1
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Sang Y, Lee RH, Luong A, Katona É, Whyte CS, Smith NL, Mast AE, Flick MJ, Mutch NJ, Bergmeier W, Wolberg AS. Activated platelets retain and protect most of their factor XIII-A cargo from proteolytic activation and degradation. Blood Adv 2024; 8:5072-5085. [PMID: 39116293 PMCID: PMC11459904 DOI: 10.1182/bloodadvances.2024012979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Platelet factor XIII-A (FXIII-A) is a major cytoplasmic protein (∼3% of total), representing ∼50% of total circulating FXIII. However, mobilization of FXIII-A during platelet activation is not well defined. To determine mechanisms mediating the retention vs release of platelet FXIII-A, platelets from healthy humans and mice (F13a1-/-, Fga-/-, Plg-/-, Stim1fl/flPf4-Cre, and respective controls) were stimulated with thrombin, convulxin plus thrombin, or calcium ionophore (A23187), in the absence or presence of inhibitors of transglutaminase activity, messenger RNA (mRNA) translation, microtubule rearrangement, calpain, and Rho GTPase. Platelet releasates and pellets were separated by (ultra)centrifugation. FXIII-A was detected by immunoblotting and immunofluorescence microscopy. Even after strong dual agonist (convulxin plus thrombin) stimulation of human platelets, >80% platelet FXIII-A remained associated with the platelet pellet. In contrast, essentially all tissue factor pathway inhibitor, another cytoplasmic protein in platelets, was released to the supernatant. Pellet-associated FXIII-A was not due to de novo synthesis via platelet F13A1 mRNA. The proportion of platelet FXIII-A retained by vs released from activated platelets was partly dependent on STIM1 signaling, microtubule rearrangement, calpain, and RhoA activation but did not depend on the presence of fibrinogen or plasminogen. Immunofluorescence microscopy confirmed the presence of considerable FXIII-A within the activated platelets. Although released FXIII-A was cleaved to FXIII-A∗ and could be degraded by plasmin, platelet-associated FXIII-A remained uncleaved. Retention of substantial platelet-derived FXIII-A by activated platelets and its reduced susceptibility to thrombin- and plasmin-mediated proteolysis suggest platelet FXIII-A is a protected pool with biological role(s) that differs from plasma FXIII.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC
- UNC Blood Research Center, Chapel Hill, NC
| | - Robert H. Lee
- UNC Blood Research Center, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
| | - Annie Luong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC
- UNC Blood Research Center, Chapel Hill, NC
| | - Éva Katona
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Claire S. Whyte
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA
| | - Alan E. Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC
- UNC Blood Research Center, Chapel Hill, NC
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Wolfgang Bergmeier
- UNC Blood Research Center, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC
- UNC Blood Research Center, Chapel Hill, NC
| |
Collapse
|
3
|
Qiu J, Ma J, Dong Z, Ren Q, Shan Q, Liu J, Gao M, Liu G, Zhang S, Qu G, Jiang G, Liu S. Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution. Nat Commun 2024; 15:7396. [PMID: 39191805 DOI: 10.1038/s41467-024-51686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Many lung immune cells are known to respond to inhaled particulate matter. However, current known responses cannot explain how particles induce thrombosis in the lung and how they translocate to distant organs. Here, we demonstrate that lung megakaryocytes (MKs) in the alveolar and interstitial regions display location-determined characteristics and act as crucial responders to inhaled particles. They move rapidly to engulf particles and become activated with upregulation in inflammatory responses and thrombopoiesis. Comprehensive in vivo, in vitro and ex vivo results unraveled that MKs were involved in particle-induced lung damages and shed particle-containing platelets into blood circulation. Moreover, MK-derived platelets exhibited faster clotting, stronger adhesion than normal resting platelets, and inherited the engulfed particles from parent MKs to assist in extrapulmonary particle transportation. Our findings collectively highlight that the specific responses of MKs towards inhaled particles and their roles in facilitating the translocation of particles from the lungs to extrapulmonary organs for clearance.
Collapse
Affiliation(s)
- Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, P. R. China
| | - Qing'e Shan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
- National Center for Respiratory Medicine, Beijing, 100029, P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| |
Collapse
|
4
|
Petri A, Sasikumar P, Folgado PB, Jones D, Xu Y, Ahnström J, Salles-Crawley II, Crawley JTB. TFPIα anticoagulant function is highly dependent on protein S in vivo. SCIENCE ADVANCES 2024; 10:eadk5836. [PMID: 38306422 DOI: 10.1126/sciadv.adk5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Tissue factor pathway inhibitor α (TFPIα) is the major physiological regulator of the initiation of blood coagulation. In vitro, TFPIα anticoagulant function is enhanced by its cofactor, protein S. To define the role of protein S enhancement in TFPIα anticoagulant function in vivo, we blocked endogenous TFPI in mice using a monoclonal antibody (14D1). This caused a profound increase in fibrin deposition using the laser injury thrombosis model. To explore the role of plasma TFPIα in regulating thrombus formation, increasing concentrations of human TFPIα were coinjected with 14D1, which dose-dependently reduced fibrin deposition. Inhibition of protein S cofactor function using recombinant C4b-binding protein β chain significantly reduced the anticoagulant function of human TFPIα in controlling fibrin deposition. We report an in vivo model that is sensitive to the anticoagulant properties of the TFPIα-protein S pathway and show the importance of protein S as a cofactor in the anticoagulant function of TFPIα in vivo.
Collapse
Affiliation(s)
- Anastasis Petri
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Parvathy Sasikumar
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Patricia Badia Folgado
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - David Jones
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Yaoxian Xu
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Josefin Ahnström
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, London, UK
| | - James T B Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
5
|
Tanratana P, Sachetto AT, Mast AE, Mackman N. An anti-tissue factor pathway inhibitor antibody increases tissue factor activity in extracellular vesicles isolated from human plasma. Res Pract Thromb Haemost 2024; 8:102275. [PMID: 38187825 PMCID: PMC10770550 DOI: 10.1016/j.rpth.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ana T.A. Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alan E. Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Wisconsin, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Li X, Song X, Mahmood DFD, Sim MMS, Bidarian SJ, Wood JP. Activated protein C, protein S, and tissue factor pathway inhibitor cooperate to inhibit thrombin activation. Thromb Res 2023; 230:84-93. [PMID: 37660436 PMCID: PMC10543463 DOI: 10.1016/j.thromres.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Collapse
Affiliation(s)
- Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Xiaohong Song
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Dlovan F D Mahmood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Martha M S Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Sara J Bidarian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Jeremy P Wood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America; Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
7
|
Chen R, Huang M, Xu P. Polyphosphate as an antithrombotic target and hemostatic agent. J Mater Chem B 2023; 11:7855-7872. [PMID: 37534776 DOI: 10.1039/d3tb01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyphosphate (PolyP) is a polymer comprised of linear phosphate units connected by phosphate anhydride bonds. PolyP exists in a diverse range of eukaryotes and prokaryotes with varied chain lengths ranging from six to thousands of phosphate units. Upon activation, human platelets and neutrophils release short-chain PolyP, along with other components, to initiate the coagulation pathway. Long-chain PolyP derived from cellular or bacterial organelles exhibits higher proinflammatory and procoagulant effects compared to short-chain PolyP. Notably, PolyP has been identified as a low-hemorrhagic antithrombotic target since neutralizing plasma PolyP suppresses the thrombotic process without impairing the hemostatic functions. As an inorganic polymer without uniform steric configuration, PolyP is typically targeted by cationic polymers or recombinant polyphosphatases rather than conventional antibodies, small-molecule compounds, or peptides. Additionally, because of its procoagulant property, PolyP has been incorporated in wound-dressing materials to facilitate blood hemostasis. This review summarizes current studies on PolyP as a low-hemorrhagic antithrombotic target and the development of hemostatic materials based on PolyP.
Collapse
Affiliation(s)
- Ruoyu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
8
|
Pipe SW, Dunn AL, Young G. Efficacy and safety evaluation of eptacog beta (coagulation factor VIIa [recombinant]-jncw) for the treatment of hemophilia A and B with inhibitors. Expert Rev Hematol 2023; 16:715-729. [PMID: 37602448 DOI: 10.1080/17474086.2023.2248385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Bypassing agents (BPAs) are used to treat acute bleeding episodes, manage bleeding during perioperative care, and prophylactically minimize bleed occurrence in persons with hemophilia A or B with inhibitors (PwHABI). However, the effectiveness of BPAs that have been prescribed for the last several decades can be variable, motivating the development of a new recombinant activated factor VII, eptacog beta. AREAS COVERED This review covers key eptacog beta findings from phase 1b and phase 3 (PERSEPT) clinical trials, which formed the basis for its regulatory approval to treat PwHABI ages 12 and older. Descriptions of eptacog beta structure and glycosylation profile, mechanism of action, preclinical study results, and cost analyses are also presented. EXPERT OPINION PwHABI have had only two options for bleed treatment for the past several decades. With its distinct glycosylation profile, eptacog beta offers a novel therapy aiming to improve upon BPAs currently in use, providing an option with more than one dosing regimen and a rapid response that allows most bleeds to be treated with just one dose. This has become particularly important given the use of subcutaneous medications (e.g., emicizumab) for prophylaxis of bleeding. Clinicians should consider eptacog beta as a BPA for all PwHABI.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Amy L Dunn
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Guy Young
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Maroney SA, Siebert AE, Martinez ND, Rasmussen M, Peterson JA, Weiler H, Lincoln J, Mast AE. Platelet tissue factor pathway inhibitor-α dampens cardiac thrombosis and associated fibrosis in mice. J Thromb Haemost 2023; 21:639-651. [PMID: 36696221 PMCID: PMC10200073 DOI: 10.1016/j.jtha.2022.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is the primary inhibitor of events initiating the blood coagulation pathway. Tfpi-/- mice die during embryonic development. The absence of protease-activated receptor (PAR) 4, the major thrombin receptor on mouse platelets, rescues Tfpi-/-mice to adulthood. Among the 3 TFPI isoforms in mice, TFPIα is the only isoform within platelets (pltTFPIα) and the only isoform that inhibits prothrombinase, the enzymatic complex that converts prothrombin to thrombin. OBJECTIVES To determine biological functions of pltTFPIα. METHODS Tfpi-/-/Par4-/- mice were irradiated and transplanted with bone marrow from mice lacking or containing pltTFPIα. Thus, PAR4 expression was restored in the recipient mice, which differed selectively by the presence or absence of pltTFPIα and lacked other forms of TFPI. RESULTS Recipient mice lacking pltTFPIα had reduced survival over the 200-day posttransplant period. Necropsy revealed radiation injury associated with large intraventricular platelet-rich thrombi, whereas other organs were not affected. Thrombi were associated with fibrotic presentations, including increased collagen deposition, periostin-positive activated fibroblasts, myofibroblasts, and macrophage infiltrates. Recipient mice containing pltTFPIα showed evidence of radiation injury but lacked heart pathology. CONCLUSIONS Tfpi-/-/Par4-/- mice develop severe cardiac fibrosis following irradiation and transplantation with bone marrow lacking pltTFPIα. This pathology is markedly reduced when the mice are transplanted with bone marrow containing pltTFPIα. Thus, in this model system pltTFPIα has an important physiological role in dampening pathological responses mediated by activated platelets within the heart tissue.
Collapse
Affiliation(s)
- Susan A Maroney
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Amy E Siebert
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nicholas D Martinez
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Mark Rasmussen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Julie A Peterson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hartmut Weiler
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Alan E Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
11
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
12
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Peterson JA, Gupta S, Martinez ND, Hardesty B, Maroney SA, Mast AE. Factor V east Texas variant causes bleeding in a three-generation family. J Thromb Haemost 2022; 20:565-573. [PMID: 34847292 PMCID: PMC8885967 DOI: 10.1111/jth.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The factor V east Texas bleeding disorder (FVETBD) is caused by increased plasma tissue factor pathway inhibitor-α (TFPIα) concentration. The underlying cause is a variant in F5 causing alternative splicing within exon 13 and producing FV-short, which tightly binds the C-terminus of TFPIα, prolonging its circulatory half-life. OBJECTIVES To diagnose a family presenting with variable bleeding and laboratory phenotypes. PATIENTS/METHODS Samples were obtained from 17 family members for F5 exon 13 sequencing. Plasma/platelet TFPI and platelet FV were measured by ELISA and/or western blot. Plasma thrombin generation potential was evaluated using calibrated automated thrombography. RESULTS The FVET variant was identified in all family members with bleeding symptoms and associated with elevated plasma TFPIα (4.5- to 13.4-fold) and total TFPI (2- to 3-fold). However, TFPIα and FV-short were not elevated in platelets. TF-initiated thrombin generation in patient plasma was diminished but was restored by a monoclonal anti-TFPI antibody or factor VIIa. TFPIα localized within vascular extracellular matrix in an oral lesion biopsy from an affected family member. CONCLUSIONS Factor V east Texas bleeding disorder was diagnosed in an extended family. The variant was autosomal dominant and highly penetrant. Elevated plasma TFPIα, rather than platelet TFPIα, was likely the primary cause of bleeding. Plasma FV-short did not deplete TFPIα from extracellular matrix. In vitro thrombin generation was restored with an anti-TFPI antibody or factor VIIa suggesting effective therapies may be available. Increased awareness of, and testing for, bleeding disorders associated with F5 exon 13 variants and elevated plasma TFPI are needed.
Collapse
Affiliation(s)
| | - Sweta Gupta
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Brandon Hardesty
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Alan E. Mast
- Versiti, Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
14
|
Pittman DD, Rakhe S, Bowley SR, Jasuja R, Barakat A, Murphy JE. Hemostatic efficacy of marstacimab alone or in combination with bypassing agents in hemophilia plasmas and a mouse bleeding model. Res Pract Thromb Haemost 2022; 6:e12679. [PMID: 35316941 PMCID: PMC8925002 DOI: 10.1002/rth2.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Patients with hemophilia have deficiencies in intrinsic coagulation factors and can develop inhibitors that limit the effectiveness of replacement coagulation factors. Marstacimab, a human monoclonal antibody, binds and inhibits the human tissue factor pathway inhibitor. Marstacimab is currently under development as a potential prophylactic treatment to prevent bleeding episodes in patients with hemophilia A and B. Objective To assess the effects of marstacimab alone or in combination with the bypassing agent recombinant factor FVIIa (rFVIIa) or activated prothrombin complex concentrate (aPCC) on thrombin generation and bleeding. Methods Marstacimab and/or rFVIIa or aPCC were added to hemophilic A or B plasma or nonhemophilic plasma in vitro. Hemostatic activity was measured using the thrombin generation assay. In vivo effects were assessed using a mouse acute bleeding model. Male hemophilia A mice were dosed with marstacimab plus aPCC before tail clip; blood loss was quantified by measuring hemoglobin. Results Marstacimab plus rFVIIa or aPCC slightly increased peak thrombin levels compared with either agent alone. This increase was within the reported range for nonhemophilic plasma and did not exceed levels observed in nonhemophilic plasma treated with marstacimab alone. Hemophilia A mice that received 200 U/kg aPCC had significantly reduced bleeding (62%) compared with vehicle-treated mice (p < 0.05), and marstacimab plus aPCC reduced bleeding by 83.3% compared with vehicle (p= 0.0009). Conclusions Marstacimab alone or with bypassing agents increased hemostasis in hemophilia plasma without generating excessive thrombin. The hemostatic activity of marstacimab plus aPCC was confirmed in hemophilia A mice.
Collapse
Affiliation(s)
| | - Swapnil Rakhe
- Rare Disease Research UnitPfizer Inc.CambridgeMassachusettsUSA
| | | | - Reema Jasuja
- Rare Disease Research UnitPfizer Inc.CambridgeMassachusettsUSA
| | - Amey Barakat
- Rare Disease Research UnitPfizer Inc.CambridgeMassachusettsUSA
| | - John E. Murphy
- Rare Disease Research UnitPfizer Inc.CambridgeMassachusettsUSA
| |
Collapse
|
15
|
Raman R, Fallatah W, Al Qaryoute A, Ryon M, Jagadeeswaran P. Knockdown and Knockout of Tissue Factor Pathway Inhibitor in Zebrafish. Thromb Haemost 2021; 122:1104-1114. [PMID: 34918310 DOI: 10.1055/a-1723-4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tissue Factor Pathway Inhibitor (TFPI) is an anticoagulant that inhibits factor VIIa and Xa in the blood coagulation pathways. TFPI contains three Kunitz domains, K1, K2, and K3. K1 and K2 inhibit factor VIIa and Xa, respectively. However, the regulation of TFPI is poorly studied. Since zebrafish has become an alternate model to discover novel actors in hemostasis, we hypothesized that TFPI regulation could be studied using this model. As a first step, we confirmed the presence of tfpia in zebrafish using RT-PCR. We then performed piggyback knockdowns of tfpia and found increased coagulation activity in tfpia knockdown. We then created a deletion mutation in tfpia locus using CRISPR/Cas9 method. The tfpia homozygous deletion mutants showed increased coagulation activities similar to that found in tfpia knockdown. Taken together, our data suggest that tfpia is a negative regulator for zebrafish coagulation, and silencing it leads to thrombotic phenotype. Also, the zebrafish tfpia knockout model could be used for reversing this thrombotic phenotype to identify antithrombotic novel factors by the genome-wide piggyback knockdown method.
Collapse
Affiliation(s)
- Revathi Raman
- Biological Sciences, University of North Texas, Denton, United States
| | | | - Ayah Al Qaryoute
- Biological Sciences, University of North Texas, Denton, United States
| | - Mia Ryon
- Biological Sciences, University of North Texas, Denton, United States
| | | |
Collapse
|
16
|
Marar TT, Martinez ND, Maroney SA, Siebert AE, Wu J, Stalker TJ, Tomaiuolo M, Delacroix S, Simari RD, Mast AE, Brass LF. The contribution of TFPIα to the hemostatic response to injury in mice. J Thromb Haemost 2021; 19:2182-2192. [PMID: 34160126 PMCID: PMC8571650 DOI: 10.1111/jth.15430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an essential regulator of coagulation, limiting thrombin generation and preventing thrombosis. In humans and mice, TFPIα is the sole isoform present in platelets. OBJECTIVE Here, we asked whether TFPIα, because of its release from platelets at sites of injury, has a unique role in limiting the hemostatic response. METHODS TFPIα-mutant (TfpiΔα/Δα ) mice were generated by introducing a stop codon in the C-terminus. Platelet accumulation, platelet activation, and fibrin accumulation were measured following penetrating injuries in the jugular vein and cremaster muscle arterioles, and imaged by fluorescence and scanning electron microscopy. Time to bleeding cessation was recorded in the jugular vein studies. RESULTS TfpiΔα/Δα mice were viable and fertile. Plasma TFPI levels were normal in the TfpiΔα/Δα mice, no TFPI protein or activity was present in their platelets and thrombin-antithrombin complex levels were indistinguishable from Tfpi+/+ littermates. There was a small, but statistically significant reduction in the time to bleeding cessation following jugular vein puncture injury in the TfpiΔα/Δα mice, but no measurable changes in platelet or fibrin accumulation or in hemostatic plug architecture following injury of the micro- or macrovasculature. CONCLUSION Loss of TFPIα expression does not produce a global prothrombotic state in mice. Platelet TFPIα is expected to be released or displayed in a focal manner at the site of injury, potentially accumulating to high concentrations in the narrow gaps between platelets. If so, the data from the vascular injury models studied here indicate this is not essential for a normal hemostatic response in mice.
Collapse
Affiliation(s)
- Tanya T. Marar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jie Wu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J. Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinny Delacroix
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Robert D. Simari
- Department of Cardiovascular Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F. Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Raman R, Fallatah W, Al Qaryoute A, Dhinoja S, Jagadeeswaran P. Knockdown screening of chromatin binding and regulatory proteins in zebrafish identified Suz12b as a regulator of tfpia and an antithrombotic drug target. Sci Rep 2021; 11:15238. [PMID: 34315984 PMCID: PMC8316476 DOI: 10.1038/s41598-021-94715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor VIIa and Xa in the coagulation cascade. It has been shown that forkhead box P3 protein is a TFPI transcriptional repressor. However, there are no studies on chromatin remodeling that control TFPI expression. We hypothesized that the genome-wide knockdowns of the chromatin binding and regulatory proteins (CBRPs) in zebrafish could identify novel tfpia gene regulators. As an initial step, we selected 69 CBRP genes from the list of zebrafish thrombocyte-expressed genes. We then performed a 3-gene piggyback knockdown screen of these 69 genes, followed by quantification of tfpia mRNA levels. The results revealed that knockdown of brd7, ing2, ing3, ing4, and suz12b increased tfpia mRNA levels. The simultaneous knockdown of these 5 genes also increased tfpia mRNA levels. We also performed individual gene and simultaneous 5-gene knockdowns on the 5 genes in zebrafish larvae. We found that after laser injury, it took a longer time for the formation of the thrombus to occlude the caudal vessel compared to the control larvae. We then treated the larvae and adults with a chemical UNC6852 known to proteolytically degrade polycomb repressor complex 2, where SUZ12 is a member, and observed prolongation of time to occlude (TTO) the caudal vein after laser injury and increased tfpia mRNA levels in larvae and adults, respectively. In summary, our results have identified novel epigenetic regulators for tfpia and exploited this information to discover a drug that enhances tfpia mRNA levels and prolongation of TTO. This discovery provides the basis for testing whether UNC6852 could be used as an antithrombotic drug. This approach could be used to study the regulation of other plasma proteins, including coagulant and anticoagulant factors.
Collapse
Affiliation(s)
- Revathi Raman
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Weam Fallatah
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
| |
Collapse
|
18
|
Sharma T, Brunet JG, Tasneem S, Smith SA, Morrissey JH, Hayward CPM. Thrombin generation abnormalities in commonly encountered platelet function disorders. Int J Lab Hematol 2021; 43:1557-1565. [PMID: 34185390 PMCID: PMC8599625 DOI: 10.1111/ijlh.13638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Studies of thrombin generation (TG) with platelet-rich plasma (PRP) and platelet-poor plasma (PPP) have provided insights on bleeding disorders. We studied TG for a cohort with commonly encountered platelet function disorders (PFD). METHODS Participants included 40 controls and 31 with PFD due to: nonsyndromic dense granule (DG) deficiency (PFD-DGD, n = 9), RUNX1 haploinsufficiency (n = 6) and aggregation defects from other, uncharacterized causes (n = 16). TG was tested with PRP and PPP samples. As DG store ADP and polyphosphate that enhance platelet-dependent TG, PFD-DGD PRP TG was tested for correction with ADP, polyphosphate and combined additives. Tissue factor pathway inhibitor (TFPI), platelet factor V (FV), and platelet TFPI and ANO6 transcript levels were also evaluated. Findings were tested for associations with TG endpoints and bleeding. RESULTS PFD samples had impaired PRP TG, but also impaired PPP TG, with strong associations between their PRP and PPP TG endpoints (P ≤ .005). PFD-DGD PRP TG endpoints showed associations to PPP TG endpoints but not to DG counts, and were improved, but not fully corrected, by adding polyphosphate and agonists. PFD participants had increased plasma TFPI and reduced platelet TFPI (P ≤ .02) but normal levels of platelet FV, and platelet TFPI and ANO6 transcripts levels. PFD plasma TFPI levels showed significant association to several PPP TG endpoints (P ≤ .04). Several PFD PRP TG endpoints showed significant associations to bleeding symptoms, including wound healing problems and prolonged bleeding from minor cuts (P ≤ .04). CONCLUSION TG is impaired in commonly encountered PFD, with their PRP TG findings showing interesting associations to symptoms.
Collapse
Affiliation(s)
- Tanmya Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Justin G Brunet
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| |
Collapse
|
19
|
Siebert AE, Maroney SA, Martinez ND, Mast AE. Intrauterine lethality in Tfpi gene disrupted mice is differentially suppressed during mid- and late-gestation by platelet TFPIα overexpression. J Thromb Haemost 2021; 19:1483-1492. [PMID: 33728763 PMCID: PMC8165032 DOI: 10.1111/jth.15299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein required for murine embryonic development. Intrauterine lethality of Tfpi-/- mice occurs at mid- and late gestation, the latter of which is associated with severe cerebrovascular defects. Megakaryocytes produce only the TFPIα isoform, which is stored within platelets and released upon activation. OBJECTIVES To examine biological activities of platelet TFPIα (pTFPIα) by characterizing effects of pTFPIα overexpression in Tfpi-/- mice. METHODS Transgenic mice overexpressing pTFPIα were generated and crossed onto the Tfpi-/- background. Genetic and histological analyses of embryos were performed to investigate the function of pTFPIα during embryogenesis. RESULTS The transgene (Tg) increased pTFPIα 4- to 5-fold without altering plasma TFPI in adult Tfpi+/+ and Tfpi+/- mice but did not rescue Tfpi-/- mice to wean. Analyses of the impact of pTFPIα overexpression on Tfpi-/- survival, however, were complicated by linkage between the Tg integration site and the endogenous Tfpi locus on chromosome 2. Strain-specific genetic interactions also modulated Tfpi-/- embryonic survival. After accounting for these underlying genetic factors, pTFPIα overexpression completely suppressed mid-gestational lethality of Tfpi-/- embryos but had no effect on development of cerebrovascular defects during late gestation resulting in their lack of survival to wean. CONCLUSIONS pTFPIα overexpression rescued Tfpi-/- embryos from mid-gestational but not late gestational lethality. The prevalence of underlying genetic factors complicating analyses within our study illustrates the importance of meticulously characterizing transgenic mouse models to avoid spurious interpretation of results.
Collapse
Affiliation(s)
| | | | | | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Peterson JA, Maroney SA, Martinez ND, Mast AE. Major Reservoir for Heparin-Releasable TFPIα (Tissue Factor Pathway Inhibitor α) Is Extracellular Matrix. Arterioscler Thromb Vasc Biol 2021; 41:1942-1955. [PMID: 33827254 PMCID: PMC8269748 DOI: 10.1161/atvbaha.120.315728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
21
|
Martin EJ, Nolte ME, Kuhn J, Schmidt N, Pfaff N, Brophy DF. An in vitro pharmacodynamic spiking study of befovacimab, a tissue factor pathway inhibitor monoclonal antibody, in blood samples from patients with severe FVIII deficiency. Haemophilia 2021; 27:690-698. [PMID: 33915599 DOI: 10.1111/hae.14314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Tissue factor pathway inhibitor (TFPI) is an endogenous protein that inhibits the extrinsic (tissue factor) pathway and negatively regulates thrombin production during coagulation. Inhibiting TFPI may become a useful target for haemophilia drug development to allow greater thrombin generation without use of the intrinsic (contact) pathway. AIMS The in vitro effects of befovacimab, a humanized TFPI neutralizing antibody, were studied in whole blood and plasma samples from patients with severe FVIII deficiency. METHODS Blood and plasma obtained from participants was supplemented in vitro with befovacimab (0.5, 1, 5, 10 and 100 nM) or recombinant factor VIII (rFVIII) 5-, 10- and 40% and analysed using rotational thromboelastometry (ROTEM), thrombin generation assay (TGA) and the dilute prothrombin time (dPT) assay. The in vitro coagulation effects of befovacimab were compared to samples supplemented with rFVIII. RESULTS Befovacimab induced consistent pro-coagulant responses in ROTEM parameters including reduction in clotting times and increases in α-angle; induced reductions in dPT clotting time; and improvements in TGA parameters (reduced lag time and increased thrombin generation parameters). There was a modest concentration-dependent response generally from 0.5- to 10 nM, after which, the pharmacodynamic effect plateaued through the 100 nM concentration. Befovacimab concentrations of 5 to 10 nM showed pro-coagulant activity comparable to blood samples supplemented with rFVIII 10-40%. CONCLUSIONS Befovacimab has modest dose-response effects from 0.5 to 10 nM with minimal improvement with higher concentrations. In vitro befovacimab blood concentrations of 5 to 10 nM had pro-coagulant effects similar to blood supplemented with rFVIII 10- to 40%.
Collapse
Affiliation(s)
- Erika J Martin
- Coagulation Advancement Laboratory, Department of Pharmacotherapy & Outcomes Sciences, Virginia Commonwealth University (VCU) School of Pharmacy, Richmond, VA, USA
| | - Melinda E Nolte
- Department of Internal Medicine, Division of Hematology/Oncology, VCU School of Medicine, Richmond, VA, USA
| | - Janice Kuhn
- Department of Internal Medicine, Division of Hematology/Oncology, VCU School of Medicine, Richmond, VA, USA
| | - Nicole Schmidt
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Nils Pfaff
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Donald F Brophy
- Coagulation Advancement Laboratory, Department of Pharmacotherapy & Outcomes Sciences, Virginia Commonwealth University (VCU) School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
22
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Mazzeffi M, Judd M, Rabin J, Tabatabai A, Menaker J, Menne A, Chow J, Shah A, Henderson R, Herr D, Tanaka K. Tissue Factor Pathway Inhibitor Levels During Veno-Arterial Extracorporeal Membrane Oxygenation in Adults. ASAIO J 2021; 67:878-883. [PMID: 33606392 DOI: 10.1097/mat.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) has multiple anticoagulant properties. To our knowledge, no studies have measured TFPI levels in adult veno-arterial (VA) extracorporeal membrane oxygenation patients. We hypothesized that adult VA ECMO patients would have increased TFPI levels and slowed tissue factor triggered thrombin generation. Twenty VA ECMO patients had TFPI levels and thrombin generation lag time measured on ECMO day 1 or 2, day 3, and day 5. TFPI levels and thrombin generation lag time were compared against healthy control plasma samples. Mean TFPI levels were significantly higher in ECMO patients on ECMO day 1 or 2 = 81,877 ± 19,481 pg/mL, day 3 = 73,907 ± 26,690 pg/mL, and day 5 = 77,812 ± 23,484 pg/mL compared with control plasma = 38,958 ± 9,225 pg/mL (P < 0.001 for all comparisons). Median thrombin generation lag time was significantly longer in ECMO patients on ECMO day 1 or 2 = 10.0 minutes [7.5, 13.8], day 3 = 9.0 minutes [6.8, 12.1], and day 5 = 10.7 minutes [8.3, 15.2] compared with control plasma = 3.6 minutes [2.9, 4.2] (P < 0.001 for all comparisons). TFPI is increased in VA ECMO patients and tissue factor triggered thrombin generation is slowed. Increased TFPI levels could contribute to the multifactorial coagulopathy that occurs during ECMO.
Collapse
Affiliation(s)
| | | | - Joseph Rabin
- Department of Surgery, Program in Trauma, R Adams Cowley Shock Trauma Center
| | - Ali Tabatabai
- Department of Medicine, Program in Trauma, R Adams Cowley Shock Trauma Center
| | - Jay Menaker
- Department of Surgery, Program in Trauma, R Adams Cowley Shock Trauma Center
| | - Ashley Menne
- Department of Emergency Medicine, Program in Trauma, R Adams Cowley Shock Trauma Center
| | | | - Aakash Shah
- Department of Surgery, Division of Cardiothoracic Surgery, University of Maryland School of Medicine, Baltimore, MD
| | | | - Daniel Herr
- Department of Medicine, Program in Trauma, R Adams Cowley Shock Trauma Center
| | | |
Collapse
|
24
|
Kholmukhamedov A. Procoagulant Platelets. Platelets 2020. [DOI: 10.5772/intechopen.92638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two well-known subpopulations of activated platelets: pro-aggregatory and procoagulant. Procoagulant platelets represent a subpopulation of activated platelets, which are morphologically and functionally distinct from pro-aggregatory ones. Although various names have been used to describe these platelets in the literature (CoaT, CoaTed, highly activated, ballooned, capped, etc.), there is a consensus on their phenotypic features including exposure of high levels of phosphatidylserine (PSer) on the surface; decreased aggregatory and adhesive properties; support of active tenase and prothrombinase complexes; maximal generation by co-stimulation of glycoprotein VI (GPVI) and protease-activated receptors (PAR). In this chapter, morphologic and functional features of procoagulant platelets, as well as the mechanisms of their formation, will be discussed.
Collapse
|
25
|
Siebert AE, Mast AE. Platelet anticoagulant proteins: Modulators of thrombosis propensity within a procoagulant cell. J Thromb Haemost 2020; 18:2083-2086. [PMID: 32729671 PMCID: PMC7722139 DOI: 10.1111/jth.14995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Affiliation(s)
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
26
|
Platelets Extracellular Vesicles as Regulators of Cancer Progression-An Updated Perspective. Int J Mol Sci 2020; 21:ijms21155195. [PMID: 32707975 PMCID: PMC7432409 DOI: 10.3390/ijms21155195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.
Collapse
|
27
|
Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A Molecular Revolution in the Treatment of Hemophilia. Mol Ther 2020; 28:997-1015. [PMID: 31843450 PMCID: PMC7132613 DOI: 10.1016/j.ymthe.2019.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
For decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.
Collapse
Affiliation(s)
| | - Kerry M Hege
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
28
|
Ellery PER, Hilden I, Thyregod P, Martinez ND, Maroney SA, Gill JC, Mast AE. Measurement of plasma and platelet tissue factor pathway inhibitor, factor V and Protein S in people with haemophilia. Haemophilia 2019; 25:1083-1091. [PMID: 31608540 DOI: 10.1111/hae.13860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tissue factor pathway inhibitor (TFPI) is a naturally occurring anticoagulant found in plasma, where it circulates bound to lipoproteins, factor V (FV) or Protein S (PS), and in platelets. Therapeutic agents targeting TFPI are under development for the treatment of haemophilia A and haemophilia B. AIM To begin to understand how TFPI, FV and PS interact to modulate haemophilia bleeding. METHODS Plasma and platelet antigen concentrations of these factors were determined in 73 people with haemophilia A and 18 with haemophilia B. Using multiple regression models, these were compared to the same analytes measured in 224 male blood donors. RESULTS There were no differences in plasma or platelet TFPI, FV or PS concentrations between haemophilia types or severities. However, compared to blood donors, people with haemophilia had approximately one-third lower plasma PS, 9% lower plasma TFPIα, 50% higher platelet FV and 26% lower platelet Protein S. CONCLUSION Together, the presented data suggest that individuals with haemophilia may have a compensatory procoagulant response of both plasma and platelet proteins to the decreased concentrations of FVIII or FIX.
Collapse
Affiliation(s)
- Paul E R Ellery
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Ida Hilden
- Global Drug Discovery, Novo Nordisk, MȧlØv, Denmark
| | | | | | | | - Joan C Gill
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Alan E Mast
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
29
|
Antonova OA, Yakushkin VV, Mazurov AV. Coagulation Activity of Membrane Microparticles. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Kholmukhamedov A, Jobe S. Procoagulant Platelets Get Squeezed to Define the Boundaries of the Hemostatic Plug. Arterioscler Thromb Vasc Biol 2019; 39:5-6. [DOI: 10.1161/atvbaha.118.312066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Shawn Jobe
- From the BloodCenter of Wisconsin-Versiti, Milwaukee
| |
Collapse
|
31
|
Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2018; 29:668-682. [PMID: 30439766 DOI: 10.1097/mbc.0000000000000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia patients. In this review, we focus on posttranscription and translational modification of TFPI and its function in thrombosis and how pharmacological inhibitors and endogenous proteases interfere with TFPI and alter haemostasis.
Collapse
|
32
|
Anti-tissue factor pathway inhibitor (TFPI) therapy: a novel approach to the treatment of haemophilia. Int J Hematol 2018; 111:42-50. [PMID: 30302740 DOI: 10.1007/s12185-018-2548-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
Novel approaches to the treatment of haemophilia are needed due to the limitations of the current standard of care, factor replacement therapy. Aspirations include lessening the treatment burden and effectively preventing joint damage. Treating haemophilia by restoring thrombin generation may be an effective approach. A promising target for restoring thrombin generation is tissue factor pathway inhibitor (TFPI), a multivalent Kunitz-type serine protease inhibitor that regulates tissue factor-induced coagulation via factor Xa-dependent feedback inhibition of the tissue factor-factor VIIa complex. Inhibition of TFPI reverts the coagulation process to a more primitive state evolutionarily, whilst regulation by other natural inhibitors is preserved. An aptamer and three monoclonal antibodies directed against TFPI have been investigated in clinical trials. As well as improving thrombin generation in the range associated with mild haemophilia, anti-TFPI therapies have the advantage of subcutaneous administration. However, the therapeutic window needs to be defined along with the potential for complications due to the novel mechanism of action. This review provides an overview of TFPI, its role in normal coagulation, the rationale for TFPI inhibition, and a summary of anti-TFPI therapies, previously or currently in development.
Collapse
|
33
|
Moratz C, Robbins R, Eickhoff J, Edison J, Lui H, Peng S. Regulation of systemic tissue injury by coagulation inhibitors in B6.MRL/lpr autoimmune mice. Clin Immunol 2018; 197:169-178. [PMID: 30266629 DOI: 10.1016/j.clim.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023]
Abstract
Impaired fibrinolysis and complement activation in Systemic Lupus Erythematosus contributes to disease amplification including increased risk of thrombosis and tissue Ischemia/Reperfusion (IR) injury. Previous work has demonstrated complement is a key regulator of tissue injury. In these studies inhibitors had varying efficacies in attenuating injury at primary versus systemic sites, such as lung. In this study the role of coagulation factors in tissue injury and complement function was evaluated. Tissue Factor Pathway Inhibitor (TFPI), an extrinsic pathway inhibitor, and Anti-Thrombin III, the downstream common pathway inhibitor, were utilized in this study. TFPI was more effective in attenuated primary intestinal tissue injury. However both attenuated systemic lung injury. However, ATIII treatment resulting in enhanced degradation of C3 split products in lung tissue compared to TFPI. This work delineates the influence of specific early and late coagulation pathway components during initial tissue injury versus later distal systemic tissue injury mechanism.
Collapse
Affiliation(s)
- C Moratz
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - R Robbins
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - J Eickhoff
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - J Edison
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - H Lui
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - S Peng
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
34
|
Bertaggia Calderara D, Crettaz D, Aliotta A, Barelli S, Tissot JD, Prudent M, Alberio L. Generation of procoagulant collagen- and thrombin-activated platelets in platelet concentrates derived from buffy coat: the role of processing, pathogen inactivation, and storage. Transfusion 2018; 58:2395-2406. [PMID: 30229925 DOI: 10.1111/trf.14883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Collagen- and thrombin-activated (COAT) platelets (PLTs), generated by dual-agonist stimulation with collagen and thrombin (THR), enhance THR generation at the site of vessel wall injury. There is evidence that higher amounts of procoagulant COAT PLTs are associated with stroke, while a decreased ability to generate them is associated with bleeding diathesis. Our aim was to study PLT functions, particularly the ability to generate COAT PLTs, in PLT concentrates (PCs) from buffy coat. Thus, we investigated the effect of processing, pathogen inactivation treatment (amotosalen-UVA), and PC storage. STUDY DESIGN AND METHODS Two PCs from five donors each were pooled and split in two bags; one of them was pathogen inactivated and the other one was left untreated (n = 5). Flow cytometric analyses were performed immediately after PC preparation (Day 1) and thereafter on Days 2, 5, 7, and 9 in treated and untreated PCs to measure the reactivity of PLTs (CD62P and PAC-1), the content and secretion of dense granule after stimulation with different agonists, and the percentage of COAT PLTs after dual stimulation with convulxin (agonist of the collagen receptor GPVI) and THR. RESULTS Preparation of PCs resulted in a significant decrease of COAT PLTs and in an impaired response to adenosine 5'-diphosphate sodium (ADP). Storage further decreased ADP response. Minor differences were observed between untreated or amotosalen-UVA-treated PCs. CONCLUSION Preparation of PCs from buffy coats decreased the ability to generate COAT PLTs and impaired PLT response to ADP.
Collapse
Affiliation(s)
- Debora Bertaggia Calderara
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Stefano Barelli
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Salvagno GL, Pavan C, Lippi G. Rare thrombophilic conditions. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:342. [PMID: 30306081 DOI: 10.21037/atm.2018.08.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombophilia, either acquired or inherited, can be defined as a predisposition to developing thromboembolic complications. Since the discovery of antithrombin deficiency in the 1965, many other conditions have been described so far, which have then allowed to currently detect an inherited or acquired predisposition in approximately 60-70% of patients with thromboembolic disorders. These prothrombotic risk factors mainly include qualitative or quantitative defects of endogenous coagulation factor inhibitors, increased concentration or function of clotting proteins, defects in the fibrinolytic system, impaired platelet function, and hyperhomocysteinemia. In this review article, we aim to provide an overview on epidemiologic, clinic and laboratory aspects of both acquired and inherited rare thrombophilic risk factors, especially including dysfibrinogenemia, heparin cofactor II, thrombomodulin, lipoprotein(a), sticky platelet syndrome, plasminogen activator inhibitor-1 apolipoprotein E, tissue factor pathway inhibitor, paroxysmal nocturnal haemoglobinuria and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
| | - Chiara Pavan
- Division of Geriatric Medicine, Mater Salutis Hospital, Legnago, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
36
|
Maroney SA, Peterson JA, Zwifelhofer W, Martinez ND, Yan K, Bercovitz RS, Woods RK, Mast AE. Plasma Proteolytic Cascade Activation during Neonatal Cardiopulmonary Bypass Surgery. Thromb Haemost 2018; 118:1545-1555. [PMID: 30086574 DOI: 10.1055/s-0038-1667198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neonates undergoing cardiopulmonary bypass (CPB) surgery to correct congenital heart defects often experience excessive bleeding. Exposure of blood to artificial materials during CPB may activate coagulation, complement and inflammatory pathways. In addition, the surgical stress placed on the haemostatic system may result in cross-activation of other plasma proteolytic cascades, which could further complicate physiological responses to the surgical procedure and post-operative recovery. Plasma protease inhibitors undergo distinct conformational changes upon interaction with proteases, and, thereby, can serve as endogenous biosensors to identify activation of the different proteolytic cascades. We tested the hypothesis that changes in the concentration and conformation of protease inhibitors regulating plasma proteolytic cascades during neonatal CPB are associated with post-operative bleeding. PATIENTS AND METHODS Plasma samples from 44 neonates were obtained at four time points across the surgical procedure. Anti-thrombin, antitrypsin, anti-chymotrypsin, anti-plasmin, C1-inhibitor and tissue factor pathway inhibitor (TFPI) concentrations and conformations were evaluated by enzyme-linked immunosorbent assay, transverse urea gradient gel electrophoresis and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. RESULTS/CONCLUSION The most striking changes were observed following heparin administration and were associated with the appearance of inactive forms of anti-thrombin and an increase in the plasma concentration of TFPI. Changes in anti-thrombin and TFPI remained evident throughout surgery and into the post-operative period but were not different between patients with or without post-operative bleeding. The concentration of antitrypsin decreased across surgery, but there was no significant accumulation of inactive conformations of any inhibitor besides anti-thrombin, indicating that widespread cross-activation of other plasma proteolytic cascades by coagulation proteases did not occur.
Collapse
Affiliation(s)
- Susan A Maroney
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
| | - Julie A Peterson
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
| | - Wes Zwifelhofer
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas D Martinez
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ke Yan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Rachel S Bercovitz
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ronald K Woods
- Division of Pediatric Cardiothoracic Surgery, Herma Heart Center, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
37
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
38
|
Chowdary P. Inhibition of Tissue Factor Pathway Inhibitor (TFPI) as a Treatment for Haemophilia: Rationale with Focus on Concizumab. Drugs 2018; 78:881-890. [PMID: 29845491 PMCID: PMC6013504 DOI: 10.1007/s40265-018-0922-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Replacement therapy with missing factor (F) VIII or IX in haemophilia patients for bleed management and preventative treatment or prophylaxis is standard of care. Restoration of thrombin generation through novel mechanisms has become the focus of innovation to overcome limitations imposed by protein replacement therapy. Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type serine protease inhibitor that regulates tissue factor (TF)-induced coagulation through a FXa-dependent feedback inhibition of the TF.FVIIa complex in plasma and on endothelial surfaces. Concizumab is a monoclonal, humanised antibody, specific for the second Kunitz domain of TFPI that binds and inhibits FXa, abolishing the inhibitory effect of TFPI. Concizumab restored thrombin generation in FVIII and FIX deficient plasmas and decreased blood loss in a rabbit haemophilia model. Phase 1 single and multiple dose escalation studies in haemophilia patients demonstrated a dose dependent decrease in TFPI levels and a pro-coagulant effect with increasing d-dimers and prothrombin fragment 1 + 2. A dose dependent increase in peak thrombin and endogenous thrombin potential was observed with values in the normal range when plasma TFPI levels were nearly undetectable. A few haemophilia patients in the highest dose cohorts with complete inhibition of plasma TFPI showed a decreased fibrinogen concentration with normal levels of anti-thrombin and platelets and no evidence of thrombosis. Pharmacokinetic parameters were influenced by binding to the target (TFPI), demonstrating target mediated drug disposition. A trend towards decreasing bleeding tendency was observed and this preventative effect is being studied in Phase 2 studies with additional data gathered to improve our understanding of the therapeutic window and potential for thrombosis.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, Pond Street, London, NW3 2 QG, UK.
| |
Collapse
|
39
|
Translational Pharmacokinetic/Pharmacodynamic Characterization and Target-Mediated Drug Disposition Modeling of an Anti-Tissue Factor Pathway Inhibitor Antibody, PF-06741086. J Pharm Sci 2018; 107:1995-2004. [PMID: 29571739 DOI: 10.1016/j.xphs.2018.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) exhibits multiple isoforms, which are known to present in multiple locations such as plasma, endothelium, and platelets. TFPI is an endogenous negative modulator of the coagulation pathway, and therefore, neutralization of TFPI function can potentially increase coagulation activity. A human monoclonal antibody, PF-06741086, which interacts with all isoforms of TFPI is currently being tested in clinic for treating hemophilia patients with and without inhibitors. To support clinical development of PF-06741086, pharmacokinetics (PK) and pharmacodynamics of PF-06741086 were characterized in monkeys. In addition, a mechanistic model approach was used to estimate PK parameters in monkeys and simulate PK profiles in human. The results show that PF-06741086 exhibited target-mediated drug disposition and had specific effects on various hemostatic markers including diluted prothrombin time, thrombin generation, and thrombin-antithrombin complex in monkeys after administration. The model-predicted and observed human exposures were compared retrospectively, and the result indicates that the exposure prediction was reasonable within less than 2-fold deviation. This study demonstrated in vivo efficacy of PF-06741086 in monkeys and the utility of a rational mechanistic approach to describe PK for a monoclonal antibody with complex target binding.
Collapse
|
40
|
Ellery PER, Hilden I, Sejling K, Loftager M, Martinez ND, Maroney SA, Mast AE. Correlates of plasma and platelet tissue factor pathway inhibitor, factor V, and Protein S. Res Pract Thromb Haemost 2017; 2:93-104. [PMID: 29354797 PMCID: PMC5771435 DOI: 10.1002/rth2.12058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Plasma Tissue Factor Pathway Inhibitor (TFPI) circulates bound to factor V (fV) and Protein S (PS). Estrogen therapy decreases plasma TFPI and PS. TFPI, fV, and PS circulate within platelets, and are released upon activation to modulate thrombus formation. Objective Identify factors affecting the concentrations of plasma and platelet TFPI, fV, and PS. Methods Blood samples were obtained from 435 healthy individuals. Plasma total TFPI, TFPIɑ, fV, and PS, and platelet TFPI, fV, and PS were quantified. Correlations between these protein concentrations and age, gender, race, and estrogen use were established. Results In males, only plasma fV increased with age, while in females, all plasma analytes increased with age. Males had higher plasma total TFPI, TFPIα, and PS than females. The platelet proteins in either sex remained relatively stable with increasing age. Platelet TFPI and PS were comparable in both sexes, while platelet fV was higher in females. Estrogen use was associated with decreased plasma total TFPI and TFPIα, and platelet PS, but not with platelet TFPI concentration. Racial differences in plasma and platelet proteins were observed, some of which were larger than inter-individual differences observed within racial groups. TFPI, fV and PS concentrations correlated in plasma, while only fV and PS correlated in platelets. Conclusions Plasma and platelet TFPI, fV and PS differ in their: (i) in vivo association; (ii) demographic correlates; and (iii) alteration by estrogen therapies. Therefore, the plasma and platelet pools of these proteins may modulate hemostasis and thrombosis via different biochemical pathways.
Collapse
Affiliation(s)
- Paul E R Ellery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Ida Hilden
- Global Research, Novo Nordisk, Maaloev, Denmark
| | - Ken Sejling
- Global Research, Novo Nordisk, Maaloev, Denmark
| | | | | | - Susan A Maroney
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Alan E Mast
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
41
|
Nurden A. Platelets, inflammation and tissue regeneration. Thromb Haemost 2017; 105 Suppl 1:S13-33. [DOI: 10.1160/ths10-11-0720] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022]
Abstract
SummaryBlood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from α-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.
Collapse
|
42
|
Outside-in, inside-out: Proteomic analysis of endothelial stress mediated by 7-ketocholesterol. Chem Phys Lipids 2017; 207:231-238. [DOI: 10.1016/j.chemphyslip.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
|
43
|
Nickel KF, Labberton L, Long AT, Langer F, Fuchs TA, Stavrou EX, Butler LM, Renné T. The polyphosphate/factor XII pathway in cancer-associated thrombosis: novel perspectives for safe anticoagulation in patients with malignancies. Thromb Res 2017; 141 Suppl 2:S4-7. [PMID: 27207422 DOI: 10.1016/s0049-3848(16)30353-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is an established risk factor for venous thromboembolism (VTE) and VTE is the second leading cause of death in patients with cancer. The incidence of cancer-related thrombosis is rising and is associated with worse outcomes. Despite our growing understanding on tumor-driven procoagulant mechanisms including cancer-released procoagulant proteases, expression of tissue factor on cancer cells and derived microvesicles, as well as alterations in the extracellular matrix of the cancer cell milieu, anticoagulation therapy in cancer patients has remained challenging. This review comments on a newly discovered cancer-associated procoagulant pathway. Experimental VTE models in mice and studies on patient cancer material revealed that prostate cancer cells and associated exosomes display the inorganic polymer polyphosphate on their plasma membrane. Polyphosphate activates blood coagulation factor XII and initiates thrombus formation via the intrinsic pathway of coagulation. Pharmacologic inhibition of factor XII activity protects mice from VTE and reduces thrombin coagulant activity in plasma of prostate cancer patients. Factor XII inhibitors provide thrombo-protection without impairing hemostatic mechanisms and thus, unlike currently used anticoagulants, do not increase bleeding risk. Interference with the polyphosphate/factor XII pathway may provide the novel opportunity for safe anticoagulation therapy in patients with malignancies.
Collapse
Affiliation(s)
- Katrin F Nickel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Linda Labberton
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Andrew T Long
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Langer
- Clinical Department of Hematology and Oncology, Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias A Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evi X Stavrou
- Divisions of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, OH, USA
| | - Lynn M Butler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Abstract
Hemophilia is a severe bleeding disorder treated by infusion of the missing blood coagulation protein, factor VIII or factor IX. The discovery and characterization of the anticoagulant protein tissue factor pathway inhibitor (TFPI) led to the realization that inhibition of TFPI activity could restore functional hemostasis through the extrinsic blood coagulation pathway in a manner that does not require the activity of factors VIII or IX. There are currently several therapeutic agents that inhibit TFPI in development for treatment of hemophilia. A comprehensive understanding of TFPI structure, biochemistry, and cellular expression is necessary to understand how it modulates bleeding in hemophilia and the physiological impact of therapeutic agents targeting TFPI.
Collapse
|
45
|
Reduced Prothrombinase Inhibition by Tissue Factor Pathway Inhibitor Contributes to the Factor V Leiden Hypercoagulable State. Blood Adv 2017; 1:386-395. [PMID: 28580443 DOI: 10.1182/bloodadvances.2016002295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated factor V (FVa) and factor X (FXa) form prothrombinase, which converts prothrombin to thrombin. The α isoform of tissue factor (TF) pathway inhibitor (TFPI) dampens early procoagulant events, partly by interacting with FV. FV Leiden (FVL) is the most common genetic thrombophilia in Caucasians. Thrombosis risk is particularly elevated in women with FVL taking oral contraceptives, which produce acquired TFPIα deficiency. In mice, FVL combined with 50% reduction in TFPI causes severe thrombosis and perinatal lethality. However, a possible interaction between FVL and TFPIα has not been defined in humans. Here, we examined this interaction using samples from patients with FVL in thrombin generation and fibrin formation assays. In dilute TF- or FXa-initiated reactions, these studies exposed a TFPI-dependent activation threshold for coagulation initiation that was greatly reduced by FVL. The reduced threshold was progressively overcome with higher concentrations of TF or FXa. Plasma assays using anti-TFPI antibodies or a TFPI peptide that binds and inhibits FVa demonstrated that the decreased activation threshold resulted from reduced TFPIα inhibition of prothrombinase. In assays using purified proteins, TFPIα was a 1.7-fold weaker inhibitor of prothrombinase assembled with FVL than with FV. Thus, FVL reduces the threshold for initiating coagulation, and this threshold is further reduced in situations of low TFPIα concentration. Individuals with FVL are likely prone to thrombosis in response to weak procoagulant stimuli that would not initiate blood clot formation in individuals with FV.
Collapse
|
46
|
Puy C, Tucker EI, Ivanov IS, Gailani D, Smith SA, Morrissey JH, Gruber A, McCarty OJT. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI. PLoS One 2016; 11:e0165172. [PMID: 27764259 PMCID: PMC5072614 DOI: 10.1371/journal.pone.0165172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/09/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Methods and Results Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Conclusions Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.
Collapse
Affiliation(s)
- Cristina Puy
- Departments of Biomedical Engineering Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Erik I. Tucker
- Departments of Biomedical Engineering Oregon Health & Science University, Portland, Oregon, United States of America
- Aronora, Inc, Portland, Oregon, United States of America
| | - Ivan S. Ivanov
- Departments of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Gailani
- Departments of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stephanie A. Smith
- Biochemistry Department, University of Illinois, Urbana, Illinois, United States of America
| | - James H. Morrissey
- Biochemistry Department, University of Illinois, Urbana, Illinois, United States of America
| | - András Gruber
- Departments of Biomedical Engineering Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Aronora, Inc, Portland, Oregon, United States of America
| | - Owen J. T. McCarty
- Departments of Biomedical Engineering Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Cell, Developmental and Cancer Biology Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
47
|
Mattheij NJA, Swieringa F, Mastenbroek TG, Berny-Lang MA, May F, Baaten CCFMJ, van der Meijden PEJ, Henskens YMC, Beckers EAM, Suylen DPL, Nolte MW, Hackeng TM, McCarty OJT, Heemskerk JWM, Cosemans JMEM. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII. Haematologica 2015; 101:427-36. [PMID: 26721892 DOI: 10.3324/haematol.2015.131441] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin α(IIb)β3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin α(IIb)β3 Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin α(IIb)β3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in α(IIb)β3(Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial α(IIb)β3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin α(IIb)β3.
Collapse
Affiliation(s)
- Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Tom G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Michelle A Berny-Lang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Center, The Netherlands
| | - Erik A M Beckers
- Department of Internal Medicine, Maastricht University Medical Center, The Netherlands
| | - Dennis P L Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
48
|
Mast AE. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein. Arterioscler Thromb Vasc Biol 2015; 36:9-14. [PMID: 26603155 DOI: 10.1161/atvbaha.115.305996] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients.
Collapse
Affiliation(s)
- Alan E Mast
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee; and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
49
|
van Golen RF, Stevens KM, Colarusso P, Jaeschke H, Heger M. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease. J Clin Transl Res 2015; 1:107-115. [PMID: 26925465 DOI: 10.18053/jctres.201502.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. AIMS To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. METHODS Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. RESULTS Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. CONCLUSIONS Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. RELEVANCE FOR PATIENTS I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katarzyna M Stevens
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Abstract
Tissue factor pathway inhibitor (TFPI) dampens the initiation of blood coagulation by inhibiting two potent procoagulant complexes, tissue factor-factor VIIa (TF-FVIIa) and early forms of prothrombinase. TFPI isoforms, TFPIα and TFPIβ, result from alternative splicing of mRNA, producing distinct C-terminal ends of the two proteins. Both isoforms inhibit TF-FVIIa, but only TFPIα can inhibit early forms of prothrombinase by binding of its positively charged C-terminus with high affinity to the acidic B-domain exosite of FVa, which is generated upon activation by FXa. TFPIα and TFPIβ are produced in cultured human endothelial cells, while platelets contain only TFPIα. Knowledge of the anticoagulant mechanisms and tissue expression patterns of TFPIα and TFPIβ have improved our understanding of the phenotypes observed in different mouse models of TFPI deficiency, the east Texas bleeding disorder, and the development of pharmaceutical agents that block TFPI function to treat hemophilia.
Collapse
Affiliation(s)
- S A Maroney
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - A E Mast
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|