1
|
Shimada K, Suzuki K, Sunohara M. Comparative in situ characterization of erythroid cells found throughout the developing tongue tissue, circulation, and liver of fetal mice. Ann Anat 2025; 258:152370. [PMID: 39689786 DOI: 10.1016/j.aanat.2024.152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.5). On the other hand, the definitive erythroid progenitors derived from the yolk sac and arterial vessels colonize the fetal liver, where they mature into small, enucleated definitive erythrocytes that are released into circulation at E11.5. In many cases, however, erythroblasts are also generated in situ during the development of tissue vasculature. We hypothesized that the properties of erythroid cells generated by peripheral tissue hematopoiesis may differ from those of contemporaneously circulating erythroid cells because hematopoiesis is spatiotemporally distinct from typical primitive and definitive hematopoiesis. METHODS Comparative in situ protein expression analyses of erythroid cells in developing tongue, circulation, and liver of fetal mice were performed at E12.5 and E14.5, using immunofluorescence staining of several marker proteins for erythroid and endothelial cells. RESULTS At E12.5, irregularly elongated immature vascular endothelial cells, many of which were in contact with nucleated erythroblasts, were distributed in the developing tongue. In the three fetal locations examined (tongue, circulation, and liver), most erythroid cells at E12.5 expressed CD31, which is involved in cell-cell interactions; however, the expression was downregulated by E14.5. Interestingly, at E12.5, several erythroblasts strongly expressing CD31 were found in the tongue, but less abundant in the circulation and fetal liver. Nearly all erythroblasts in E12.5 fetuses expressed primitive erythroid cell-specific βH1-globin; however, those strongly expressing the embryonic globin were scattered, particularly in the tongue, fewer in the circulation and fetal liver. On the contrary, erythroid cells expressing adult β1-globin were scarcely found in the tongue, which is in stark contrast to those in the circulation and fetal liver, where nearly all erythroid cells weakly expressed β1-globin at the embryonic stage. At E14.5, the number of βH1-globin-expressing cells drastically decreased; however, it was still significantly higher in the tongue than in the circulation and fetal liver. In all three locations, β1-globin accumulation and the enucleation of erythroid cells progressed uniformly and rapidly from E12.5 to E14.5. CONCLUSION The results indicate that primitive erythroblasts in the tongue highly express CD31, mature more slowly, and are replaced by definitive erythroid cells more slowly than those in the circulation and fetal liver. Primitive erythroblasts produced together with immature vascular endothelial cells during vasculogenesis in the developing tongue may perform functions other than oxygen supply, such as regulating vascular remodeling.
Collapse
Affiliation(s)
- Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
2
|
Wang JP, Hung CH, Liou YH, Liu CC, Yeh KH, Wang KY, Lai ZS, Chatterjee B, Hsu TC, Lee TL, Shyu YC, Hsiao PW, Chen LY, Chuang TJ, Yu CHA, Liao NS, Shen CKJ. Long-term hematopoietic transfer of the anti-cancer and lifespan-extending capabilities of a genetically engineered blood system by transplantation of bone marrow mononuclear cells. eLife 2024; 12:RP88275. [PMID: 38752723 PMCID: PMC11098557 DOI: 10.7554/elife.88275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.
Collapse
Affiliation(s)
- Jing-Ping Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chun-Hao Hung
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ching-Chen Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Keh-Yang Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | - Biswanath Chatterjee
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tzu-Chi Hsu
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Chang Gung Memorial HospitalKeelungTaiwan
- Pro-Clintech Co. LtdKeelungTaiwan
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Nursing, Chang Gung University of Science and TechnologyTaoyuanTaiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung BranchKeelungTaiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | | | - Nan-Shih Liao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - C-K James Shen
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| |
Collapse
|
3
|
Xue L, Mukherjee K, Kelley KA, Bieker JJ. Generation, characterization, and use of EKLF(Klf1)/CRE knock-in mice for cell-restricted analyses. FRONTIERS IN HEMATOLOGY 2024; 2:1292589. [PMID: 39280931 PMCID: PMC11393758 DOI: 10.3389/frhem.2023.1292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction EKLF/Klf1 is a tissue-restricted transcription factor that plays a critical role in all aspects of erythropoiesis. Of particular note is its tissue-restricted pattern of expression, a property that could prove useful for expression control of a linked marker or enzymatic gene. Methods and results With this in mind, we fused the CRE recombinase to the genomic EKLF coding region and established mouse lines. We find by FACS analyses that CRE expression driven by the EKLF transcription unit recapitulates erythroid-restricted expression with high penetrance in developing embryos. We then used this line to test its properties in the adult, where we found EKLF/CRE is an active and is a robust mimic of normal EKLF expression in the adult bone marrow. EKLF/CRE is also expressed in erythroblastic island macrophage in the fetal liver, and we demonstrate for the first time that, as seen during embryonic development, EKLF is also expressed in adult BM-derived erythroblastic island macrophage. Our data also support lineage studies showing EKLF expression at early stages of hematopoiesis. Discussion The EKLF/CRE mouse lines are novel reagents whose availability will be of great utility for future experiments by investigators in the red cell field.
Collapse
Affiliation(s)
- Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin A Kelley
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Chen X, Pillay S, Lohmann F, Bieker JJ. Association of DDX5/p68 protein with the upstream erythroid enhancer element (EHS1) of the gene encoding the KLF1 transcription factor. J Biol Chem 2023; 299:105489. [PMID: 38000658 PMCID: PMC10750184 DOI: 10.1016/j.jbc.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Sanjana Pillay
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Felix Lohmann
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA; Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA; Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
6
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
8
|
Krüppel-Like Factor 1: A Pivotal Gene Regulator in Erythropoiesis. Cells 2022; 11:cells11193069. [PMID: 36231031 PMCID: PMC9561966 DOI: 10.3390/cells11193069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor. The link between KLF1 and γ-globin silencing identifies this transcription factor as a possible therapeutic target for β-hemoglobinopathies. Moreover, several mutations have been identified in the human genes that are responsible for various benign phenotypes and erythroid disorders. The study of the phenotype associated with each mutation has greatly contributed to the current understanding of the complex role of KLF1 in erythropoiesis. This review will focus on some of the principal functions of KLF1 on erythroid cell commitment and differentiation, spanning from primitive to definitive erythropoiesis. The fundamental role of KLF1 in haemoglobin switching will be also highlighted. Finally, an overview of the principal human mutations and relative phenotypes and disorders will be described.
Collapse
|
9
|
Scanlon VM, Thompson EN, Lawton BR, Kochugaeva M, Ta K, Mayday MY, Xavier-Ferrucio J, Kang E, Eskow NM, Lu YC, Kwon N, Laumas A, Cenci M, Lawrence K, Barden K, Larsuel ST, Reed FE, Peña-Carmona G, Ubbelohde A, Lee JP, Boobalan S, Oppong Y, Anderson R, Maynard C, Sahirul K, Lajeune C, Ivathraya V, Addy T, Sanchez P, Holbrook C, Van Ho AT, Duncan JS, Blau HM, Levchenko A, Krause DS. Multiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation. Sci Rep 2022; 12:16218. [PMID: 36171423 PMCID: PMC9519589 DOI: 10.1038/s41598-022-19013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Single-cell assays have enriched our understanding of hematopoiesis and, more generally, stem and progenitor cell biology. However, these single-end-point approaches provide only a static snapshot of the state of a cell. To observe and measure dynamic changes that may instruct cell fate, we developed an approach for examining hematopoietic progenitor fate specification using long-term (> 7-day) single-cell time-lapse imaging for up to 13 generations with in situ fluorescence staining of primary human hematopoietic progenitors followed by algorithm-assisted lineage tracing. We analyzed progenitor cell dynamics, including the division rate, velocity, viability, and probability of lineage commitment at the single-cell level over time. We applied a Markov probabilistic model to predict progenitor division outcome over each generation in culture. We demonstrated the utility of this methodological pipeline by evaluating the effects of the cytokines thrombopoietin and erythropoietin on the dynamics of self-renewal and lineage specification in primary human bipotent megakaryocytic-erythroid progenitors (MEPs). Our data support the hypothesis that thrombopoietin and erythropoietin support the viability and self-renewal of MEPs, but do not affect fate specification. Thus, single-cell tracking of time-lapse imaged colony-forming unit assays provides a robust method for assessing the dynamics of progenitor self-renewal and lineage commitment.
Collapse
Affiliation(s)
- Vanessa M Scanlon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, New Haven, CT, USA.
- Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health, Farmington, CT, USA.
| | - Evrett N Thompson
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Betty R Lawton
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
| | | | - Kevinminh Ta
- Department of Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Madeline Y Mayday
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
| | | | | | - Yi-Chien Lu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
| | - Nayoung Kwon
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | - Katie Barden
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
| | - Shannon T Larsuel
- Yale Stem Cell Center, New Haven, CT, USA
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Fiona E Reed
- Yale Stem Cell Center, New Haven, CT, USA
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | - June P Lee
- University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | | | | | | | | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Tri Van Ho
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - James S Duncan
- Department of Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andre Levchenko
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Shyu Y, Liao P, Huang T, Yang C, Lu M, Huang S, Lin X, Liou C, Kao Y, Lu C, Peng H, Chen J, Cherng W, Yang N, Chen Y, Pan H, Jiang S, Hsu C, Lin G, Yuan S, Hsu PW, Wu K, Lee T, Shen CJ. Genetic Disruption of KLF1 K74 SUMOylation in Hematopoietic System Promotes Healthy Longevity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201409. [PMID: 35822667 PMCID: PMC9443461 DOI: 10.1002/advs.202201409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Indexed: 05/22/2023]
Abstract
The quest for rejuvenation and prolonged lifespan through transfusion of young blood has been studied for decades with the hope of unlocking the mystery of the key substance(s) that exists in the circulating blood of juvenile organisms. However, a pivotal mediator has yet been identified. Here, atypical findings are presented that are observed in a knockin mouse model carrying a lysine to arginine substitution at residue 74 of Krüppel-like factor 1 (KLF1/EKLF), the SUMOylation-deficient Klf1K74R/K74R mouse, that displayed significant improvement in geriatric disorders and lifespan extension. Klf1K74R/K74R mice exhibit a marked delay in age-related physical performance decline and disease progression as evidenced by physiological and pathological examinations. Furthermore, the KLF1(K74R) knockin affects a subset of lymphoid lineage cells; the abundance of tumor infiltrating effector CD8+ T cells and NKT cells is increased resulting in antitumor immune enhancement in response to tumor cell administration. Significantly, infusion of hematopoietic stem cells (HSCs) from Klf1K74R/K74R mice extends the lifespan of the wild-type mice. The Klf1K74R/K74R mice appear to be an ideal animal model system for further understanding of the molecular/cellular basis of aging and development of new strategies for antiaging and prevention/treatment of age-related diseases thus extending the healthspan as well as lifespan.
Collapse
Affiliation(s)
- Yu‐Chiau Shyu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of NursingChang Gung University of Science and TechnologyTaoyuan333Taiwan
| | - Po‐Cheng Liao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Ting‐Shou Huang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- School of Traditional Chinese MedicineCollege of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Chun‐Ju Yang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Mu‐Jie Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Shih‐Ming Huang
- Department of Radiation OncologyChung‐Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Xin‐Yu Lin
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Cai‐Cin Liou
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yu‐Hsiang Kao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Chi‐Huan Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Hui‐Ling Peng
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Jim‐Ray Chen
- Department of PathologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Wen‐Jin Cherng
- Department of CardiologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Ning‐I Yang
- Department of CardiologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yung‐Chang Chen
- Department of NephrologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Heng‐Chih Pan
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Si‐Tse Jiang
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of Research and DevelopmentNational Laboratory Animal CenterTainan741Taiwan
| | - Chih‐Chin Hsu
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
- Department of Physical Medicine and RehabilitationChang Gung Memorial Hospital Keelung branchKeelung204Taiwan
| | - Gigin Lin
- Department of Medical Imaging and InterventionChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Clinical Metabolomics Core LabChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuan333Taiwan
| | - Shin‐Sheng Yuan
- Institute of Statistical ScienceAcademia SinicaTaipei115Taiwan
| | - Paul Wei‐Che Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstituteZhunan350Taiwan
| | - Kou‐Juey Wu
- Cancer Genome Research CenterChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Tung‐Liang Lee
- Pro‐Clintech Co. Ltd.Keelung204Taiwan
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
| | - Che‐Kun James Shen
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
- Ph.D. Program in Medical NeuroscienceTaipei Medical UniversityTaipei110Taiwan
| |
Collapse
|
11
|
Mechanisms of improved erythroid progenitor growth with removal of chronic stress after trauma. Surgery 2022; 172:759-765. [PMID: 35672167 PMCID: PMC9283291 DOI: 10.1016/j.surg.2022.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Erythropoietic dysfunction after trauma and critical illness is associated with anemia, persistent inflammation, increased hematopoietic progenitor cell mobilization from the bone marrow, and reduced erythroid progenitor growth. Yet the duration and reversibility of these postinjury bone marrow changes remain unknown. This study sought to determine whether removal of chronic postinjury stress could induce improvements in erythroid progenitor growth. METHODS Sprague-Dawley rats (n = 8-11/group) were assigned to the following: naïve, lung contusion and hemorrhagic shock, lung contusion and hemorrhagic shock plus daily chronic stress for 7 days followed by 7 days of routine handling to allow recovery (lung contusion and hemorrhagic shock + chronic stress 7), or lung contusion and hemorrhagic shock plus chronic stress for 14 days (lung contusion and hemorrhagic shock + chronic stress 14). Circulating CD117+CD71+ erythroid progenitors were detected by flow cytometry. Rodents were killed on day 14, and bone marrow erythroid progenitor growth and erythroid transcription factors were assessed. Differences were assessed by analysis of variance (P < .05). RESULTS Compared to lung contusion and hemorrhagic shock + chronic stress 14, lung contusion and hemorrhagic shock + chronic stress 7 rodents had improved hemoglobin (8% ± 10% increase vs 6% ± 10% decrease) with fewer mobilized erythroid progenitors (898 × vs 1,524 cells), lower granulocyte-colony stimulating factor levels (3.1 ± 1.1 × pg/mL vs 5.9 ± 1.8 pg/mL), and improved erythroid progenitor growth. Cessation of stress had no impact on erythroid transcription factors GATA-1, GATA-2, LMO2, or KLF1. CONCLUSION Improvements in erythroid progenitor growth and reduced hematopoietic progenitor cell mobilization were seen 7 days after cessation of chronic stress and were associated with an improvement in hemoglobin. Early bone marrow erythropoietic functional recovery may result from resolution of hematopoietic progenitor mobilization rather than upregulation of pro-erythroid transcription factors. This study suggests that postinjury anemia is reversible and has the potential to improve with the cessation of stress.
Collapse
|
12
|
Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022; 139:2450-2459. [PMID: 34936695 PMCID: PMC9029096 DOI: 10.1182/blood.2021011044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.
Collapse
Affiliation(s)
- Alexis L Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
13
|
Yang S, Sun G, Wu P, Chen C, Kuang Y, Liu L, Zheng Z, He Y, Gu Q, Lu T, Zhu C, Wang F, Gou F, Yang Z, Zhao X, Yuan S, Yang L, Lu S, Li Y, Lv X, Dong F, Ma Y, Yu J, Ng LG, Shi L, Liu J, Shi L, Cheng T, Cheng H. WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation. J Exp Med 2022; 219:213079. [PMID: 35315911 PMCID: PMC8943841 DOI: 10.1084/jem.20211688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long noncoding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was the principal transcript that has not been reported before. lncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat–containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.
Collapse
Affiliation(s)
- Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Cong Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yijin Kuang
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Ling Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yicheng He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Fengjiao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zining Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shiru Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Liu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Lei Shi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
14
|
Ben-David Y, Gajendran B, Sample KM, Zacksenhaus E. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell Mol Life Sci 2022; 79:163. [PMID: 35412146 PMCID: PMC11072361 DOI: 10.1007/s00018-022-04160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.
Collapse
Affiliation(s)
- Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, Max Bell Research Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
15
|
Heydari T, A. Langley M, Fisher CL, Aguilar-Hidalgo D, Shukla S, Yachie-Kinoshita A, Hughes M, M. McNagny K, Zandstra PW. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data. PLoS Comput Biol 2022; 18:e1009907. [PMID: 35213533 PMCID: PMC8906617 DOI: 10.1371/journal.pcbi.1009907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.
Collapse
Affiliation(s)
- Tiam Heydari
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew A. Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cynthia L. Fisher
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreya Shukla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Notch Therapeutics, Vancouver, British Columbia, Canada
| | - Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael Hughes
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
A Positive Regulatory Feedback Loop between EKLF/KLF1 and TAL1/SCL Sustaining the Erythropoiesis. Int J Mol Sci 2021; 22:ijms22158024. [PMID: 34360789 PMCID: PMC8347936 DOI: 10.3390/ijms22158024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf−/−) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.
Collapse
|
17
|
Li W, Guo R, Song Y, Jiang Z. Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases. Front Cell Dev Biol 2021; 8:613885. [PMID: 33644032 PMCID: PMC7907436 DOI: 10.3389/fcell.2020.613885] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Erythroblastic islands (EBIs), discovered more than 60 years ago, are specialized microenvironments for erythropoiesis. This island consists of a central macrophage with surrounding developing erythroid cells. EBI macrophages have received intense interest in the verifications of the supporting erythropoiesis hypothesis. Most of these investigations have focused on the identification and functional analyses of EBI macrophages, yielding significant progresses in identifying and isolating EBI macrophages, as well as verifying the potential roles of EBI macrophages in erythropoiesis. EBI macrophages express erythropoietin receptor (Epor) both in mouse and human, and Epo acts on both erythroid cells and EBI macrophages simultaneously in the niche, thereby promoting erythropoiesis. Impaired Epor signaling in splenic niche macrophages significantly inhibit the differentiation of stress erythroid progenitors. Moreover, accumulating evidence suggests that EBI macrophage dysfunction may lead to certain erythroid hematological disorders. In this review, the heterogeneity, identification, and functions of EBI macrophages during erythropoiesis under both steady-state and stress conditions are outlined. By reviewing the historical data, we discuss the influence of EBI macrophages on erythroid hematopoietic disorders and propose a new hypothesis that erythroid hematopoietic disorders are driven by EBI macrophages.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxin Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Korporaal A, Gillemans N, Heshusius S, Cantú I, van den Akker E, van Dijk TB, von Lindern M, Philipsen S. Hemoglobin switching in mice carrying the Klf1Nan variant. Haematologica 2021; 106:464-473. [PMID: 32467144 PMCID: PMC7849558 DOI: 10.3324/haematol.2019.239830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/23/2020] [Indexed: 12/21/2022] Open
Abstract
Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistent high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous beta-like and alpha-like globins, and the human beta-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between E12.5 and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail.
Collapse
Affiliation(s)
- Anne Korporaal
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | - Nynke Gillemans
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | - Steven Heshusius
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Ileana Cantú
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | | | | | | | - Sjaak Philipsen
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Nakamura S, Sugimoto N, Eto K. Development of platelet replacement therapy using human induced pluripotent stem cells. Dev Growth Differ 2021; 63:178-186. [PMID: 33507533 PMCID: PMC8048793 DOI: 10.1111/dgd.12711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
In the body, platelets mainly work as a hemostatic agent, and the lack of platelets can cause serious bleeding. Induced pluripotent stem (iPS) cells potentially allow for a stable supply of platelets that are independent of donors and eliminate the risk of infection. However, a major challenge in iPS cell-based systems is producing the number of platelets required for a single transfusion (more than 200 billion in Japan). Thus, development in large-scale culturing technology is required. In previous studies, we generated a self-renewable, immortalized megakaryocyte cell line by transfecting iPS cell-derived hematopoietic progenitor cells with c-MYC, BMI1, and BCL-XL genes. Optimization of the culture conditions, including the discovery of a novel fluid-physical factor, turbulence, in the production of platelets in vivo, and the development of bioreactors that apply turbulence have enabled us to generate platelets of clinical quality and quantity. We have further generated platelets deleted of HLA class I expression by using genetic modification technology for patients suffering from alloimmune transfusion refractoriness, since these patients are underserved by current blood donation systems. In this review, we highlight current research and our recent work on iPS cell-derived platelet induction.
Collapse
Affiliation(s)
- Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
20
|
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Curr Opin Hematol 2021; 28:28-35. [PMID: 33186151 PMCID: PMC7737300 DOI: 10.1097/moh.0000000000000625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW This review focuses on our current understanding of fate decisions in bipotent megakaryocyte-erythroid progenitors (MEPs). Although extensive research has been carried out over decades, our understanding of how MEP commit to the erythroid versus megakaryocyte fate remains unclear. RECENT FINDINGS We discuss the isolation of primary human MEP, and focus on gene expression patterns, epigenetics, transcription factors and extrinsic factors that have been implicated in MEP fate determination. We conclude with an overview of the open debates in the field of MEP biology. SUMMARY Understanding MEP fate is important because defects in megakaryocyte and erythrocyte development lead to disease states such as anaemia, thrombocytopenia and leukaemia. MEP also represent a model system for studying fundamental principles underlying cell fate decisions of bipotent and pluripotent progenitors, such that discoveries in MEP are broadly applicable to stem/progenitor cell biology.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Madeline Y. Mayday
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Vanessa Scanlon
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| |
Collapse
|
21
|
Hung CH, Wang KY, Liou YH, Wang JP, Huang AYS, Lee TL, Jiang ST, Liao NS, Shyu YC, Shen CKJ. Negative Regulation of the Differentiation of Flk2 - CD34 - LSK Hematopoietic Stem Cells by EKLF/KLF1. Int J Mol Sci 2020; 21:E8448. [PMID: 33182781 PMCID: PMC7697791 DOI: 10.3390/ijms21228448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor β subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.
Collapse
Affiliation(s)
- Chun-Hao Hung
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Jing-Ping Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Anna Yu-Szu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Si-Tse Jiang
- Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 74147, Taiwan;
| | - Nah-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 115, Taiwan
| |
Collapse
|
22
|
Loughran SJ, Haas S, Wilkinson AC, Klein AM, Brand M. Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Exp Hematol 2020; 88:1-6. [PMID: 32653531 DOI: 10.1016/j.exphem.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Blood production is essential to maintain human health, and even small perturbations in hematopoiesis can cause disease. Hematopoiesis has therefore been the focus of much research for many years. Experiments determining the lineage potentials of hematopoietic stem and progenitor cells (HSPCs) in vitro and after transplantation revealed a hierarchy of progenitor cell states, where differentiating cells undergo lineage commitment-a series of irreversible changes that progressively restrict their potential. New technologies have recently been developed that allow for a more detailed analysis of the molecular states and fates of differentiating HSPCs. Proteomic and lineage-tracing approaches, alongside single-cell transcriptomic analyses, have recently helped to reveal the biological complexity underlying lineage commitment during hematopoiesis. Recent insights from these new technologies were presented by Dr. Marjorie Brand and Dr. Allon Klein in the Summer 2019 ISEH Webinar, and are discussed in this Perspective.
Collapse
Affiliation(s)
- Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine and Division of Stem Cells and Cancer, DKFZ German Cancer Research Centre, Heidelberg, Germany
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA; Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Mol Cell 2020; 78:960-974.e11. [PMID: 32330456 PMCID: PMC7344268 DOI: 10.1016/j.molcel.2020.03.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Collapse
Affiliation(s)
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | - Daniel Sanchez-Taltavull
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada; Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthi Sivaraman
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| | - Jeffrey A Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| |
Collapse
|
24
|
Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, Yee D, Hitchcock IS, Sousos N, O'Sullivan J, Anderson S, Senis YA, Weinberg OK, Calicchio ML, Iskander D, Royston D, Milojkovic D, Roberts I, Bodine DM, Thongjuea S, Mead AJ. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Mol Cell 2020; 78:477-492.e8. [PMID: 32386542 PMCID: PMC7217381 DOI: 10.1016/j.molcel.2020.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Collapse
Affiliation(s)
- Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA.
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Rong Li
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Lauren Murphy
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Daniel Yee
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Stacie Anderson
- NHGRI Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Strasbourg 67065, France
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica L Calicchio
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deena Iskander
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dragana Milojkovic
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Supat Thongjuea
- NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK.
| |
Collapse
|
25
|
Hearn JI, Green TN, Chopra M, Nursalim YNS, Ladvanszky L, Knowlton N, Blenkiron C, Poulsen RC, Singleton DC, Bohlander SK, Kalev-Zylinska ML. N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation. Thromb Haemost 2020; 120:671-686. [PMID: 32289863 PMCID: PMC7286128 DOI: 10.1055/s-0040-1708483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The release of calcium ions (Ca
2+
) from the endoplasmic reticulum (ER) and related store-operated calcium entry (SOCE) regulate maturation of normal megakaryocytes. The
N
-methyl-D-aspartate (NMDA) receptor (NMDAR) provides an additional mechanism for Ca
2+
influx in megakaryocytic cells, but its role remains unclear. We created a model of NMDAR hypofunction in Meg-01 cells using CRISPR-Cas9 mediated knockout of the
GRIN1
gene, which encodes an obligate, GluN1 subunit of the NMDAR. We found that compared with unmodified Meg-01 cells, Meg-01-
GRIN1−/−
cells underwent atypical differentiation biased toward erythropoiesis, associated with increased basal ER stress and cell death. Resting cytoplasmic Ca
2+
levels were higher in Meg-01-
GRIN1−/−
cells, but ER Ca
2+
release and SOCE were lower after activation. Lysosome-related organelles accumulated including immature dense granules that may have contributed an alternative source of intracellular Ca
2+
. Microarray analysis revealed that Meg-01-
GRIN1−/−
cells had deregulated expression of transcripts involved in Ca
2+
metabolism, together with a shift in the pattern of hematopoietic transcription factors toward erythropoiesis. In keeping with the observed pro-cell death phenotype induced by
GRIN1
deletion, memantine (NMDAR inhibitor) increased cytotoxic effects of cytarabine in unmodified Meg-01 cells. In conclusion, NMDARs comprise an integral component of the Ca
2+
regulatory network in Meg-01 cells that help balance ER stress and megakaryocytic-erythroid differentiation. We also provide the first evidence that megakaryocytic NMDARs regulate biogenesis of lysosome-related organelles, including dense granules. Our results argue that intracellular Ca
2+
homeostasis may be more important for normal megakaryocytic and erythroid differentiation than currently recognized; thus, modulation may offer therapeutic opportunities.
Collapse
Affiliation(s)
- James I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Martin Chopra
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Leandro Ladvanszky
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nicholas Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
26
|
Mansoor A, Mansoor MO, Patel JL, Zhao S, Natkunam Y, Bieker JJ. KLF1/EKLF expression in acute leukemia is correlated with chromosomal abnormalities. Blood Cells Mol Dis 2020; 83:102434. [PMID: 32311573 DOI: 10.1016/j.bcmd.2020.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
KLF1 (EKLF) is a master regulator of erythropoiesis and controls expression of a wide array of target genes. We interrogated human tissue microarray samples via immunohistological analysis to address whether levels of KLF1 protein are associated with leukemia. We have made the unexpected findings that higher KLF1 levels are correlated with cells containing abnormal chromosomes, and that high KLF1 expression is not limited to acute myeloid leukemia (AML) associated with erythroid/megakaryoblastic differentiation. Expression of KLF1 is associated with poor survival. Further analyses reveal that KLF1 directly regulates a number of genes that play a role in chromosomal integrity. Together these results suggest that monitoring KLF1 levels may provide a new marker for risk stratification and prognosis in patients with AML.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Mohammad Omer Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Jay L Patel
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - James J Bieker
- Department of Cell, Developmental, & Regenerative Biology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
28
|
Varricchio L, Planutis A, Manwani D, Jaffray J, Mitchell WB, Migliaccio AR, Bieker JJ. Genetic disarray follows mutant KLF1-E325K expression in a congenital dyserythropoietic anemia patient. Haematologica 2019; 104:2372-2380. [PMID: 30872368 PMCID: PMC6959163 DOI: 10.3324/haematol.2018.209858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital dyserythropoietic anemia type IV is caused by a heterozygous mutation, Glu325Lys (E325K), in the KLF1 transcription factor. Molecular characteristics of this disease have not been clarified, partly due to its rarity. We expanded erythroid cells from a patient's peripheral blood and analyzed its global expression pattern. We find that a large number of erythroid pathways are disrupted, particularly those related to membrane transport, globin regulation, and iron utilization. The altered genetics lead to significant deficits in differentiation. Glu325 is within the KLF1 zinc finger domain at an amino acid critical for site specific DNA binding. The change to Lys is predicted to significantly alter the target site recognition sequence, both by subverting normal recognition and by enabling interaction with novel sites. Consistent with this, we find high level ectopic expression of genes not normally present in the red cell. These altered properties explain patients' clinical and phenotypic features, and elucidate the dominant character of the mutation.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Jaffray
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - W Beau Mitchell
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - James J Bieker
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
30
|
Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao X, Gajendran B, Xu D, Li Y, Wang C, Liu W, Wen M, Spaner D, Filmus J, Zacksenhaus E, Zhang Y, Hao X, Ben‐David Y. Novel flavagline‐like compounds with potent Fli‐1 inhibitory activity suppress diverse types of leukemia. FEBS J 2018; 285:4631-4645. [PMID: 30387554 DOI: 10.1111/febs.14690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jialei Song
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Jue Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Tangjingjun Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yao Yao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Dahai Xu
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - You‐Jun Li
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Min Wen
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - David Spaner
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Jorge Filmus
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Eldad Zacksenhaus
- Department of Medicine University of Toronto Canada
- Division of Advanced Diagnostics Toronto General Research Institute University Health Network Toronto Canada
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yaacov Ben‐David
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| |
Collapse
|
31
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
32
|
Gnanapragasam MN, Crispino JD, Ali AM, Weinberg R, Hoffman R, Raza A, Bieker JJ. Survey and evaluation of mutations in the human KLF1 transcription unit. Sci Rep 2018; 8:6587. [PMID: 29700354 PMCID: PMC5920080 DOI: 10.1038/s41598-018-24962-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023] Open
Abstract
Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.
Collapse
Affiliation(s)
- Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rona Weinberg
- Cellular Therapy Laboratory, New York Blood Center, New York, NY, 10065, USA
| | - Ronald Hoffman
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Azra Raza
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Shih HM, Wu CJ, Lin SL. Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc 2018; 117:955-963. [PMID: 29655605 DOI: 10.1016/j.jfma.2018.03.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/05/2023] Open
Abstract
Anemia is a common complication and contributes to increased morbidity and mortality in chronic kidney disease (CKD) patients. Whereas there has been a significant improvement of understanding the underlying mechanism of erythropoiesis, the treatment of renal anemia is still restricted to erythropoietin (EPO)-stimulating agents. The purpose of this article is to review the physiology of erythropoiesis, functional role of EPO and underlying molecular and cellular basis that regulate EPO production. Regulation of EPO production is at mRNA level. When anemia or hypoxia occurs, transcriptional factor, hypoxia-inducible factor (HIF), binds to EPO 5' hypoxic response element and EPO gene transcription increases. The renal EPO is mainly produced by pericytes. In CKD, pericytes transdifferentiate to myofibroblasts, and subsequently the ability of EPO production decreases, leading to renal anemia. Recent experimental and clinical studies show the promising efficacy of prolyl hydroxylase inhibitors in renal anemia through increasing EPO production by stabilizing HIF. Recent advances on epigenetics create a new field to study EPO gene expression at chromatin level. We will discuss the role of demethylating agent on restoring EPO expression, providing a novel approach to the treatment of renal anemia.
Collapse
Affiliation(s)
- Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics &Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Li Y, Liu D, Zhang X, Li Z, Ye Y, Liu Q, Shen J, Chen Z, Huang H, Liang Y, Han X, Liu J, An X, Mohandas N, Xu X. miR-326 regulates HbF synthesis by targeting EKLF in human erythroid cells. Exp Hematol 2018; 63:33-40.e2. [PMID: 29601850 DOI: 10.1016/j.exphem.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
Haploinsufficiency of erythroid Krüppel-like factor (EKLF/KLF1) has been shown recently to ameliorate the clinical severity of β-thalassemia by increased expression levels of fetal hemoglobin (HbF). The underlying mechanisms for role of EKLF in regulating HbF are of great interest but remain incompletely understood. In this study, we used a combination of in silico, in vitro, and in vivo approaches to identify microRNAs (miRs) involved in EKLF regulation and to validate the role of miR-326 in HbF modification. We found that miR-326 suppresses EKLF expression directly by targeting its 3' untranslated region. miR-326 overexpression in K562 cells or CD34+ hematopoietic progenitor cells resulted in reduced EKLF protein levels and was associated with elevated expression of γ-globin, whereas inhibition of physiological miR-326 levels increased EKLF and thus reduced γ-globin expression. Moreover, miR-326 expression is positively correlated with HbF levels in β-thalassemia patients. Our results suggest that miR-326 plays a key role in regulating EKLF expression and in modifying the HbF level, which may provide a new strategy for activating HbF in individuals with β-thalassemia or sickle cell disease.
Collapse
Affiliation(s)
- Yihong Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dun Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Zhiming Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huajie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Han
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA; College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Yang J, Ma J, Xiong Y, Wang Y, Jin K, Xia W, Chen Q, Huang J, Zhang J, Jiang N, Jiang S, Ma D. Epigenetic regulation of megakaryocytic and erythroid differentiation by PHF2 histone demethylase. J Cell Physiol 2018; 233:6841-6852. [PMID: 29336484 DOI: 10.1002/jcp.26438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
Plant homeodomain finger 2 (PHF2) is a JmjC family histone demethylase that demethylates H3K9me2, a repressive gene marker. PHF2 was found to play a role in the differentiation of several tissue types such as osteoblast and adipocyte differentiation. We report here that PHF2 plays a role in the epigenetic regulation of megakaryocytic (MK) and erythroid differentiation. We investigated PHF2 expression during MK and erythroid differentiation in K562 and human CD34+ progenitor (hCD34+ ) cells. Our data demonstrate that PHF2 expression is down-regulated during megakaryopoiesis and erythropoiesis. PHF2 has a negative role in MK and erythroid differentiation of K562 cells; knockdown of PHF2 promotes MK and erythroid differentiation of hCD34+ cells. Similarly, we found that p53 expression is also down-regulated during MK and erythroid differentiation, which parallels PHF2 expression. PHF2 binds to the p53 promoter and regulates the expression of p53 by demethylating H3K9me2 in the promoter region of p53. Taken together, our data show that PHF2 is a negative epigenetic regulator of MK and erythroid differentiation, and that one of the pathways through which PHF2 affects MK and erythroid differentiation is via regulation of p53 expression.
Collapse
Affiliation(s)
- Jichun Yang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yanlin Wang
- International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyue Jin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjun Xia
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianbo Huang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shayi Jiang
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Duan Ma
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Li Y, Liu D, Li Z, Zhang X, Ye Y, Liu Q, Shen J, Chen Z, Huang H, Liang Y, Han X, Liu J, An X, Mohandas N, Xu X. Role of tissue-specific promoter DNA methylation in regulating the human EKLF gene. Blood Cells Mol Dis 2018; 71:16-22. [PMID: 29475801 DOI: 10.1016/j.bcmd.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) is an erythroid-specific transcription factor whose activity is essential for erythropoiesis. The underlying mechanisms for EKLF specifically restricted to erythroid cells are of great interest but remain incompletely understood. To explore the epigenetic regulation of EKLF expression by promoter DNA methylation, we investigated the methylation status of the EKLF promoter and EKLF gene expression from a panel of human tissues. We observed that erythroid-specific hypomethylation of the EKLF promoter in adult erythroid cells was positively associated with EKLF expression. Demethylation of the EKLF promoter by 5-aza-2'-deoxycytidine led to elevated EKLF expression in non-erythroid cells. We further uncovered that EKLF promoter DNA methylation reduced the binding affinity for the transcription factors GATA1 and c-myb (MYB), which in turn silenced EKLF expression. These results suggest that hypomethylation of the EKLF promoter has functional significance in the establishment and maintenance of erythroid-specific gene expression.
Collapse
Affiliation(s)
- Yihong Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dun Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiming Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huajie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Han
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, United States; College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, United States
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Antoniani C, Romano O, Miccio A. Concise Review: Epigenetic Regulation of Hematopoiesis: Biological Insights and Therapeutic Applications. Stem Cells Transl Med 2017; 6:2106-2114. [PMID: 29080249 PMCID: PMC5702521 DOI: 10.1002/sctm.17-0192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome‐wide scale, the cis‐regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage‐restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis‐regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis‐regulatory regions to reactivate fetal hemoglobin for the treatment of β‐hemoglobinopathies. Epigenetic studies allowed the definition of cis‐regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis‐regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis‐regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine2017;6:2106–2114
Collapse
Affiliation(s)
- Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Oriana Romano
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Transcriptional regulators provide the molecular and biochemical basis for the cell specific properties and characteristics that follow from their central role in establishing tissue-restricted expression. Precise and sequential control of terminal cell divisions, nuclear condensation, and enucleation are defining characteristics within erythropoietic differentiation. This review is focused on KLF1, a central global regulator of this process. RECENT FINDINGS Studies in the past year have brought a number of proteins that are targets of KLF1 regulation into focus with respect to their roles in terminal erythroid differentiation. Many of these are involved in fine control of the cell cycle at both early (E2F2, Cyclin A2) and later (p18, p27, p19) stages of differentiation, or are directly involved in enucleation (p18, p27). Dramatic biophysical changes controlled at the nuclear lamin by caspase 3 enable histone release and nuclear condensation, whereas dematin association with structural proteins alters the timing of enucleation. Conditional ablation of mDia2 has established its role in late stage cell cycle and enucleation. SUMMARY Transcription factors such as KLF1, along with epigenetic modifiers, play crucial roles in establishing the proper onset and progression of terminal differentiation events. Studies from the past year show a remarkable multifaceted convergence on cell cycle control, and establish that the orthochromatic erythroblast stage is a critical nodal point for many of the effects on enucleation. These studies are relevant to understanding the underlying causes of anemia and hematologic disease where defective enucleation predicts a poor clinical outcome.
Collapse
|
39
|
Gillinder KR, Ilsley MD, Nébor D, Sachidanandam R, Lajoie M, Magor GW, Tallack MR, Bailey T, Landsberg MJ, Mackay JP, Parker MW, Miles LA, Graber JH, Peters LL, Bieker JJ, Perkins AC. Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Res 2017; 45:1130-1143. [PMID: 28180284 PMCID: PMC5388391 DOI: 10.1093/nar/gkw1014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
The rules of engagement between zinc finger transcription factors and DNA have been partly defined by in vitro DNA-binding and structural studies, but less is known about how these rules apply in vivo. Here, we demonstrate how a missense mutation in the second zinc finger of Krüppel-like factor-1 (KLF1) leads to degenerate DNA-binding specificity in vivo, resulting in ectopic transcription and anemia in the Nan mouse model. We employed ChIP-seq and 4sU-RNA-seq to identify aberrant DNA-binding events genome wide and ectopic transcriptional consequences of this binding. We confirmed novel sequence specificity of the mutant recombinant zinc finger domain by performing biophysical measurements of in vitro DNA-binding affinity. Together, these results shed new light on the mechanisms by which missense mutations in DNA-binding domains of transcription factors can lead to autosomal dominant diseases.
Collapse
Affiliation(s)
- Kevin R Gillinder
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Melissa D Ilsley
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | | | - Ravi Sachidanandam
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Mathieu Lajoie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Graham W Magor
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Michael R Tallack
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Timothy Bailey
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, USA
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.,ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Luke A Miles
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | - Andrew C Perkins
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
40
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
41
|
Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 2017; 45:6572-6588. [PMID: 28541545 PMCID: PMC5499887 DOI: 10.1093/nar/gkx441] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Collapse
Affiliation(s)
- Melissa D. Ilsley
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Kevin R. Gillinder
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Graham W. Magor
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Stephen Huang
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | - Andrew C. Perkins
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
- The Princess Alexandra Hospital, Brisbane 4102, Australia
| |
Collapse
|
42
|
Norton LJ, Hallal S, Stout ES, Funnell APW, Pearson RCM, Crossley M, Quinlan KGR. Direct competition between DNA binding factors highlights the role of Krüppel-like Factor 1 in the erythroid/megakaryocyte switch. Sci Rep 2017; 7:3137. [PMID: 28600522 PMCID: PMC5466599 DOI: 10.1038/s41598-017-03289-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 04/26/2017] [Indexed: 11/15/2022] Open
Abstract
The Krüppel-like factor (KLF) family of transcription factors play critical roles in haematopoiesis. KLF1, the founding member of the family, has been implicated in the control of both erythropoiesis and megakaryopoiesis. Here we describe a novel system using an artificial dominant negative isoform of KLF1 to investigate the role of KLF1 in the erythroid/megakaryocytic switch in vivo. We developed murine cell lines stably overexpressing a GST-KLF1 DNA binding domain fusion protein (GST-KLF1 DBD), as well as lines expressing GST only as a control. Interestingly, overexpression of GST-KLF1 DBD led to an overall reduction in erythroid features and an increase in megakaryocytic features indicative of a reduced function of endogenous KLF1. We simultaneously compared in vivo DNA occupancy of both endogenous KLF1 and GST-KLF1 DBD by ChIP qPCR. Here we found that GST-KLF1 DBD physically displaces endogenous KLF1 at a number of loci, providing novel in vivo evidence of direct competition between DNA binding proteins. These results highlight the role of KLF1 in the erythroid/megakaryocyte switch and suggest that direct competition between transcription factors with similar consensus sequences is an important mechanism in transcriptional regulation.
Collapse
Affiliation(s)
- Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Samantha Hallal
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth S Stout
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
43
|
Yang C, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, Marenah L, Frayne J, Mountford JC, Forrester LM. Activation of KLF1 Enhances the Differentiation and Maturation of Red Blood Cells from Human Pluripotent Stem Cells. Stem Cells 2017; 35:886-897. [PMID: 28026072 PMCID: PMC5396323 DOI: 10.1002/stem.2562] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
Abstract
Blood transfusion is widely used in the clinic but the source of red blood cells (RBCs) is dependent on donors, procedures are susceptible to transfusion-transmitted infections and complications can arise from immunological incompatibility. Clinically-compatible and scalable protocols that allow the production of RBCs from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been described but progress to translation has been hampered by poor maturation and fragility of the resultant cells. Genetic programming using transcription factors has been used to drive lineage determination and differentiation so we used this approach to assess whether exogenous expression of the Erythroid Krüppel-like factor 1 (EKLF/KLF1) could augment the differentiation and stability of iPSC-derived RBCs. To activate KLF1 at defined time points during later stages of the differentiation process and to avoid transgene silencing that is commonly observed in differentiating pluripotent stem cells, we targeted a tamoxifen-inducible KLF1-ERT2 expression cassette into the AAVS1 locus. Activation of KLF1 at day 10 of the differentiation process when hematopoietic progenitor cells were present, enhanced erythroid commitment and differentiation. Continued culture resulted the appearance of more enucleated cells when KLF1 was activated which is possibly due to their more robust morphology. Globin profiling indicated that these conditions produced embryonic-like erythroid cells. This study demonstrates the successful use of an inducible genetic programing strategy that could be applied to the production of many other cell lineages from human induced pluripotent stem cells with the integration of programming factors into the AAVS1 locus providing a safer and more reproducible route to the clinic. Stem Cells 2017;35:886-897.
Collapse
Affiliation(s)
- Cheng‐Tao Yang
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Rui Ma
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Richard A. Axton
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Melany Jackson
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - A. Helen Taylor
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Antonella Fidanza
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Lamin Marenah
- Institute of Cardiovascular & Medical Sciences, University of GlasgowGlasgowUnited Kingdom
- Scottish National Blood Transfusion ServiceScotlandUnited Kingdom
| | - Jan Frayne
- Department of BiochemistryUniversity of BristolUnited Kingdom
| | - Joanne C. Mountford
- Institute of Cardiovascular & Medical Sciences, University of GlasgowGlasgowUnited Kingdom
- Scottish National Blood Transfusion ServiceScotlandUnited Kingdom
| | - Lesley M. Forrester
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
44
|
Melhem M, Abu-Farha M, Antony D, Madhoun AA, Bacchelli C, Alkayal F, AlKhairi I, John S, Alomari M, Beales PL, Alsmadi O. Novel G6B gene variant causes familial autosomal recessive thrombocytopenia and anemia. Eur J Haematol 2017; 98:218-227. [PMID: 27743390 DOI: 10.1111/ejh.12819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To characterize the underlying genetic and molecular defects in a consanguineous family with lifelong blood disorder manifested with thrombocytopenia (low platelets count) and anemia. METHODS Genetic linkage analysis, exome sequencing, and functional genomics were carried out to identify and characterize the defective gene. RESULTS We identified a novel truncation mutation (p.C108*) in chromosome 6 open reading frame 25 (C6orf25) gene in this family. We also showed the p.C108* mutation was responsible for destabilizing the encoded truncated G6B protein. Unlike the truncated form, wild-type G6B expression resulted in enhanced K562 differentiation into megakaryocytes and erythrocytes. C6orf25, also known as G6B, is an effector protein for the key hematopoiesis regulators, Src homology region 2 domain-containing phosphatases SHP-1 and SHP-2. CONCLUSION G6B seems to act through an autosomal recessive mode of disease transmission in this family and regarded as the gene responsible for the observed hematological disorder. This inference is well supported further by in vivo evidence where similar outcomes were reported from G6b-/- and SHP1/2 DKO mouse models.
Collapse
Affiliation(s)
- Motasem Melhem
- Genetics and Genomics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dinu Antony
- Genetics and Genomics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Genomics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Fadi Alkayal
- Pancreatic Islet Biology & Transplantation Unit, Dasman Diabetes Institute, Dasman, Kuwait
| | - Irina AlKhairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sumi John
- Integrative Informatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Mohamad Alomari
- Department of Pathology, Windsor Regional Hospital, Windsor, ON, Canada
| | - Phillip L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Osama Alsmadi
- Genetics and Genomics Department, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
45
|
Abstract
Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands. These functional units consist of a macrophage surrounded by differentiating erythroblasts and have been described more than five decades ago, but their function in the pathophysiology of erythropoiesis has remained unclear until recently. Here we propose that the central macrophage in the erythroblastic island contributes to the pathophysiology of anemia of inflammation. After introducing erythropoiesis and the interactions between the erythroblasts and the central macrophage within the erythroblastic islands, we will discuss the immunophenotypic characterization of this specific subpopulation of macrophages. We will then integrate these concepts into the currently known pathophysiological drivers of anemia of inflammation and address the role of the central macrophage in this disorder. Finally, as a means of furthering our understanding of the various concepts, we will discuss the differences between murine and rat models with regard to developmental and stress erythropoiesis in an attempt to define a model system representative of human pathophysiology.
Collapse
|
46
|
Barminko J, Reinholt B, Baron MH. Development and differentiation of the erythroid lineage in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:18-29. [PMID: 26709231 PMCID: PMC4775370 DOI: 10.1016/j.dci.2015.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 05/02/2023]
Abstract
The red blood cell (RBC) is responsible for performing the highly specialized function of oxygen transport, making it essential for survival during gestation and postnatal life. Establishment of sufficient RBC numbers, therefore, has evolved to be a major priority of the postimplantation embryo. The "primitive" erythroid lineage is the first to be specified in the developing embryo proper. Significant resources are dedicated to producing RBCs throughout gestation. Two transient and morphologically distinct waves of hematopoietic progenitor-derived erythropoiesis are observed in development before hematopoietic stem cells (HSCs) take over to produce "definitive" RBCs in the fetal liver. Toward the end of gestation, HSCs migrate to the bone marrow, which becomes the primary site of RBC production in the adult. Erythropoiesis is regulated at various stages of erythroid cell maturation to ensure sufficient production of RBCs in response to physiological demands. Here, we highlight key aspects of mammalian erythroid development and maturation as well as differences among the primitive and definitive erythroid cell lineages.
Collapse
Affiliation(s)
- Jeffrey Barminko
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad Reinholt
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 2016; 127:1856-62. [PMID: 26903544 DOI: 10.1182/blood-2016-01-694331] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Until recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thus a larger panel of genes can be analyzed and whole exome and/or whole genome sequencing can be used when no variants are found in the candidate genes. By using such approaches in patients with unexplained anemias, we have discovered that a broad range of hitherto unrelated human red cell disorders are caused by variants in KLF1, a master regulator of erythropoiesis, which were previously considered to be extremely rare causes of human genetic disease.
Collapse
|
48
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Ma XY, Wang JH, Wang JL, Ma CX, Wang XC, Liu FS. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics 2015; 16:676. [PMID: 26335021 PMCID: PMC4559210 DOI: 10.1186/s12864-015-1881-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. Results In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodaminelow Hoechstlow) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin − HoechstLow RhodamineBright) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1’s promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. Conclusions In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.
Collapse
Affiliation(s)
- Xian-Yong Ma
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Jian-Hui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Jing-Lan Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Charles X Ma
- University of Connecticut School of Medicine, Farmington, USA.
| | - Xiao-Chun Wang
- Department of Surgical Oncology, Affiliated Hospital of Hebei University, Baoding, China.
| | - Feng-Song Liu
- College of Life Sciences, Hebei University, Baoding, China.
| |
Collapse
|
50
|
Abstract
Determining the developmental pathway leading to erythrocytes and being able to isolate their progenitors are crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Here we show that the human erythrocyte progenitor (hEP) can be prospectively isolated from adult bone marrow. We found three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage(-) CD34(+) CD38(+) IL-3Rα(-) CD45RA(-)) population. Both CD71(-) CD105(-) and CD71(+) CD105(-) MEPs, at least in vitro, still retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter subpopulation is skewed in differentiation toward the erythroid lineage. Notably, the proliferative and differentiation output of the CD71(intermediate(int)/+) CD105(+) subset of cells within the MEP population was completely restricted to the erythroid lineage with the loss of MegK potential. CD71(+) CD105(-) MEPs are erythrocyte-biased MEPs (E-MEPs) and CD71(int/+) CD105(+) cells are EPs. These previously unclassified populations may facilitate further understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
Collapse
|