1
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
3
|
Kanegasaki S, Tsuchiya T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J Cell Biochem 2021; 122:1313-1325. [PMID: 33969922 DOI: 10.1002/jcb.29949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Tsuchiya
- Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
4
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
5
|
Sethumadhavan A, Mani M. Kit activates interleukin-4 receptor and effector signal transducer and activator of transcription 6 independent of its cognate ligand in mouse mast cells. Immunology 2020; 159:441-449. [PMID: 31957000 DOI: 10.1111/imm.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Signaling by Kit has been extensively studied in hematopoietic cells and is essential for the survival, proliferation and maintenance of hematopoietic stem and progenitor cells. In addition to the activation of intrinsic signaling pathways, Kit has been shown to interact with lineage-restricted type I cytokine receptors and produce cross signals, e.g. erythropoietin receptor, interleukin-7 receptor (IL-7R), IL-3R. Based on the earlier studies, we hypothesize that Kit activate other type I cytokine receptors in a cell-specific manner and execute cell-specific function. To investigate other Kit-activated receptors, we tested Kit and IL-4R cross-receptor activation in murine bone-marrow-derived mast cells, which express both Kit and IL-4R at the surface level. Kit upon activation by Kit ligand (KL), activated IL-4Rα, γC , and signal transducer and activator of transcription 6 independent of its cognate ligand IL-4. Though KL and IL-4 are individually mitogenic, combinations of KL and IL-4 synergistically promoted mast cell proliferation. Furthermore, inhibition of lipid raft formation by methyl-β-cyclodextrin resulted in loss of synergistic proliferation. Together the data suggest IL-4R as a novel Kit-activated receptor. Such cross-receptor activations are likely to be a universal mechanism of Kit signaling in hematopoiesis.
Collapse
Affiliation(s)
- Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
7
|
Alomari M, Almohazey D, Almofty SA, Khan FA, Al Hamad M, Ababneh D. Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation. Cells 2019; 8:cells8060630. [PMID: 31234505 PMCID: PMC6627378 DOI: 10.3390/cells8060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer's, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).
Collapse
Affiliation(s)
- Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Deena Ababneh
- Department of Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
8
|
High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow. Nat Commun 2019; 10:523. [PMID: 30705272 PMCID: PMC6355776 DOI: 10.1038/s41467-018-08228-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Despite recent in vivo data demonstrating that high-fat diet (HFD)-induced obesity leads to major perturbations in murine hematopoietic stem cells (HSC), the direct role of a HFD is not yet completely understood. Here, we investigate the direct impact of a short-term HFD on HSC and hematopoiesis in C57BL/6J mice compared with standard diet-fed mice. We detect a loss of half of the most primitive HSC in the bone marrow (BM) cells of HFD-fed mice, which exhibit lower hematopoietic reconstitution potential after transplantation. Impaired maintenance of HSC is due to reduced dormancy after HFD feeding. We discover that a HFD disrupts the TGF-β receptor within lipid rafts, associated to impaired Smad2/3-dependent TGF-β signaling, as the main molecular mechanism of action. Finally, injecting HFD-fed mice with recombinant TGF-β1 avoids the loss of HSC and alteration of the BM’s ability to recover, underscoring the fact that a HFD affects TGF-β signaling on HSC. High fat diets (HFD) are thought to perturb murine hematopoiesis as a result of obesity. Here the authors find that short-term HFD reduces hematopoietic stem cells (HSC), disrupts lipid rafts and TGF-β1 signalling. Injecting HFD-fed mice with recombinant TGF-β1 can rescue HSC loss.
Collapse
|
9
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Saint-Paul L, Nguyen CH, Buffière A, Pais de Barros JP, Hammann A, Landras-Guetta C, Filomenko R, Chrétien ML, Johnson P, Bastie JN, Delva L, Quéré R. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts. Oncotarget 2018; 7:64785-64797. [PMID: 27579617 PMCID: PMC5323116 DOI: 10.18632/oncotarget.11622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 01/19/2023] Open
Abstract
CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.
Collapse
Affiliation(s)
- Laetitia Saint-Paul
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | - Anne Buffière
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Jean-Paul Pais de Barros
- LipSTIC Labex, Dijon, France.,Plateforme de lipidomique, Université Bourgogne-Franche-Comté, Dijon, France
| | - Arlette Hammann
- Plateforme de cytométrie, Université Bourgogne-Franche-Comté, Dijon, France
| | - Corinne Landras-Guetta
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | | | - Marie-Lorraine Chrétien
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Noël Bastie
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Laurent Delva
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Ronan Quéré
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| |
Collapse
|
11
|
Aryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun 2016; 7:12313. [PMID: 27460411 PMCID: PMC4974469 DOI: 10.1038/ncomms12313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation. Angiopoietin-like 4 protein (ANGPTL4) is a regulator of lipoprotein metabolism whose role in atherosclerosis has been controversial. Here the authors show that ANGPTL4 deficiency in haematopoietic cells increases atherogenesis by promoting myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Elisa Araldi
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Shun He
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Benjamin G Chousterman
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ashley M Fenn
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Amarylis Wanschel
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Julio Madrigal-Matute
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Nikhil Warrier
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Jose L Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jimenez-Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
12
|
Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell Signal 2015. [DOI: 10.1016/j.cellsig.2015.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
14
|
Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res 2015; 56:1594-605. [PMID: 26116739 DOI: 10.1194/jlr.m059972] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.
Collapse
Affiliation(s)
- Hideo Ogiso
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
15
|
Ratajczak MZ, Adamiak M. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia 2015; 29:1452-7. [PMID: 25748684 DOI: 10.1038/leu.2015.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/28/2022]
Abstract
Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein microdomains, known as lipid rafts, which float freely in the membrane bilayer. These structures have an important role in assembling signaling molecules (e.g., Rac-1, RhoH and Lyn) together with surface receptors, such as the CXCR4 receptor for α-chemokine stromal-derived factor-1, the α4β1-integrin receptor (VLA-4) for vascular cell adhesion molecule-1 and the c-kit receptor for stem cell factor, which together regulate several aspects of hematopoietic stem/progenitor cell (HSPC) biology. Here, we discuss the role of lipid raft integrity in the retention and quiescence of normal HSPCs in bone marrow niches as well as in regulating HSPC mobilization and homing. We will also discuss the pathological consequences of the defect in lipid raft integrity seen in paroxysmal nocturnal hemoglobinuria and the emerging evidence for the involvement of lipid rafts in hematological malignancies.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - M Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
16
|
Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell 2015; 26:1711-27. [PMID: 25717186 PMCID: PMC4436782 DOI: 10.1091/mbc.e14-07-1221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
MS4A4 traffics through endocytic recycling pathways and stabilizes surface KIT expression by regulating endocytosis and recycling. Silencing MS4A4 reduces KIT recruitment to lipid raft microdomains and PLCg1 signaling while promoting AKT signaling, cell migration, and proliferation. This study is the first to describe functions for human MS4A4. MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C Music
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation. Nat Commun 2014; 5:5715. [PMID: 25493654 PMCID: PMC4284665 DOI: 10.1038/ncomms6715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022] Open
Abstract
Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit's kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation.
Collapse
|
18
|
Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, Shimada T, Tanimura A, Matsui K, Yokota T, Oritani K, Tanabe K, Watanabe T, Kanakura Y, Matsumura I. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS One 2014; 9:e109441. [PMID: 25279552 PMCID: PMC4184852 DOI: 10.1371/journal.pone.0109441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/07/2014] [Indexed: 11/29/2022] Open
Abstract
CALM is implicated in the formation of clathrin-coated vesicles, which mediate endocytosis and intracellular trafficking of growth factor receptors and nutrients. We previously found that CALM-deficient mice suffer from severe anemia due to the impaired clathrin-mediated endocytosis of transferrin receptor in immature erythroblast. However, CALM has been supposed to regulate the growth and survival of hematopoietic stem/progenitor cells. So, in this study, we focused on the function of CALM in these cells. We here show that the number of Linage−Sca-1+KIT+ (LSK) cells decreased in the fetal liver of CALM−/− mice. Also, colony forming activity was impaired in CALM−/− LSK cells. In addition, SCF, FLT3, and TPO-dependent growth was severely impaired in CALM−/− LSK cells, while they can normally proliferate in response to IL-3 and IL-6. We also examined the intracellular trafficking of KIT using CALM−/− murine embryonic fibroblasts (MEFs) engineered to express KIT. At first, we confirmed that endocytosis of SCF-bound KIT was not impaired in CALM−/− MEFs by the internalization assay. However, SCF-induced KIT trafficking from early to late endosome was severely impaired in CALM−/− MEFs. As a result, although intracellular KIT disappeared 30 min after SCF stimulation in wild-type (WT) MEFs, it was retained in CALM−/− MEFs. Furthermore, SCF-induced phosphorylation of cytosolic KIT was enhanced and prolonged in CALM−/− MEFs compared with that in WT MEFs, leading to the excessive activation of Akt. Similar hyperactivation of Akt was observed in CALM−/− KIT+ cells. These results indicate that CALM is essential for the intracellular trafficking of KIT and its normal functions. Also, our data demonstrate that KIT located in the early endosome can activate downstream molecules as a signaling endosome. Because KIT activation is involved in the pathogenesis of some malignancies, the manipulation of CALM function would be an attractive therapeutic strategy.
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
- * E-mail:
| | - Mai Suzuki
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Takahiro Shimada
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Matsui
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women’s Medical University, Tokyo, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34:219-37. [PMID: 24745671 DOI: 10.1016/j.iac.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors discuss common gain-of-function mutations in the stem cell factor receptor KIT found in mast cell proliferation disorders and summarize the current understanding of the molecular mechanisms by which these transforming mutations may affect KIT structure and function leading to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of mastocytosis and other hyperproliferative diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided.
Collapse
|
20
|
Shamloo A, Manchandia M, Ferreira M, Mani M, Nguyen C, Jahn T, Weinberg K, Heilshorn S. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integr Biol (Camb) 2014; 5:1076-85. [PMID: 23835699 DOI: 10.1039/c3ib40025e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml(-1) for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml(-1) revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4045, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Brahimi-Adouane S, Bachet JB, Tabone-Eglinger S, Subra F, Capron C, Blay JY, Emile JF. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT. Mol Oncol 2012; 7:323-33. [PMID: 23146721 DOI: 10.1016/j.molonc.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface.
Collapse
Affiliation(s)
- Sabrina Brahimi-Adouane
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, 78280 Guyancourt, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Caliceti C, Zambonin L, Prata C, Vieceli Dalla Sega F, Hakim G, Hrelia S, Fiorentini D. Effect of plasma membrane cholesterol depletion on glucose transport regulation in leukemia cells. PLoS One 2012; 7:e41246. [PMID: 22859971 PMCID: PMC3408441 DOI: 10.1371/journal.pone.0041246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
GLUT1 is the predominant glucose transporter in leukemia cells, and the modulation of glucose transport activity by cytokines, oncogenes or metabolic stresses is essential for their survival and proliferation. However, the molecular mechanisms allowing to control GLUT1 trafficking and degradation are still under debate. In this study we investigated whether plasma membrane cholesterol depletion plays a role in glucose transport activity in M07e cells, a human megakaryocytic leukemia line. To this purpose, the effect of cholesterol depletion by methyl-β-cyclodextrin (MBCD) on both GLUT1 activity and trafficking was compared to that of the cytokine Stem Cell Factor (SCF). Results show that, like SCF, MBCD led to an increased glucose transport rate and caused a subcellular redistribution of GLUT1, recruiting intracellular transporter molecules to the plasma membrane. Due to the role of caveolae/lipid rafts in GLUT1 stimulation in response to many stimuli, we have also investigated the GLUT1 distribution along the fractions obtained after non ionic detergent treatment and density gradient centrifugation, which was only slightly changed upon MBCD treatment. The data suggest that MBCD exerts its action via a cholesterol-dependent mechanism that ultimately results in augmented GLUT1 translocation. Moreover, cholesterol depletion triggers GLUT1 translocation without the involvement of c-kit signalling pathway, in fact MBCD effect does not involve Akt and PLCγ phosphorylation. These data, together with the observation that the combined MBCD/SCF cell treatment caused an additive effect on glucose uptake, suggest that the action of SCF and MBCD may proceed through two distinct mechanisms, the former following a signalling pathway, and the latter possibly involving a novel cholesterol dependent mechanism.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Zambonin
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Cecilia Prata
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Gabriele Hakim
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Diana Fiorentini
- Biochemistry Department “G. Moruzzi”, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Matsuoka Y, Sasaki Y, Nakatsuka R, Takahashi M, Iwaki R, Uemura Y, Sonoda Y. Low level of c-kit expression marks deeply quiescent murine hematopoietic stem cells. Stem Cells 2012; 29:1783-91. [PMID: 21898688 DOI: 10.1002/stem.721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although c-kit is expressed highly on murine hematopoietic stem cells (HSCs) and essential for bone marrow (BM) hematopoiesis, the significance of the high level of expression of c-kit on HSCs was not well determined. We show here that CD150(+) CD48(-) Lineage(-) Sca-1(+) c-kit(+) HSCs in adult BM are distributed within the range of roughly a 20-fold difference in the expression level of c-kit, and that c-kit density correlates with the cycling status of the HSC population. This predisposition is more evident in the BM of mice older than 30 weeks. The HSCs in G(0) phase express a lower level of c-kit both on the cell surface and inside the cells, which cannot be explained by ligand receptor binding and internalization. It is more likely that the low level of c-kit expression is a unique property of HSCs in G(0). Despite functional differences in the c-kit gradient, the HSCs are uniformly hypoxic and accessible to blood perfusion. Therefore, our data indicate the possibility that the hypoxic state of the HSCs is actively regulated, rather than them being passively hypoxic through a simple anatomical isolation from the circulation.
Collapse
Affiliation(s)
- Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Vannini N, Roch A, Naveiras O, Griffa A, Kobel S, Lutolf MP. Identification of in vitro HSC fate regulators by differential lipid raft clustering. Cell Cycle 2012; 11:1535-43. [PMID: 22436489 DOI: 10.4161/cc.19900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.
Collapse
Affiliation(s)
- Nicola Vannini
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Fedida-Metula S, Feldman B, Koshelev V, Levin-Gromiko U, Voronov E, Fishman D. Lipid rafts couple store-operated Ca 2+ entry to constitutive activation of PKB/Akt in a Ca 2+ /calmodulin-, Src- and PP2A-mediated pathway and promote melanoma tumor growth. Carcinogenesis 2012; 33:740-50. [DOI: 10.1093/carcin/bgs021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability. Blood 2011; 118:5466-75. [PMID: 21926349 DOI: 10.1182/blood-2010-09-309955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Kit regulation of mast cell proliferation and differentiation has been intimately linked to the activation of phosphatidylinositol 3-OH kinase (PI3K). The activating D816V mutation of Kit, seen in the majority of mastocytosis patients, causes a robust activation of PI3K signals. However, whether increased PI3K signaling in mast cells is a key element for their in vivo hyperplasia remains unknown. Here we report that dysregulation of PI3K signaling in mice by deletion of the phosphatase and tensin homolog (Pten) gene (which regulates the levels of the PI3K product, phosphatidylinositol 3,4,5-trisphosphate) caused mast cell hyperplasia and increased numbers in various organs. Selective deletion of Pten in the mast cell compartment revealed that the hyperplasia was intrinsic to the mast cell. Enhanced STAT5 phosphorylation and increased expression of survival factors, such as Bcl-XL, were observed in PTEN-deficient mast cells, and these were further enhanced by stem cell factor stimulation. Mice carrying PTEN-deficient mast cells also showed increased hypersensitivity as well as increased vascular permeability. Thus, Pten deletion in the mast cell compartment results in a mast cell proliferative phenotype in mice, demonstrating that dysregulation of PI3K signals is vital to the observed mast cell hyperplasia.
Collapse
|
27
|
PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci U S A 2011; 108:14509-14. [PMID: 21873248 DOI: 10.1073/pnas.1019386108] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Spatial compartmentalization of signaling pathway components generally defines the specificity and enhances the efficiency of signal transduction. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to be compartmentalized within plasma membrane microdomains; however, the underlying mechanisms and functional impact of this compartmentalization are not well understood. Here, we show that phosphoinositide-dependent kinase 1 is activated in membrane rafts in response to growth factors, whereas the negative regulator of the pathway, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is primarily localized in nonraft regions. Alteration of this compartmentalization, either by genetic targeting or ceramide-induced recruitment of PTEN to rafts, abolishes the activity of the entire pathway. These findings reveal critical steps in raft-mediated PI3K/Akt activation and demonstrate the essential role of membrane microdomain compartmentalization in enabling PI3K/Akt signaling. They further suggest that dysregulation of this compartmentalization may underlie pathological complications such as insulin resistance.
Collapse
|
28
|
Fifadara NH, Beer F, Ono S, Ono SJ. Interaction between activated chemokine receptor 1 and FcepsilonRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells. Int Immunol 2010; 22:113-28. [PMID: 20173038 DOI: 10.1093/intimm/dxp118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines play important regulatory roles in immunity, but their contributions to mast cell function remain poorly understood. We examined the effects of FcepsilonRI-chemokine receptor (CCR) 1 co-stimulation on receptor localization and cellular morphology of bone marrow-derived mast cells. Whereas FcepsilonRI and CCR1 co-localized at the plasma membrane in unsensitized cells, sensitization with IgE promoted internalization of CCR1 molecules. Co-stimulation of FcepsilonRI and CCR1 with antigen and macrophage inflammatory protein-1alpha was more effective than FcepsilonRI stimulation alone in causing leading edge formation, flattened morphology, membrane ruffles and ganglioside (GM1(+)) lipid mediator release. Co-stimulation resulted in phalloidin-positive cytoneme-like cellular extensions, also known as tunneling nanotubes, which originated at points of calcium accumulation. This is the first report of cytoneme formation by mast cells. To determine the importance of lipid rafts for mast cell function, the cells were cholesterol depleted. Cholesterol depletion enhanced degranulation in resting, sensitized and co-stimulated cells, but not in FcepsilonRI-cross-linked cells, and inhibited formation of filamentous actin(+) cytonemes but not GM1(+) cytonemes. Treatment with latrunculin A to sequester globular-actin abolished cytoneme formation. The cytonemes may participate in intercellular communication during allergic and inflammatory responses, and their presence in the co-stimulated mast cells suggests new roles for CCRs in immunopathology.
Collapse
Affiliation(s)
- Nimita H Fifadara
- Dobbs Ocular Immunology Laboratories, Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
29
|
Shirvaikar N, Marquez-Curtis LA, Shaw AR, Turner AR, Janowska-Wieczorek A. MT1-MMP association with membrane lipid rafts facilitates G-CSF--induced hematopoietic stem/progenitor cell mobilization. Exp Hematol 2010; 38:823-35. [PMID: 20471446 DOI: 10.1016/j.exphem.2010.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Soluble matrix metalloproteinases (MMPs) facilitate the egress of hematopoietic stem/progenitor cells (HSPC) from the bone marrow (BM) during granulocyte colony-stimulating factor (G-CSF)-induced mobilization. Because membrane-type (MT)1-MMP, which is localized on the leading edge of migrating cells, activates the latent forms of soluble MMPs, we investigated its role in HSPC mobilization. MATERIALS AND METHODS We examined the effect of G-CSF on the expression of MT1-MMP and its activities (proMMP-2 activation and migration) in hematopoietic cells. We also investigated the subcellular localization of MT1-MMP and the signaling pathways that regulate its expression and function in hematopoietic cells after exposure to G-CSF. RESULTS We found that G-CSF increases MT1-MMP transcription and protein synthesis in hematopoietic cells; proMMP-2 activation in cocultures of HSPC with BM fibroblasts; chemoinvasion across reconstituted basement membrane Matrigel toward a stromal cell-derived factor-1 gradient, which is reduced by small interfering RNA silencing of MT1-MMP; and localization of MT1-MMP to membrane lipid rafts through a mechanism that is regulated by the phosphatidylinositol 3-kinase signaling pathway. Disruption of raft formation (by the cholesterol-sequestering agent methyl-beta-cyclodextrin) abrogated phosphatidylinositol 3-kinase phosphorylation and MT1-MMP incorporation into lipid rafts resulting in reduced proMMP-2 activation and HSPC migration. CONCLUSION G-CSF-induced upregulation of MT1-MMP in hematopoietic cells and its enhanced incorporation into membrane lipid rafts contributes to proMMP-2 activation, which facilitates mobilization of HSPC.
Collapse
Affiliation(s)
- Neeta Shirvaikar
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
30
|
The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood 2010; 115:3899-906. [PMID: 20200353 DOI: 10.1182/blood-2009-10-247411] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Members of the Toll/interleukin-1 receptor (TIR) family are of importance for host defense and inflammation. Here we report that the TIR-family member interleukin-33R (IL-33R) cross-activates the receptor tyrosine kinase c-Kit in human and murine mast cells. The IL-33R-induced activation of signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase B (PKB), and Jun NH(2)-terminal kinase 1 (JNK1) depends on c-Kit and is required to elicit optimal effector functions. Costimulation with the c-Kit ligand stem cell factor (SCF) is necessary for IL-33-induced cytokine production in primary mast cells. The structural basis for this cross-activation is the complex formation between c-Kit, IL-33R, and IL-1R accessory protein (IL-1RAcP). We found that c-Kit and IL-1RAcP interact constitutively and that IL-33R joins this complex upon ligand binding. Our findings support a model in which signals from seemingly disparate receptors are integrated for full cellular responses.
Collapse
|
31
|
Abstract
The pleiotropic receptor tyrosine kinase Kit can provide cytoskeletal signals that define cell shape, positioning, and migration, but the underlying mechanisms are less well understood. In this study, we provide evidence that Kit signals through Wiskott-Aldrich syndrome protein (WASP), the central hematopoietic actin nucleation-promoting factor and regulator of the cytoskeleton. Kit ligand (KL) stimulation resulted in transient tyrosine phosphorylation of WASP, as well as interacting proteins WASP-interacting protein and Arp2/3. KL-induced filopodia in bone marrow-derived mast cells (BMMCs) were significantly decreased in number and size in the absence of WASP. KL-dependent regulation of intracellular Ca(2+) levels was aberrant in WASP-deficient BMMCs. When BMMCs were derived from WASP-heterozygous female mice using KL as a growth factor, the cultures eventually developed from a mixture of WASP-positive and -negative populations into a homogenous WASP-positive culture derived from the WASP-positive progenitors. Thus, WASP expression conferred a selective advantage to the development of Kit-dependent hematopoiesis consistent with the selective advantage of WASP-positive hematopoietic cells observed in WAS-heterozygous female humans. Finally, KL-mediated gene expression in wild-type and WASP-deficient BMMCs was compared and revealed that approximately 30% of all Kit-induced changes were WASP dependent. The results indicate that Kit signaling through WASP is necessary for normal Kit-mediated filopodia formation, cell survival, and gene expression, and provide new insight into the mechanism in which WASP exerts a strong selective pressure in hematopoiesis.
Collapse
|
32
|
Bournazos S, Hart SP, Chamberlain LH, Glennie MJ, Dransfield I. Association of FcgammaRIIa (CD32a) with lipid rafts regulates ligand binding activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:8026-36. [PMID: 19494328 DOI: 10.4049/jimmunol.0900107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binding of Igs to myeloid cells via FcR is a key event in the control of innate and acquired immunity. FcgammaRIIa (CD32a) is a receptor for multivalent IgG expressed predominantly by myeloid cells, and its association with microdomains rich in cholesterol and sphingolipids, termed as lipid rafts, has been reported to be essential for efficient signaling. However, for many myeloid cell types, ligand binding to CD32a is suppressed by as yet undefined mechanisms. In this study, we have examined the role of CD32a-lipid raft interactions in the regulation of IgG binding to CD32a. Disruption of lipid raft structure following depletion or sequestration of membrane cholesterol greatly inhibited CD32a-mediated IgG binding. Furthermore, specific CD32a mutants, which show reduced association with lipid rafts (A224S and C241A), displayed decreased levels of IgG binding compared with wild-type CD32a. In contrast, constitutively lipid raft-associated CD32a (GPI-anchored CD32a) exhibited increased capacity for IgG binding compared with the full-length transmembrane CD32a. Our findings clearly suggest a major role for lipid rafts in the regulation of IgG binding and, more specifically, that suppression of CD32a-mediated IgG binding in myeloid cells is achieved by receptor exclusion from lipid raft membrane microdomains.
Collapse
Affiliation(s)
- Stylianos Bournazos
- University of Edinburgh/Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | |
Collapse
|
33
|
Saulle E, Riccioni R, Coppola S, Parolini I, Diverio D, Riti V, Mariani G, Laufer S, Sargiacomo M, Testa U. Colocalization of the VEGF-R2 and the common IL-3/GM-CSF receptor beta chain to lipid rafts leads to enhanced p38 activation. Br J Haematol 2009; 145:399-411. [DOI: 10.1111/j.1365-2141.2009.07627.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Abstract
Mast cell mediator release represents a pivotal event in the initiation of inflammatory reactions associated with allergic disorders. These responses follow antigen-mediated aggregation of immunoglobulin E (IgE)-occupied high-affinity receptors for IgE (Fc epsilon RI) on the mast cell surface, a response which can be further enhanced following stem cell factor-induced ligation of the mast cell growth factor receptor KIT (CD117). Activation of tyrosine kinases is central to the ability of both Fc epsilon RI and KIT to transmit downstream signaling events required for the regulation of mast cell activation. Whereas KIT possesses inherent tyrosine kinase activity, Fc epsilon RI requires the recruitment of Src family tyrosine kinases and Syk to control the early receptor-proximal signaling events. The signaling pathways propagated by these tyrosine kinases can be further upregulated by the Tec kinase Bruton's tyrosine kinase and downregulated by the actions of the tyrosine Src homology 2 domain-containing phosphatase 1 (SHP-1) and SHP-2. In this review, we discuss the regulation and role of specific members of this tyrosine kinase network in KIT and Fc epsilon RI-mediated mast cell activation.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1930, USA
| | | |
Collapse
|
35
|
Ding J, Jiang D, Kurczy M, Nalepka J, Dudley B, Merkel EI, Porter FD, Ewing AG, Winograd N, Burgess J, Molyneaux K. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse. BMC DEVELOPMENTAL BIOLOGY 2008; 8:120. [PMID: 19117526 PMCID: PMC2631600 DOI: 10.1186/1471-213x-8-120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/31/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. RESULTS We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. CONCLUSION In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.
Collapse
Affiliation(s)
- Jiaxi Ding
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - DeChen Jiang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Kurczy
- Department of Chemistry, Penn State University, University Park, PA, USA
| | - Jennifer Nalepka
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - Brian Dudley
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| | - Erin I Merkel
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew G Ewing
- Department of Chemistry, Penn State University, University Park, PA, USA
- Department of Chemistry, Gothenburg University, Kemivägen 4, SE-41296 Gothenburg, Sweden
| | - Nicholas Winograd
- Department of Chemistry, Penn State University, University Park, PA, USA
| | - James Burgess
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Kathleen Molyneaux
- Department of Genetics Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of Hematopoietic Stem Cells by the Steel Factor/KIT Signaling Pathway: Fig. 1. Clin Cancer Res 2008; 14:1926-30. [DOI: 10.1158/1078-0432.ccr-07-5134] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Horváth I, Multhoff G, Sonnleitner A, Vígh L. Membrane-associated stress proteins: more than simply chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1653-64. [PMID: 18371297 DOI: 10.1016/j.bbamem.2008.02.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
Abstract
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, Hungary
| | | | | | | |
Collapse
|
38
|
Membrane Raft Disruption Promotes Axonogenesis in N2a Neuroblastoma Cells. Neurochem Res 2008; 34:29-37. [DOI: 10.1007/s11064-008-9625-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
39
|
Rivera J, Fierro NA, Olivera A, Suzuki R. New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol 2008; 98:85-120. [PMID: 18772004 PMCID: PMC2761150 DOI: 10.1016/s0065-2776(08)00403-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells are innate immune cells that function as regulatory or effector cells and serve to amplify adaptive immunity. In adaptive immunity these cells function primarily through cell surface Fc receptors that bind immunoglobulin antibodies. The dysregulation of their adaptive role makes them central players in allergy and asthma. Upon encountering an allergen (antigen), which is recognized by immunoglobulin E (IgE) antibodies bound to the high affinity IgE receptor (FcepsilonRI) expressed on their cell surface, mast cells secrete both preformed and newly synthesized mediators of the allergic response. Blocking of these responses is an objective in therapeutic intervention of allergic diseases. Thus, understanding the mechanisms by which antigens elicit mast cell activation (via FcepsilonRI) holds promise toward identifying therapeutic targets. Here we review the most recent advances in understanding antigen-dependent mast cell activation. Specifically, we focus on the requirements for FcepsilonRI activation, the regulation of calcium responses, co-stimulatory signals in FcepsilonRI-mediated mast cell activation and function, and how genetics influences mast cell signaling and responses. These recent discoveries open new avenues of investigation with therapeutic potential.
Collapse
Affiliation(s)
- Juan Rivera
- Laboratory of Immune Cell Signaling, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
40
|
de Laurentiis A, Donovan L, Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 2007; 1:12-32. [PMID: 18949068 PMCID: PMC2570545 DOI: 10.2174/1874091x00701010012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 12/29/2022] Open
Abstract
Lipid rafts and caveolae are microdomains of the plasma membrane enriched in sphingolipids and cholesterol, and hence are less fluid than the remainder of the membrane. Caveolae have an invaginated structure, while lipid rafts are flat regions of the membrane. The two types of microdomains have different protein compositions (growth factor receptors and their downstream molecules) suggesting that lipid rafts and caveolae have a role in the regulation of signaling by these receptors. The purpose of this review is to discuss this model, and the implications that it might have regarding a potential role for lipid rafts and caveolae in human cancer. Particular attention will be paid to the epidermal growth factor receptor, for which the largest amount of information is available. It has been proposed that caveolins act as tumor suppressors. The role of lipid rafts is less clear, but they seem to be capable of acting as 'signaling platforms', in which signal initiation and propagation can occur efficiently.
Collapse
Affiliation(s)
- Angela de Laurentiis
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Lorna Donovan
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Alexandre Arcaro
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
41
|
Jahn T, Sindhu S, Gooch S, Seipel P, Lavori P, Leifheit E, Weinberg K. Direct interaction between Kit and the interleukin-7 receptor. Blood 2007; 110:1840-7. [PMID: 17554063 PMCID: PMC1976346 DOI: 10.1182/blood-2005-12-028019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo analyses of thymopoiesis in mice defective in signaling through Kit and gammac or Kit and IL-7Ralpha demonstrate synergy and partial complementation of gammac or IL-7-mediated signaling by the Kit signaling pathway. Our molecular analysis in T-lymphoid cells as well as in nonhematopoietic cells shows that Kit and IL-7R signaling pathways directly interact. KL-mediated activation of Kit induced strong tyrosine phosphorylation of gammac and IL-7Ralpha in the absence of IL-7. Activated Kit formed a complex with either IL-7Ralpha or gammac, and tyrosine phosphorylation of both subunits occurred independently of Jak3, suggesting that gammac and IL-7Ralpha are each direct substrates of Kit. Kit activated Jak3 in an IL-7R-dependent manner. Moreover, deficient Stat5 activation of the Kit mutant YY567/569FF lacking intrinsic Src activation capacity was partially reconstituted in the presence of IL-7R and Jak3. Based on the molecular data, we propose a model of Kit-mediated functional activation of gammac-containing receptors such as IL-7R, similar to the interaction between Kit and Epo-R. Such indirect activation of the Jak-Stat pathway induced by the interaction between an RTK and type I cytokine receptor could be the underlying mechanism for a context-specific signaling repertoire of a pleiotropic RTK-like Kit.
Collapse
Affiliation(s)
- Thomas Jahn
- Division of Research Immunology and Bone Marrow Transplantation, Childrens Hospital Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|