1
|
Vadori M, Cozzi E. Current challenges in xenotransplantation. Curr Opin Organ Transplant 2024; 29:205-211. [PMID: 38529696 PMCID: PMC11064916 DOI: 10.1097/mot.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW In recent years, the xenotransplantation science has advanced tremendously, with significant strides in both preclinical and clinical research. This review intends to describe the latest cutting-edge progress in knowledge and methodologies developed to overcome potential obstacles that may preclude the translation and successful application of clinical xenotransplantation. RECENT FINDINGS Preclinical studies have demonstrated that it is now possible to extend beyond two years survival of primate recipients of life saving xenografts. This has been accomplished thanks to the utilization of genetic engineering methodologies that have allowed the generation of specifically designed gene-edited pigs, a careful donor and recipient selection, and appropriate immunosuppressive strategies.In this light, the compassionate use of genetically modified pig hearts has been authorized in two human recipients and xenotransplants have also been achieved in human decedents. Although encouraging the preliminary results suggest that several challenges have yet to be fully addressed for a successful clinical translation of xenotransplantation. These challenges include immunologic, physiologic and biosafety aspects. SUMMARY Recent progress has paved the way for the initial compassionate use of pig organs in humans and sets the scene for a wider application of clinical xenotransplantation.
Collapse
Affiliation(s)
- Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua
- Transplant Immunology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health Padua University Hospital, Padua, Italy
| |
Collapse
|
2
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
3
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
4
|
Maeda A, Kogata S, Toyama C, Lo PC, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Okuyama H, Miyagawa S. The Innate Cellular Immune Response in Xenotransplantation. Front Immunol 2022; 13:858604. [PMID: 35418992 PMCID: PMC8995651 DOI: 10.3389/fimmu.2022.858604] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Xenotransplantation is very attractive strategy for addressing the shortage of donors. While hyper acute rejection (HAR) caused by natural antibodies and complement has been well defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of evidence suggests that innate cellular immune responses contribute to xenogeneic rejection. Various molecular incompatibilities between receptors and their ligands across different species typically have an impact on graft outcome. NK cells are activated by direct interaction as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are activated through various mechanisms in xenogeneic conditions. Macrophages recognize CD47 as a "marker of self" through binding to SIRPα. A number of studies have shown that incompatibility of porcine CD47 against human SIRPα contributes to the rejection of xenogeneic target cells by macrophages. Neutrophils are an early responder cell that infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps (NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this review, we summarize recent insights into innate cellular xenogeneic rejection.
Collapse
Affiliation(s)
- Akira Maeda
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan.,Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| |
Collapse
|
5
|
Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, Reyes LM, Vianna RM, Tector MF, Tector AJ. Anti-C5 Antibody Tesidolumab Reduces Early Antibody-mediated Rejection and Prolongs Survival in Renal Xenotransplantation. Ann Surg 2021; 274:473-480. [PMID: 34238812 PMCID: PMC8915445 DOI: 10.1097/sla.0000000000004996] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.
Collapse
Affiliation(s)
- Andrew B Adams
- University of Minnesota School of Medicine, Minneapolis MN
| | | | | | | | | | | | - Luz M Reyes
- University of Miami School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
6
|
Liu L, Zhao J, Li A, Yang X, Sprangers B, Li S. Prolongation of allograft survival by artemisinin treatment is associated with blockade of OX40-OX40L. Immunopharmacol Immunotoxicol 2021; 43:291-298. [PMID: 33757384 DOI: 10.1080/08923973.2021.1902347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES It has been demonstrated that artemisinin (ART) possesses multiple immune modulatory effects. However, its role as immunosuppressant in allogeneic transplantation is undetermined. Here, we investigated the effect of ART on co-stimulatory signaling in OX40+ T cells and evaluated ART as a potential immunosuppressant in transplantation. MATERIALS AND METHODS Allogeneic skin transplantation was performed in C57BL/6 to BALB/c mice. Recipient mice were administrated with vehicle, ART or cyclosporine A daily from day 0 to day 19 post transplantation. Proportions of splenic CD4+OX40+ and CD4+CD44hiCD62Lhi cells, and serum IgG was measured by using flow cytometry. An in vitro lymphocyte stimulation with Con A or LPS under various concentrations of ART was performed, expression of CD4+OX40+ and CD4+CD44hiCD62Lhi cells was evaluated, and interleukin(IL)-6 production was measured by ELISA. RESULTS In in vivo allogeneic skin transplant model, ART significantly prolongs allogeneic skin survival. Furthermore, our in vitro studies demonstrate that the immune suppression of ART on T cells is associated with a reduction in OX40+ T cells and inhibition of IL-6 secretion. CONCLUSION Our data indicate that the OX40-OX40L pathway and IL-6 are possibly involved in ART-induced immunosuppression, and ART is a potential novel immunosuppressant.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Ultrasonic, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Juanzhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - An Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Xuan Yang
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Ben Sprangers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium
| | - Shengqiao Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, University of Sun Yat-Sen, Zhuhai, P.R. China
| |
Collapse
|
7
|
Liu L, Zhao J, Li A, Yang X, Sprangers B, Li S. Artemisinin attenuates IgM xenoantibody production via inhibition of T cell-independent marginal zone B cell proliferation. J Leukoc Biol 2021; 109:583-591. [PMID: 32542769 DOI: 10.1002/jlb.4ma0520-717rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/15/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022] Open
Abstract
Artemisinin (ART) has been shown to suppress B cell activation and plasma cell formation. However, its effect on splenic marginal zone (MZ) B cells is unknown. Splenic MZ B cells play a critical role in rapidly induced Ab production against blood-borne foreign Ags. Dysfunction of MZ B cells, due to inhibition of its proliferation or displacement of its homing, results in an attenuated adaptive humoral response. Here, we investigate the effect of ART on splenic MZ B (CD19+ CD21high CD23low ) and B10 (CD19+ CD1dhigh CD5+ ) B cells to explore the mechanisms of ART-induced immunosuppression in T cell-deficient nude mice challenged with hamster xenoantigens. In this study, we demonstrate that ART decreases T cell-independent xenogeneic IgM Ab production and, this is associated with a strong suppression of MZ B cell proliferation and a relative increase of CD21low CD23+ follicular and B10 B cells. In addition, this suppression impairs IL-10 production. Taken together, our data indicate that ART suppresses B cell immune responses through a distinctive effect on splenic MZ B and other B cells. This represents a new mechanism of ART-induced immunosuppression.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
| | - Juanzhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
| | - An Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
| | - Xuan Yang
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega institute), KU Leuven, Leuven, Belgium
| | - Shengqiao Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, University of Sun Yat-sen, Zhuhai, P. R. China
| |
Collapse
|
8
|
Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2020; 219:107709. [PMID: 33091428 DOI: 10.1016/j.pharmthera.2020.107709] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The CD40 receptor and its ligand CD40L is one of the most critical molecular pairs of the stimulatory immune checkpoints. Both CD40 and CD40L have a membrane form and a soluble form generated by proteolytic cleavage or alternative splicing. CD40 and CD40L are widely expressed in various types of cells, among which B cells and myeloid cells constitutively express high levels of CD40, and T cells and platelets express high levels of CD40L upon activation. CD40L self-assembles into functional trimers which induce CD40 trimerization and downstream signaling. The canonical CD40/CD40L signaling is mediated by recruitment of TRAFs and NF-κB activation, which is supplemented by signal pathways such as PI3K/AKT, MAPKs and JAK3/STATs. CD40/CD40L immune checkpoint leads to activation of both innate and adaptive immune cells via two-way signaling. CD40/CD40L interaction also participates in regulating thrombosis, tissue inflammation, hematopoiesis and tumor cell fate. Because of its essential role in immune activation, CD40/CD40L interaction has been regarded as an attractive immunotherapy target. In recent years, significant advance has been made in CD40/CD40L-targeted therapy. Various types of agents, including agonistic/antagonistic monoclonal antibodies, cellular vaccines, adenoviral vectors and protein antagonist, have been developed and evaluated in early-stage clinical trials for treating malignancies, autoimmune diseases and allograft rejection. In general, these agents have demonstrated favorable safety and some of them show promising clinical efficacy. The mechanisms of benefits include immune cell activation and tumor cell lysis/apoptosis in malignancies, or immune cell inactivation in autoimmune diseases and allograft rejection. This review provides a comprehensive overview of the structure, processing, cellular expression pattern, signaling and effector function of CD40/CD40L checkpoint molecules. In addition, we summarize the progress, targeted diseases and outcomes of current ongoing and completed clinical trials of CD40/CD40L-targeted therapy.
Collapse
Affiliation(s)
- TingTing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Billy Truong
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - LiZhe Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - XiaoFeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
9
|
Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc Natl Acad Sci U S A 2018; 115:3120-3125. [PMID: 29507226 PMCID: PMC5866538 DOI: 10.1073/pnas.1711335115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many patients with B cell lymphoma carry alterations in the gene coding for the transcription factor Foxp1. High Foxp1 expression has been linked to poor prognosis in those malignancies; however, the physiological functions of Foxp1 in mature B cells remain unknown. By employing genetic mouse models, we show that Foxp1 deletion results in reduced B cell numbers and impaired antibody production upon T cell-independent immunization. Foxp1-deficient mature B cells are impaired in survival and exhibit an increased proliferation capacity, and transcriptional analysis identified defective expression of the prosurvival Bcl-xl gene. Our results provide insight into the regulation of mature B cell survival by Foxp1 and have implications for understanding the role of Foxp1 in the development of B cell malignancies. The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma.
Collapse
|
10
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
11
|
Lee JI, Kim J, Choi YJ, Park HJ, Park HJ, Wi HJ, Yoon S, Shin JS, Park JK, Jung KC, Lee EB, Kang HJ, Hwang ES, Kim SJ, Park CG, Park SH. The effect of epitope-based ligation of ICAM-1 on survival and retransplantation of pig islets in nonhuman primates. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jae-Il Lee
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
- Department of Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea
- Institute of Endemic Diseases; Seoul National University Medical Research Center; Seoul Korea
| | - Yun-Jung Choi
- Graduate Course of Translational Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hi-Jung Park
- Graduate Course of Translational Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hye-Jin Park
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
| | - Hae Joo Wi
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
| | - Sunok Yoon
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Jin Kyun Park
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
- Department of Pathology; Seoul National University College of Medicine; Seoul Korea
| | - Eun Bong Lee
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang Korea
| | - Eung Soo Hwang
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea
- Institute of Endemic Diseases; Seoul National University Medical Research Center; Seoul Korea
| | - Sang-Joon Kim
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Seong Hoe Park
- Transplantation Research Institute; Seoul National University Medical Research Center; Seoul Korea
- Department of Medicine; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
12
|
Kang HJ, Lee H, Park EM, Kim JM, Shin JS, Kim JS, Park CG, Kim SJ. Increase in anti-Gal IgM level is associated with early graft failure in intraportal porcine islet xenotransplantation. Ann Lab Med 2016; 35:611-7. [PMID: 26354349 PMCID: PMC4579105 DOI: 10.3343/alm.2015.35.6.611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/04/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Anti-Gal is a major antibody induced in non-human primates (NHPs) after xenotransplantation. To understand the mechanism of graft rejection, we investigated the association between anti-Gal responses and graft failure in NHP recipients of porcine islet transplantation (PITx). METHODS Intraportal PITx was performed in 35 diabetic NHPs, and graft function was monitored. Early graft failure (EGF) was defined as loss of graft function within a month after PITx. Seven, 19, nine NHPs received immunosuppression (IS) without CD40 pathway blockade (Group I), with anti-CD154 (Group II), and with anti-CD40 (Group III), respectively. The anti-Gal levels on day 0 and day 7 of PITx were measured by ELISA. RESULTS The frequency of EGF was significantly lower in Group II (26.3%) than in Group I (100%, P=0.0012) and Group III (77.8%, P=0.0166). While levels of anti-Gal IgG in Group I and anti-Gal IgM in Group III increased on day 7 compared with day 0 (P=0.0156 and 0.0273), there was no increase in either on day 7 in Group II. The ratio of anti-Gal IgM or IgG level on day 7 to that on day 0 (Ratio7/0) was significantly higher in recipients with EGF than without EGF (P=0.0009 and 0.0027). ROC curve analysis of anti-Gal IgM Ratio7/0 revealed an area under the curve of 0.789 (P=0.0003). CONCLUSIONS IS with anti-CD154 suppressed anti-Gal responses and prevented EGF in PITx. Anti-Gal IgM Ratio7/0, being associated with EGF, is a predictive marker for EGF.
Collapse
Affiliation(s)
- Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea.
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Sang Joon Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
14
|
Abstract
Antibody-mediated rejection (AMR) has been identified among the most important factors limiting long-term outcome in cardiac and renal transplantation. Therapeutic management remains challenging and the development of effective treatment modalities is hampered by insufficient understanding of the underlying pathophysiology. However, recent findings indicate that in addition to AMR-triggered activation of the classical complement pathway, antibody-dependent cellular cytotoxicity by innate immune cell subsets also promotes vascular graft injury. This review summarizes the accumulating evidence for the contribution of natural killer cells, the key mediators of antibody-dependent cellular cytotoxicity, to human AMR in allotransplantation and xenotransplantation and illustrates the current mechanistic conceptions drawn from animal models.
Collapse
|
15
|
Park CG, Bottino R, Hawthorne WJ. Current status of islet xenotransplantation. Int J Surg 2015; 23:261-266. [PMID: 26253846 DOI: 10.1016/j.ijsu.2015.07.703] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 11/27/2022]
Abstract
Cell therapy for Type 1 diabetes (T1D) utilizing islet cell transplantation can successfully restore endogenous insulin production in affected patients. Islet cell engraftment and survival are conditional on the use of efficacious anti-rejection therapies and on the availability of healthy donor cells. The scarcity of healthy human donor pancreata is a limiting factor in providing sufficient tissue to meet the demand for islet transplantation worldwide. A potential alternative to the use of cadaveric human donor pancreases is the use of animal sourced islets. Pancreatic islets obtained from pigs have emerged as an alternative to human tissues due to their great availability, physiological similarities to human islets, including the time-tested use of porcine insulin in diabetic patients and the ability to genetically modify the donor source. The evolution of refined, efficacious immunosuppressive therapies with reduced toxicity, improvements in donor management and genetic manipulation of the donor have all contributed to facilitate long-term function in pre-clinical models of pig islet grafts in non-human primates. As clinical consideration for this option is growing, and trials involving the use of porcine islets have begun, more compelling experimental data suggest that the use of pig islets may soon become a viable, safe, effective and readily available treatment for insulin deficiency in T1D patients.
Collapse
Affiliation(s)
- Chung-Gyu Park
- Department of Microbiology and Immunology, Xenotransplantation Research Center, Institute of Endemic Diseases, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University, Seoul, South Korea.
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212, USA.
| | - Wayne J Hawthorne
- The Centre for Transplant & Renal Research, Westmead Research Institute, Westmead, NSW, Australia; Department of Surgery, University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
16
|
Abstract
Natural killer (NK) cells are normal white blood cells capable of killing malignant cells without prior sensitization. Allogeneic NK cell infusions are attractive for cancer therapy because of non-cross-resistant mechanisms of action and minimal overlapping toxicities with standard cancer treatments. Although NK therapy is promising, many obstacles will need to be overcome, including insufficient cell numbers, failure of homing to tumor sites, effector dysfunction, exhaustion, and tumor cell evasion. Capitalizing on the wealth of knowledge generated by recent NK cell biology studies and the advancements in biotechnology, substantial progress has been made recently in improving therapeutic efficiency and reducing side effects. A multipronged strategy is essential, including immunogenetic-based donor selection, refined NK cell bioprocessing, and novel augmentation techniques, to improve NK function and to reduce tumor resistance. Although data from clinical trials are currently limited primarily to hematologic malignancies, broader applications to a wide spectrum of adult and pediatric cancers are under way. The unique properties of human NK cells open up a new arena of novel cell-based immunotherapy against cancers that are resistant to contemporary therapies.
Collapse
Affiliation(s)
- Wing Leung
- Author's Affiliations: Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital; and Department of Pediatrics, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
17
|
Shin JS, Kim JS, Kim JM, Jang JY, Kim YH, Kim HJ, Park CG. Minimizing immunosuppression in islet xenotransplantation. Immunotherapy 2014; 6:419-30. [PMID: 24815782 DOI: 10.2217/imt.14.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic islet transplantation is a promising treatment option for Type 1 diabetes, but organ supply shortage limits its wide adoption. Pig islets are the most promising alternative source and many important measures such as donor animal selection, pig islet production release criteria, preclinical data and zoonosis surveillance prior to human clinical trials have been put forward as a consensus through the efforts of the International Xenotransplantation Association. To bring pig islet transplantation to clinical reality, the development of clinically applicable immunosuppression regimens and methods to minimize immunosuppression to reduce side effects should be established. This review encompasses immune rejection mechanisms in islet xenotransplantation, immunosuppression regimens that have enabled long-term graft survival in pig-to-nonhuman primate experiments and strategies for minimizing immunosuppression in islet xenotransplantation. By thoroughly examining the drugs that are currently available and in development and their individual targets within the immune response, the best strategy for enabling clinical trials of pig islets for Type 1 diabetes will be proposed.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
The Role of CD2 Family Members in NK-Cell Regulation of B-Cell Antibody Production. Antibodies (Basel) 2013. [DOI: 10.3390/antib3010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A, Gijsbers R, Van Gool S, Waer M, Billiau AD. Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 2013; 62:1733-44. [PMID: 24081484 PMCID: PMC11028935 DOI: 10.1007/s00262-013-1479-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation and donor leukocyte infusion (DLI) may hold potential as a novel form of immunotherapy for high-risk neuroblastoma. DLI, however, carries the risk of graft-versus-host disease (GvHD). Recipient leukocyte infusion (RLI) induces graft-versus-leukemia responses without GvHD in mice and is currently being explored clinically. Here, we demonstrate that both DLI and RLI, when given to mixed C57BL/6→A/J radiation chimeras carrying subcutaneous Neuro2A neuroblastoma implants, can slow the local growth of such tumors. DLI provoked full donor chimerism and GvHD; RLI produced graft rejection but left mice healthy. Flow cytometric studies showed that the chimerism of intratumoral leukocytes paralleled the systemic chimerism. This was associated with increased CD8/CD4 ratios, CD8+ T-cell IFN-γ expression and NK-cell Granzyme B expression within the tumor, following both DLI and RLI. The clinically safe anti-tumor effect of RLI was further enhanced by adoptively transferred naïve recipient-type NK cells. In models of intravenous Neuro2A tumor challenge, allogeneic chimeras showed superior overall survival over syngeneic chimeras. Bioluminescence imaging in allogeneic chimeras challenged with luciferase-transduced Neuro2A cells showed both DLI and RLI to prolong metastasis-free survival. This is the first experimental evidence that RLI can safely produce a local and systemic anti-tumor effect against a solid tumor. Our data indicate that RLI may provide combined T-cell and NK-cell reactivity effectively targeting Neuro2A neuroblastoma.
Collapse
Affiliation(s)
- Leen Willems
- Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, box 811, 3000, Leuven, Belgium,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang S, Tasch J, Kheradmand T, Ulaszek J, Ely S, Zhang X, Hering BJ, Miller SD, Luo X. Transient B-cell depletion combined with apoptotic donor splenocytes induces xeno-specific T- and B-cell tolerance to islet xenografts. Diabetes 2013; 62:3143-50. [PMID: 23852699 PMCID: PMC3749362 DOI: 10.2337/db12-1678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peritransplant infusion of apoptotic donor splenocytes cross-linked with ethylene carbodiimide (ECDI-SPs) has been demonstrated to effectively induce allogeneic donor-specific tolerance. The objective of the current study is to determine the effectiveness and additional requirements for tolerance induction for xenogeneic islet transplantation using donor ECDI-SPs. In a rat-to-mouse xenogeneic islet transplant model, we show that rat ECDI-SPs alone significantly prolonged islet xenograft survival but failed to induce tolerance. In contrast to allogeneic donor ECDI-SPs, xenogeneic donor ECDI-SPs induced production of xenodonor-specific antibodies partially responsible for the eventual islet xenograft rejection. Consequently, depletion of B cells prior to infusions of rat ECDI-SPs effectively prevented such antibody production and led to the indefinite survival of rat islet xenografts. In addition to controlling antibody responses, transient B-cell depletion combined with ECDI-SPs synergistically suppressed xenodonor-specific T-cell priming as well as memory T-cell generation. Reciprocally, after initial depletion, the recovered B cells in long-term tolerized mice exhibited xenodonor-specific hyporesponsiveness. We conclude that transient B-cell depletion combined with donor ECDI-SPs is a robust strategy for induction of xenodonor-specific T- and B-cell tolerance. This combinatorial therapy may be a promising strategy for tolerance induction for clinical xenogeneic islet transplantation.
Collapse
Affiliation(s)
- Shusen Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People's Republic of China
| | - James Tasch
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Taba Kheradmand
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Jodie Ulaszek
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Sora Ely
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Corresponding author: Xunrong Luo,
| |
Collapse
|
21
|
Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13:118-32. [PMID: 23348416 DOI: 10.1038/nri3383] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective responses to microorganisms involve the nonspecific but rapid defence mechanisms of the innate immune system, followed by the specific but slow defence mechanisms of the adaptive immune system. Located as sentinels at the interface between the circulation and lymphoid tissue, splenic marginal zone B cells rapidly respond to blood-borne antigens by adopting 'crossover' defensive strategies that blur the conventional boundaries of innate and adaptive immunity. This Review discusses how marginal zone B cells function as innate-like lymphocytes that mount rapid antibody responses to both T cell-dependent and T cell-independent antigens. These responses require the integration of activation signals from germline-encoded and somatically recombined receptors for microorganisms with helper signals from effector cells of the innate and adaptive immune systems.
Collapse
|
22
|
Jung KC, Park CG, Jeon YK, Park HJ, Ban YL, Min HS, Kim EJ, Kim JH, Kang BH, Park SP, Bae Y, Yoon IH, Kim YH, Lee JI, Kim JS, Shin JS, Yang J, Kim SJ, Rostlund E, Muller WA, Park SH. In situ induction of dendritic cell-based T cell tolerance in humanized mice and nonhuman primates. ACTA ACUST UNITED AC 2011; 208:2477-88. [PMID: 22025302 PMCID: PMC3256968 DOI: 10.1084/jem.20111242] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Administration of an ICAM-1–specific antibody arrests dendritic cells in a semi-immature state and facilitates antigen-specific T cell tolerance to islet allografts in humanized mice and Rhesus monkeys. Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection.
Collapse
Affiliation(s)
- Kyeong Cheon Jung
- Department of Pathology, College of Medicine, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Willems L, Li S, Rutgeerts O, Lenaerts C, Waer M, Billiau AD. IL-7 Is Required for the Development of the Intrinsic Function of Marginal Zone B Cells and the Marginal Zone Microenvironment. THE JOURNAL OF IMMUNOLOGY 2011; 187:3587-94. [DOI: 10.4049/jimmunol.1004012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Abstract
Analogous to T cells, Natural Killer (NK) cells may facilitate engraftment, combat infection, and control cancer in bone marrow or haematopoietic stem cell transplantation (HSCT); however, NK cells do not cause graft-versus-host disease. Killer immunoglobulin-like receptors (KIRs) regulate NK cell function, and recent data suggest that KIR is as important as its ligand (human leucocyte antigen; HLA) in HSCT for both malignant and non-malignant conditions. Because there is substantial variability in KIR gene content, allelic polymorphism, and cell-surface expression among people, careful selection of donors based on HLA and KIR is essential to optimize HSCT outcomes. Furthermore, NK cells may be used for adoptive immunotherapy after HSCT in place of conventional donor lymphocyte infusion, as part of pre-transplant cytoreductive therapy, or as an independent therapeutic agent in high-risk leukaemia in place of sibling donor HSCT.
Collapse
Affiliation(s)
- Wing Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 26 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
25
|
Cauwe B, Martens E, Sagaert X, Dillen C, Geurts N, Li S, Mertens J, Thijs G, Van den Steen PE, Heremans H, De Vos R, Blockmans D, Arnold B, Opdenakker G. Deficiency of gelatinase B/MMP-9 aggravates lpr-induced lymphoproliferation and lupus-like systemic autoimmune disease. J Autoimmun 2011; 36:239-52. [PMID: 21376533 DOI: 10.1016/j.jaut.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/20/2011] [Accepted: 02/02/2011] [Indexed: 01/01/2023]
Abstract
Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a key enzyme involved in inflammatory, hematological, vascular and neoplastic diseases. In previous studies, we explored the intracellular substrate set or 'degradome' of MMP-9 and found many systemic autoantigens as novel intracellular gelatinase B substrates. Little is known, however, about the functional role of MMP-9 in the development of systemic autoimmunity in vivo. B6(lpr/lpr) mice with defective Fas-mediated apoptosis were used to investigate the functions of MMP-9 in lymphocyte proliferation and in the development of systemic autoimmunity. Combined Fas and gelatinase B deficiency resulted in extreme lymphoproliferative disease with enhanced lymphadenopathy and splenomegaly, and significantly reduced survival compared with single Fas deficiency. At the cellular level, this was corroborated by increased lymph node accumulation of 'double negative' T cells, B cells and myeloid cells. In addition, higher autoantibody titers and more pronounced autoimmune tissue injury were found in the absence of MMP-9, culminating in chronically enhanced systemic lupus erythematosus (SLE)-like autoimmunity. After cleavage by MMP-9 the SLE autoantigens U1snRNP A and ribosomal protein P0 were hardly recognized by plasma samples of both B6(lpr/lpr).MMP-9⁻/⁻ and B6(lpr/lpr).MMP-9+/+ mice, pointing to a destruction of B cell epitopes by MMP-9-mediated proteolysis. In addition, the same loss of immunodominant epitopes was observed with plasma samples from SLE patients, suggesting that MMP-9 suppresses systemic antibody-mediated autoimmunity by clearance of autoepitopes in immunogenic substrates. Thus, new protective functions for MMP-9 were revealed in the suppression of lymphoproliferation and dampening of systemic autoimmunity, cautioning against the long-term use of MMP inhibitors in autoimmune lymphoproliferative syndrome (ALPS) and SLE.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Millard AL, Spirig R, Mueller NJ, Seebach JD, Rieben R. Inhibition of direct and indirect TLR-mediated activation of human NK cells by low molecular weight dextran sulfate. Mol Immunol 2010; 47:2349-58. [DOI: 10.1016/j.molimm.2010.05.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/05/2010] [Indexed: 11/16/2022]
|
27
|
Current world literature. Curr Opin Organ Transplant 2009; 14:211-7. [PMID: 19307967 DOI: 10.1097/mot.0b013e32832ad721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Haspot F, Bardwell PD, Zhao G, Sykes M. High antigen levels do not preclude B-cell tolerance induction to alpha1,3-Gal via mixed chimerism. Xenotransplantation 2009; 15:313-20. [PMID: 19134161 DOI: 10.1111/j.1399-3089.2008.00487.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studies of bone marrow transplantation (BMT) from wild-type mice or rats to alpha1,3-galactosyltransferase (GalT) knockout mice have demonstrated that induction of mixed chimerism tolerizes not only T cells, but also natural antibody-producing B cells, even across xenogeneic barriers. Given that rodent cells express lower levels of the alphaGal epitope than the more clinically relevant porcine species, the consequences of exposure to cells expressing high levels of alphaGal on the ability to induce B-cell tolerance are unknown. METHODS The effects on chimerism and anti-alphaGal B-cell tolerance of an i.p. injection of 10(9) porcine RBC were evaluated in GalT knockout mice receiving wild-type allogeneic BMT after non-myeloablative conditioning with T-cell depleting monoclonal antibodies, thymic irradiation, and low-dose total body irradiation. RESULTS Achievement of mixed chimerism and tolerance of anti-alphaGal-producing B cells was not affected by exposure to high-density alphaGal at the time of BMT. The absence of induced anti-alphaGal or anti-pig antibody responses in conditioned control mice suggested that the B-cell xeno-response to pig is T-cell-dependent. CONCLUSION High alphaGal density on pig cells might not preclude the ability to achieve tolerance of pre-existing alphaGal-reactive human B cells via induction of mixed chimerism. This strategy has the potential to induce B-cell tolerance to non-alphaGal epitopes, against which natural antibodies have been found in the sera of healthy humans.
Collapse
Affiliation(s)
- Fabienne Haspot
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149-5102 13th Street, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
29
|
Xenotransplantation: role of natural immunity. Transpl Immunol 2008; 21:70-4. [PMID: 18992342 DOI: 10.1016/j.trim.2008.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/09/2008] [Indexed: 11/20/2022]
Abstract
Hyperacute rejection, mediated by natural anti-Galalpha1,3Galbeta1,4GlcNAc (alphaGal) antibodies and the classically activated complement pathway, was identified as the first major barrier to the survival of porcine organs in humans. Subsequently, discordant pig-to-nonhuman primate and concordant rodent models revealed key roles for T and B lymphocytes in the second form of rejection, acute vascular rejection (AVR) or delayed xenograft rejection (DXR). As significant progress was made in strategies to circumvent or suppress xenoreactivity of the adaptive immune system, it became clear that, apart from natural antibodies, other innate immune system elements actively participate in AVR/DXR and represent a barrier to xenograft acceptance that may be particularly difficult to overcome. Observations in pig-to-primate and semi-discordant and concordant rodent models indicate that Natural Killer (NK) cells play a more prominent role in xenograft than in allograft rejection. Several mechanisms through which human NK cells recognize porcine endothelial cells have been elucidated and these appear to be more diverse than those involved in NK cell alloreactivity. Further, it has been demonstrated that human macrophages and neutrophils can directly recognize pig derived cells and can mediate direct xenograft damage. Here, we review the recent progress in the understanding of the xenoreactivity of the natural immune system, focussing on preclinical pig-to-(non)human primate systems, and discuss the proposed strategies to overcome these barriers.
Collapse
|
30
|
Baertschiger RM, Buhler LH. Xenotransplantation literature update November-December, 2007. Xenotransplantation 2008; 15:145-9. [PMID: 18447888 DOI: 10.1111/j.1399-3089.2008.00451.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reto M Baertschiger
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | |
Collapse
|
31
|
Abstract
Xenotransplantation holds promise to solve the ever increasing shortage of donor organs for allotransplantation. In the last 2 decades, major progress has been made in understanding the immunobiology of pig-into-(non)human primate transplantation and today we are on the threshold of the first clinical trials. Hyperacute rejection, which is mediated by pre-existing anti-alpha Gal xenoreactive antibodies, can in non-human primates be overcome by complement- and/or antibody-modifying interventions. A major step forward was the development of genetically engineered pigs, either transgenic for human complement regulatory proteins or deficient in the alpha1,3-galactosyltranferase enzyme. However, several other immunologic and nonimmunologic hurdles remain. Acute vascular xenograft rejection is mediated by humoral and cellular mechanisms. Elicited xenoreactive antibodies play a key role. In addition to providing B cell help, xenoreactive T cells may directly contribute to xenograft rejection. Long-term survival of porcine kidney- and heart xenografts in non-human primates has been obtained but required severe T and B cell immunosuppression. Induction of xenotolerance, e.g. through mixed hematopoietic chimerism, may represent the preferred approach, but although proof of principle has been delivered in rodents, induction of pig-to-non-human primate chimerism remains problematic. Finally, it is now clear that innate immune cells, in particular macrophages and natural killer cells, can mediate xenograft destruction, the determinants of which are being elucidated. Chronic xenograft rejection is not well understood, but recent studies indicate that non-immunological problems, such as incompatibilities between human procoagulant and pig anticoagulant components may play an important role. Here, we give a comprehensive overview of the currently known obstacles to xenografting: immune and non-immune problems are discussed, as well as the possible strategies that are under development to overcome these hurdles.
Collapse
Affiliation(s)
- B Sprangers
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
32
|
Current cellular innate immune hurdles in pig-to-primate xenotransplantation. Curr Opin Organ Transplant 2008; 13:171-7. [DOI: 10.1097/mot.0b013e3282f88a30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|