
32
|
Jaskula E, Lange A, Dlubek D, Kyrcz-Krzemień S, Markiewicz M, Dzierzak-Mietla M, Jedrzejczak WW, Gronkowska A, Nowak J, Warzocha K, Hellmann A, Kowalczyk J, Drabko K, Goździk J, Mizia S. IL-10 promoter polymorphisms influence susceptibility to aGvHD and are associated with proportions of CD4+FoxP3+ lymphocytes in blood after hematopoietic stem cell transplantation. ACTA ACUST UNITED AC 2014; 82:387-96. [PMID: 24498995 DOI: 10.1111/tan.12255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/13/2013] [Accepted: 10/21/2013] [Indexed: 01/17/2023]
Abstract
Four hundred and ninety-five patients (390 and 105 grafted from unrelated and sibling (SIB) donors, respectively) and their donors were analyzed for the impact of interleukin-10 (IL-10) promoter genotype [rs18000896 (-1082 G/A), rs18000871 (-819 C/T) and rs18000872 (-592 C/A)] on the outcome of hematopoietic stem cell transplantation (HSCT). Patients having ACC haplotype were at a lower risk of acute graft versus host disease (aGvHD, grade > I) if transplanted from human leukocyte antigen (HLA) well-matched (10/10) unrelated donors (20/135 vs 39/117, P < 0.001, Pcorr = 0.002), which was not seen if patients were transplanted from either sibling (SIB) or poorly matched (<10/10) unrelated donors (MUD). In addition, GCC haplotype positive recipients of unrelated donor transplants tended to be more susceptible to aGvHD (68/199 vs 39/169, P = 0.019, Pcorr = 0.057). Multivariate logistic regression analysis in the MUD transplanted group showed that donor-recipient human leukocyte antigen (HLA) mismatch [odds ratio (OR) = 3.937, P = 0.001] and a lack of ACC haplotype in recipients (OR = 0.417, P = 0.013) played a significant role as independent risk factors of aGvHD grade > I. ACC carriers had higher proportions of FoxP3+ lymphocytes gated in CD4+ lymphocytes as compared with patients with other IL-10 haplotypes. It was seen at the time of hematological recovery (mean ± SEM: 3.80 ± 0.91% vs 2.06 ± 0.98%, P = 0.012) and 2 weeks later (5.32 ± 0.87% vs 2.50 ± 0.83%, P = 0.013); -592 C/A polymorphism was separately analyzed and it was found that AA homozygotes tended to have a higher incidence of aGvHD (8/15 vs 116/456, P = 0.034) and low proportions of FoxP3 CD4+ lymphocytes in blood (0.43 ± 0.22% vs 4.32 ± 0.71%, P = 0.051) measured 2 weeks after hematological recovery. Functional IL-10 polymorphism associated features influenced the risk of aGvHD with a positive effect of ACC on the pool of Treg in blood.
Collapse
Affiliation(s)
- E Jaskula
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Melenhorst JJ, Castillo P, Hanley PJ, Keller MD, Krance RA, Margolin J, Leen AM, Heslop HE, Barrett AJ, Rooney CM, Bollard CM. Graft versus leukemia response without graft-versus-host disease elicited by adoptively transferred multivirus-specific T-cells. Mol Ther 2014; 23:179-83. [PMID: 25266309 DOI: 10.1038/mt.2014.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/22/2014] [Indexed: 11/09/2022] Open
Abstract
A 12-year-old boy with refractory acute lymphoblastic leukemia received a haploidentical transplant from his mother. As prophylaxis for Epstein-Barr virus (EBV), cytomegalovirus (CMV) and adenovirus, he received ex vivo expanded virus-specific donor T cells 3.5 months after transplant. Four weeks later leukemic blasts bearing the E2A deletion, identified by fluorescent in situ hybridization (FISH), appeared transiently in the blood followed by a FISH-negative hematological remission, which was sustained until a testicular relapse 3.5 months later. Clearance of the circulating leukemic cells coincided with a marked increase in circulating virus-specific T cells. The virus-specific cytotoxic T-cell (CTL) line showed strong polyfunctional reactivity with the patient's leukemic cells but not phytohemagglutinin (PHA) blasts, suggesting that virus-specific CTL lines may have clinically significant antileukemia activity.
Collapse
Affiliation(s)
- Jan J Melenhorst
- 1] Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA [2] Translational Research Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Castillo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, District of Columbia, USA
| | - Michael D Keller
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, District of Columbia, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Judith Margolin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Catherine M Bollard
- 1] Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA [2] Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, District of Columbia, USA
| |
Collapse
|
34
|
5-azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity. Mediators Inflamm 2014; 2014:418292. [PMID: 24757283 PMCID: PMC3976863 DOI: 10.1155/2014/418292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza.
Collapse
|
35
|
Toubai T, Mathewson N, Reddy P. The role of dendritic cells in graft-versus-tumor effect. Front Immunol 2014; 5:66. [PMID: 24600454 PMCID: PMC3930914 DOI: 10.3389/fimmu.2014.00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells. DCs play a pivotal role in determining the character and magnitude of immune responses to tumors. Host and donor hematopoietic-derived DCs play a critical role in the development of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation. GVHD is tightly linked with the graft-versus-tumor (GVT) effect. Although both host and donor DCs are important regulators of GVHD, the role of DCs in GVT is poorly understood. GVT is caused by donor T cells that attack recipient tumor cells. The donor T cells recognize alloantigens, and tumor specific antigens (TSAs) are mediating GVHD. The process of presentation of these antigens, especially TSAs remains unknown. Recent data suggested that DC may be essential role for inducing GVT. The mechanisms that DCs possess may include direct presentation, cross-presentation, cross-dressing. The role they play in GVT will be reviewed.
Collapse
Affiliation(s)
- Tomomi Toubai
- Blood and Marrow Transplantation Program, Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Nathan Mathewson
- Blood and Marrow Transplantation Program, Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Pavan Reddy
- Blood and Marrow Transplantation Program, Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| |
Collapse
|
36
|
Stenger EO, Rosborough BR, Mathews LR, Ma H, Mapara MY, Thomson AW, Turnquist HR. IL-12hi rapamycin-conditioned dendritic cells mediate IFN-γ-dependent apoptosis of alloreactive CD4+ T cells in vitro and reduce lethal graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:192-201. [PMID: 24239650 PMCID: PMC3964782 DOI: 10.1016/j.bbmt.2013.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
Rapamycin (RAPA) inhibits the mechanistic target of rapamycin (mTOR), a crucial immune system regulator. Dendritic cells (DC) generated in RAPA (RAPA-DC) enrich for CD4(+) forkhead box p3 (FoxP3(+)) regulatory T cells and induce T cell apoptosis by an unknown mechanism. RAPA-DC also promote experimental allograft survival, yet paradoxically secrete increased IL-12, crucial for the generation of IFN-γ(+) CD4(+) T cells. However, IFN-γ is pro-apoptotic and IL-12-driven IFN-γ inhibits experimental graft-versus-host disease (GVHD). We hypothesized that IL-12(hi) RAPA-DC would facilitate IFN-γ-mediated apoptosis of alloreactive T cells and, unlike control (CTR)-DC, would reduce lethal GVHD. Following LPS stimulation, RAPA-DC exhibited decreased MHCII and co-stimulatory molecules and contained a significant population of CD86(lo) IL-12(hi) cells. Consistent with our hypothesis, both unstimulated and LPS-stimulated RAPA-DC enhanced alloreactive CD4(+) T cell apoptosis in culture. Augmented T cell apoptosis was ablated by IFN-γ neutralization or using T cells lacking the IFN-γ receptor, and it was associated with increased expression of Fas and cleaved caspase 8. DC production or responses to IFN-γ were not important to increased apoptotic functions of RAPA-DC. LPS-stimulated IL-12p40(-/-) RAPA-DC induced lower levels of T cell apoptosis in culture, which was further decreased with addition of anti-IFN-γ. Finally, whereas CTR-DC accelerated mortality from GVHD, LPS-treated RAPA-DC significantly prolonged host survival. In conclusion, increased apoptosis of allogeneic CD4(+) T cells induced by LPS-stimulated IL-12(hi) RAPA-DC is mediated in vitro through IFN-γ and in part by increased IL-12 expression. Enhanced production of IL-12, the predominant inducer of IFN-γ by immune cells, is a probable mechanism underlying the capacity of LPS-treated RAPA-DC to reduce GVHD.
Collapse
Affiliation(s)
- Elizabeth O Stenger
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Pediatric Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Brian R Rosborough
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa R Mathews
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Huihui Ma
- Division of Hematology/Oncology, Department of Medicine, Hematologic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Markus Y Mapara
- Division of Hematology/Oncology, Department of Medicine, Hematologic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hēth R Turnquist
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Abstract
Treatment of acute myeloid leukemia (AML) with current chemotherapy regimens is still disappointing, with overall survival rates of ≤40% at 5 years. It is now well established that AML cells can evade the immune system through multiple mechanisms, including the expression of the enzyme indoleamine 2,3 dioxygenase. Immunotherapeutic strategies, including both active, such as vaccination with leukemia-associated antigens, and passive, such as adoptive transfer of allogeneic natural killer cells, may overcome leukemia escape and lead to improved cure. Allogeneic hemopoeitic stem cell transplantation, the most effective treatment of AML, is the best known model of immunotherapy. Following transplant, recipient AML cells are eradicated by donor immune cells through the graft-versus-leukemia (GVL) effect. However, GVL is clinically associated with graft-versus-host disease, the major cause of mortality after transplant. GVL is mediated by donor T cells recognizing either leukemia-associated antigens or minor as well as major histocompatibility antigens. Several innovative strategies have been devised to generate leukemia reactive T cells so as to increase GVL responses with no or little graft-versus-host disease.
Collapse
Affiliation(s)
- Mario Arpinati
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| | - Antonio Curti
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| |
Collapse
|
38
|
Duggleby RC, Madrigal JA. Methods of detection of immune reconstitution and T regulatory cells by flow cytometry. Methods Mol Biol 2014; 1109:159-86. [PMID: 24473784 DOI: 10.1007/978-1-4614-9437-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allogeneic hematopoietic stem cell therapy (HSCT) remains one of the few curative treatments for high-risk hematological malignancies (high-risk leukemia, myelodysplastic syndromes, advanced myeloproliferative disorders, high-risk lymphomas, and multiple myeloma) and is currently applied in more than 15,000 patients per year in Europe. Following HSCT, patients experience a period of reconstitution of the immune system, which seems to be highly dependent on conditioning, immunosuppression regimes, and the level of adverse events the patients experience. During this reconstitution period, the patient is immune compromised and susceptible to opportunistic infections and disease relapse. Consequently, a large number of clinical studies have been devoted to monitoring the recovery of the immune system following HSCT in the hopes of determining which cellular subsets are indicative of a favorable outcome. In this chapter we review the methods that have been employed to monitor the immune reconstitution and what clinical observations have been made. Of particular interest is the regulatory T cell (Treg) subset, which has been associated with tolerance and has been the subject of recent clinical trials as a possible cellular therapy for rejection reactions. Finally we will detail a proposed methodology for the flow cytometric assessment of cellular reconstitution post-HSCT.
Collapse
|
39
|
Abstract
"Mixed chimerism" refers to a state in which the lymphohematopoietic system of the recipient of allogeneic hematopoietic stem cells comprises a mixture of host and donor cells. This state is usually attained through either bone marrow or mobilized peripheral blood stem cell transplantation. Although numerous treatment regimens have led to transplantation tolerance in mice, the induction of mixed chimerism is currently the only treatment modality that has been successfully extended to large animals and to the clinic. Here we describe and compare the use of mixed chimerism to establish transplantation tolerance in mice, pigs, monkeys, and in the clinic. We also attempt to correlate the mechanisms involved in achieving tolerance with the nature of the tolerance that has resulted in each case.
Collapse
Affiliation(s)
- David H Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | | | | |
Collapse
|
40
|
Sagoo P, Ratnasothy K, Tsang Y, Barber LD, Noble A, Lechler RI, Lombardi G. Alloantigen-specific regulatory T cells prevent experimental chronic graft-versus-host disease by simultaneous control of allo- and autoreactivity. Eur J Immunol 2012; 42:3322-33. [DOI: 10.1002/eji.201242770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/02/2012] [Accepted: 09/12/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Pervinder Sagoo
- NIHR Biomedical Research Centre; Guy's & St Thomas’ NHS Foundation Trust & King's College London, London; UK
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Kulachelvy Ratnasothy
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Yuen Tsang
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Linda D. Barber
- Department of Haematological Medicine; King's College London; London UK
| | - Alistair Noble
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; King's College London; London UK
| | - Robert I. Lechler
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| |
Collapse
|
41
|
Song Y, Sun W, Weng X, Liang Z, Yu Q, Wang Z, Ouyang L, Chen J, Wu X, Shen G, Wu X. Tumor rejection effects of allorestricted tumor peptide-specific CD4(+) T cells on human cervical cancer cell xenograft in nude mice. Cell Transplant 2012; 21:1503-14. [PMID: 22525838 DOI: 10.3727/096368912x640510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Generation of tumor specific alloreactive CD4(+) T cells is important to circumvent tumor tolerance. Here, we generate allorestricted peptide-specific CD4(+) T cells by coculture of lymphocytes and autologous monocytes bearing allogeneic HLA-DR15 molecule associated with its restricted peptide. Binding of a dimeric HLA-DR15/IgG1-Fc fusion protein (the dimer) to HLA-DR15 negative (HLA-DR15-ve) monocytes made the monocytes coated with the allogeneic epitope. An increased proliferation of CD4(+) T cells and induction of Th1 cells appeared after coculturing of HLA-DR15-ve lymphocytes and the autologous monocytes loaded with the dimer. The cocultural bulks showed an increased frequency of the specific dimer-stained CD4(+) T cells and the expanded CD4(+) T cells exhibited an elevated IFN-γ production in response to specific TCR ligand. Tumor rejection effects of the allorestricted E7-specific CD4(+) T cells raised by the coculture were observed in nude mice challenged with human cervical cancer cell SiHa expressing both HLA-DR15 and E7 antigens, as the tumor avoidance and life span of the mice were improved after adoptive transfer of the CD4(+) T cells. This study may help to develop strategies to separate graft-versus-leukemia or graft-versus-tumor reaction from graft-versus-host disease, and add to the pool of human high-avidity TCRs specific for tumor or virus antigens.
Collapse
Affiliation(s)
- Yinhong Song
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dendritic cells and regulation of graft-versus-host disease and graft-versus-leukemia activity. Blood 2012; 119:5088-103. [PMID: 22403259 DOI: 10.1182/blood-2011-11-364091] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cell transplantation is the only curative treatment for many malignant hematologic diseases, with an often critical graft-versus-leukemia effect. Despite peritransplant prophylaxis, GVHD remains a significant cause of posthematopoietic stem cell transplantation morbidity and mortality. Traditional therapies have targeted T cells, yet immunostimulatory dendritic cells (DCs) are critical in the pathogenesis of GVHD. Furthermore, DCs also have tolerogenic properties. Monitoring of DC characteristics may be predictive of outcome, and therapies that target DCs are innovative and promising. DCs may be targeted in vivo or tolerogenic (tol) DCs may be generated in vitro and given in the peritransplant period. Other cellular therapies, notably regulatory T cells (T(reg)) and mesenchymal stem cells, mediate important effects through DCs and show promise for the prevention and treatment of GVHD in early human studies. Therapies are likely to be more effective if they have synergistic effects or target both DCs and T cells in vivo, such as tolDCs or T(reg). Given the effectiveness of tolDCs in experimental models of GVHD and their safety in early human studies for type 1 diabetes, it is crucial that tolDCs be investigated in the prevention and treatment of human GVHD while ensuring conservation of graft-versus-leukemia effects.
Collapse
|
43
|
Choi MS, Lim JY, Cho BS, Kim YJ, Chung NG, Jeong DC, Youn H, Lee C, Choi EY, Min CK. The role of regulatory T cells during the attenuation of graft-versus-leukemia activity following donor leukocyte infusion in mice. Leuk Res 2011; 35:1549-56. [DOI: 10.1016/j.leukres.2011.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
|
44
|
Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic-derived antigen-presenting cells. Blood 2011; 119:3844-53. [PMID: 22101894 DOI: 10.1182/blood-2011-10-384057] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is currently thought that acute GVHD cannot be elicited in the absence of Ag presentation by radiosensitive host hematopoietic-derived APCs after allogeneic BM transplantation. Because clinical data suggest that sex-mismatched H-Y Ags may be important minor histocompatibility Ags for GVH responses, we directly tested their relevance and ability to initiate GVHD when presented by either the hematopoietic- (host or donor) or the nonhematopoietic-derived APCs. H-Y minor Ag incompatibility elicited both CD4(+) and CD8(+) T-cell driven GVHD lethality. Studies with various well-established BM chimera recipients, in contrast to the current views, have reported that in the absence of functional radiosensitive host hematopoietic-derived APCs, H-Y Ag presentation by either the donor hematopoietic-derived or the host nonhematopoietic-derived APCs is sufficient for inducing GVHD. Our data further suggest that infusion of sufficient numbers of alloreactive donor T cells will induce GVHD in the absence of radiosensitive host hematopoietic-derived APCs.
Collapse
|
45
|
Amir AL, Hagedoorn RS, van Luxemburg-Heijs SAP, Marijt EWA, Kruisselbrink AB, Frederik Falkenburg JH, Heemskerk MHM. Identification of a coordinated CD8 and CD4 T cell response directed against mismatched HLA Class I causing severe acute graft-versus-host disease. Biol Blood Marrow Transplant 2011; 18:210-9. [PMID: 22015995 DOI: 10.1016/j.bbmt.2011.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 10/12/2011] [Indexed: 11/27/2022]
Abstract
After HLA class I-mismatched stem cell transplantation, allo-HLA-directed CD8 T cell responses can be activated without the help of CD4 T cells if memory CD8 T cells cross-reactive against the allo-HLA class I are present or if naïve CD8 T cells are administered during inflammatory conditions. However, in the absence of inflammatory conditions, cooperation between CD4 and CD8 T cells likely is required for an effective primary CD8 T cell response directed against allo-HLA class I. In this study we investigated whether a coordinated response of CD8 and CD4 T cells could be demonstrated in an HLA class I-directed immune response in a patient who developed severe graft-versus-host disease (GVHD) after the administration HLA-A2-mismatched donor lymphocyte infusion in the absence of inflammatory conditions. A previously administered donor lymphocyte infusion from the same donor did not lead to an immune response, excluding the presence of a substantial pool of CD8 T cells cross-reactive against HLA-A2 within the memory T cell compartment of the donor. Analysis of isolated donor CD8 and CD4 T cell clones activated during the GVHD revealed a polyclonal CD8 T cell response directed against the mismatched HLA-A2 and a polyclonal CD4 T cell response recognizing HLA-A2-derived peptides presented in HLA class II. In addition, leukemic blasts present at the time of the emergence of GVHD expressed HLA-A2 and HLA class II and could activate both the CD4 and CD8 alloreactive T cells. Our results demonstrate that the GVHD was mediated by a cooperative CD4 and CD8 response directed against the mismatched HLA-A2 and suggest that leukemic blasts possibly activated this CD8 and CD4 T cell response.
Collapse
Affiliation(s)
- Avital L Amir
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Memory T cells from minor histocompatibility antigen-vaccinated and virus-immune donors improve GVL and immune reconstitution. Blood 2011; 118:5965-76. [PMID: 21917752 DOI: 10.1182/blood-2011-07-367011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Donor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (T(M)) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host tissues. One approach to augmenting GVL has been to infuse ex vivo-generated T cells with defined specificities; however, this requires expertise that is not widely available. In the present study, we tested an alternative approach, adoptive immunotherapy with CD8+ T(M) from donors vaccinated against a single minor histocompatibility antigen (miHA) expressed by leukemia cells. Vaccination against the miHA H60 greatly augmented T(M)-mediated GVL against mouse chronic-phase (CP-CML) and blast crisis chronic myeloid leukemia (BC-CML). T(M)-mediated GVL was antigen specific and was optimal when H60 expression was hematopoietically restricted. Even when H60 was ubiquitous, donor H60 vaccination had a minimal impact on GVHD. T(M) from lymphocytic choriomeningitis virus (LCMV)-immune and H60-vaccinated donors augmented GVL and protected recipients from LCMV. These data establish a strategy for augmenting GVL and immune reconstitution without elaborate T-cell manipulation.
Collapse
|
47
|
Elkin G, Prigozhina TB, Slavin S, Gurevitch O, Khitrin S, Resnick IB. Visualization of immune response kinetics in full allogeneic chimeras. AMERICAN JOURNAL OF BLOOD RESEARCH 2011; 1:110-118. [PMID: 22432073 PMCID: PMC3301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Donor Lymphocyte Infusion (DLI) is a well-recognized tool for augmentation of the anti-leukemia effect after mismatched bone marrow transplantation. Experimental results show, however, that DLI efficacy is strongly dependent on the number of donor hematopoietic cells persisting in recipient after transplantation. It is strong in mixed chimeras and relatively weak in full chimeras (FC) that replace host antigen-presenting cells by donor antigen-presenting cells. In this study we applied a new in vivo cytotoxicity monitoring method for evaluation of the changes in FC anti-host immunity after co-transplantation of donor and host hematopoietic cells together. METHOD Full hematopoietic chimeras and naïve control mice were transplanted with a mixture of equivalent numbers of donor and recipient or donor and third party splenocytes labeled by a cell-permeable fluorescent dye CFDA-SE. The animals were sacrificed at various time points, and their splenocyte suspensions were prepared, depleted of red blood cells, stained with allophycocyanin-labeled anti-H2(b) antibodies, and analyzed using fluorescence-activated cell sorting. The immune response was assessed according to the percentage of single positive CFDA-SE(+)/ H2(b-) cells of all CFDA-SE(+) cells. RESULTS FC grafted with splenocytes from similar FC mixed with splenocytes from naïve host-type or third-party-type mice rejected host cells within 14 days, and third-party cells within 7 days. NK cell depletion in vivo had no influence on host cell rejection kinetics. Co-infusion of host-type splenocytes with splenocytes obtained from naïve donor-type mice resulted in significant acceleration of host cell rejection (10 days). Naïve mice rejected the same amount of allogeneic lymphocytes within 3 days. CONCLUSIONS Proposed method provides a simple and sensitive tool to evaluate in vivo post-transplant cytotoxicity in different experimental settings. The method demonstrates that FC is specifically deficient in their ability to reject host lymphocytes even when antigen-presenting host cells are provided. DLI improve anti-host immune response in FC but can not restore it to the level observed in naïve donor-type mice.
Collapse
|
48
|
Translational studies in hematopoietic cell transplantation: treatment of hematologic malignancies as a stepping stone to tolerance induction. Semin Immunol 2011; 23:273-81. [PMID: 21705229 DOI: 10.1016/j.smim.2011.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 05/26/2011] [Indexed: 11/23/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) has most commonly been used to treat hematologic malignancies, where it is often the only potentially curative option available. The success of HCT has been limited by transplant-associated toxicities related to the conditioning regimens used and to the common immunologic consequence of donor T cell recognition of recipient alloantigens, graft-vs-host disease (GVHD). The frequency and severity of GVHD observed when extensive HLA barriers are transgressed has essentially precluded the routine use of extensively HLA-mismatched HCT. Allogeneic HCT also has potential as an approach to organ allograft tolerance induction, but this potential has not been previously realized because of the toxicity associated with traditional conditioning. In this paper we review two approaches to HCT involving reduced intensity conditioning regimens that have been associated with improvements in safety in patients with hematologic malignancies, even in the HLA-mismatched transplant setting. These strategies have been applied in the first successful pilot studies for the induction of organ allograft tolerance in humans. Thus, we summarize an example of vertical translational research between animal models and humans and horizontal translation between two separate goals that culminated in the use of HCT to achieve allograft tolerance in humans.
Collapse
|
49
|
Sachs DH, Sykes M, Kawai T, Cosimi AB. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol 2011; 23:165-73. [PMID: 21839648 PMCID: PMC3178004 DOI: 10.1016/j.smim.2011.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 07/10/2011] [Indexed: 01/20/2023]
Abstract
The induction of transplantation tolerance could liberate organ transplant recipients from the complications of life-long chronic immunosuppression. The original description of tolerance induction through mixed hematopoietic chimerism in mice utilized lethal whole body irradiation as the preparative regimen for achieving mixed chimerism. While such a regimen might be acceptable for treatment of patients with malignancies, which might also respond to the therapeutic effects of radiation, its toxicity would be unacceptable for patients in need only of an organ transplant. Graft-vs.-host disease, which is frequently a complication of mismatched bone marrow transplantation, would likewise be unacceptable for ordinary clinical transplantation. Therefore, as we have extended the use of this modality for tolerance induction from mice to large animal models, we have attempted to design preparative regimens that avoid both of these complications. In this article, we review our studies of mixed chimerism in mice, miniature swine and monkeys, as well as the results of our recent clinical studies that have extended this treatment modality to a series of kidney transplant patients who have been successfully weaned from all immunosuppression while maintaining stable renal function for up to 8 years.
Collapse
Affiliation(s)
- David H Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Boston, MA 02129, United States.
| | | | | | | |
Collapse
|
50
|
Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood 2011; 117:7063-9. [PMID: 21566096 DOI: 10.1182/blood-2011-01-329185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Langerhans cells (LCs) are a distinct population of dendritic cells that form a contiguous network in the epidermis of the skin. Although LCs possess many of the properties of highly proficient dendritic cells, recent studies have indicated that they are not necessary to initiate cutaneous immunity. In this study, we used a tractable model of cutaneous GVHD, induced by topical application of a Toll-like receptor agonist, to explore the role of LCs in the development of tissue injury. By adapting this model to permit inducible and selective depletion of host LCs, we found that GVHD was significantly reduced when LCs were absent. However, LCs were not required either for CD8 T-cell activation within the draining lymph node or subsequent homing of effector cells to the epidermis. Instead, we found that LCs were necessary for inducing transcription of IFN-γ and other key effector molecules by donor CD8 cells in the epidermis, indicating that they license CD8 cells to induce epithelial injury. These data demonstrate a novel regulatory role for epidermal LCs during the effector phase of an inflammatory immune response in the skin.
Collapse
|