1
|
Ruel NM, Hammond JR. Activation of protein kinase C decreases equilibrative nucleobase transporter 1-mediated substrate uptake via phosphorylation of threonine 231. Biochim Biophys Acta Gen Subj 2025; 1869:130765. [PMID: 39837354 DOI: 10.1016/j.bbagen.2025.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Protein kinase C (PKC) signalling has been shown to be dysregulated in various cancers including acute lymphoblastic leukemia (ALL). We have previously determined that changes in the expression levels of SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) can significantly alter 6-mercaptopurine (6-MP) toxicity in ALL cells. 6-MP is a common drug used in ALL chemotherapy. Furthermore, it has been reported that activation of PKC by phorbol 12-myristate 13-acetate (PMA) impacts nucleobase uptake via an ENBT1-like transporter in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) cells. We hypothesized that activation of PKC would also alter ENBT1-mediated uptake of nucleobases in leukemia cell models. Using MOLT-4, SUP-B15, and K562 cells, we incubated the cells with PMA or its inactive isoform 4α-PMA for 30 min and determined changes to ENBT1-mediated substrate uptake. All of the cell lines tested showed decreased ENBT1-mediated substrate uptake when exposed PMA, relative to that observed using 4α-PMA. Pre-incubation with the broad-spectrum PKC inhibitor, Gö6983, reversed the decrease caused by PMA. Finally, to determine the residue responsible for this PKC-mediated effect, we transiently transfected HEK293 cells (which do not express endogenous ENBT1) with wild-type SLC43A3 transcript or constructs mutated to modify the predicted PKC sites in ENBT1. We found that the mutation of threonine 231 to alanine prevents the decrease in ENBT1-mediated uptake following incubation with PMA, suggesting its involvement. This study shows that activation of PKC decreases ENBT1-mediated uptake, suggesting that aberrant activation of PKC in ALL could decrease ENBT1-mediated 6-MP uptake potentially leading to decreased therapeutic efficacy.
Collapse
Affiliation(s)
- Nicholas M Ruel
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
3
|
Balboni B, Masi M, Rocchia W, Girotto S, Cavalli A. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int J Mol Sci 2023; 24:7541. [PMID: 37108703 PMCID: PMC10139115 DOI: 10.3390/ijms24087541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Mirco Masi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| |
Collapse
|
4
|
Costa RG, Silva SL, Dias IR, Oliveira MDS, Rodrigues ACBDC, Dias RB, Bezerra DP. Emerging drugs targeting cellular redox homeostasis to eliminate acute myeloid leukemia stem cells. Redox Biol 2023; 62:102692. [PMID: 37031536 PMCID: PMC10119960 DOI: 10.1016/j.redox.2023.102692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.
Collapse
|
5
|
Zhang Z, Tan Y, Huang C, Wei X. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 2023; 89:104483. [PMID: 36827719 PMCID: PMC9982619 DOI: 10.1016/j.ebiom.2023.104483] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Drug-tolerant persister (DTP) cells have attracted significant interest, given their predominant role in treatment failure. In this respect, DTP cells reportedly survive after anticancer drug exposure, and their DNA repair mechanisms are altered to enhance adaptive mutation, accounting for the emergence of drug-resistant mutations. DTP cells resume proliferation upon treatment withdrawal and are responsible for cancer relapse. Current evidence suggests that DTP cells mediate redox signaling-mediated cellular homeostasis by developing various adaptive mechanisms, especially metabolic reprogramming that promotes mitochondrial oxidative respiration and a robust antioxidant process. There is an increasing consensus that disrupting redox homeostasis by intervening with redox signaling is theoretically a promising therapeutic strategy for targeting these sinister cells. In this review, we provide a comprehensive overview of the characteristics of DTP cells and the underlying mechanisms involved in redox signaling, aiming to provide a unique perspective on potential therapeutic applications based on their vulnerabilities to redox regulation.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
6
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells 2021; 10:cells10113255. [PMID: 34831477 PMCID: PMC8625526 DOI: 10.3390/cells10113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.
Collapse
Affiliation(s)
- Manuela Piazzi
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Vittoria Cenni
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche and Neuromotorie, Università di Bologna, 40136 Bologna, Italy;
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
8
|
Redox ticklers and beyond: Naphthoquinone repository in the spotlight against inflammation and associated maladies. Pharmacol Res 2021; 174:105968. [PMID: 34752922 DOI: 10.1016/j.phrs.2021.105968] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Cellular redox status has been considered as a focal point for the pathogenesis of multiple disorders. High and persistent levels of free radicals kick off inflammation and associated disorders. Though oxidative stress at high levels is harmful but at low levels it has been shown to exert cytoprotective effects. Therefore, cytoprotection by perturbation in cellular redox balance is a leading strategy for therapeutic interventions. Prooxidants are potent redox modifiers that generate mild oxidative stress leading to a spectrum of bioactivities. Naphthoquinones are a group of highly reactive organic chemical species that interact with biological systems owing to their prooxidants nature. Owing to the ability of naphthoquinones and its derivatives to perturb redox balance in a cell and modulate redox signaling, they have been in epicenter of drug development for plausible utilization in multiple clinical settings. The present review highlights the potential of 1,4-naphthoquinone and its natural derivatives (plumbagin, juglone, lawsone, menadione, lapachol and β-lapachone) as redox modifiers with anti-inflammatory, anti-cancer, anti-diabetic and anti-microbial activities for implication in therapeutic settings.
Collapse
|
9
|
Alwaseem H, Giovani S, Crotti M, Welle K, Jordan CT, Ghaemmaghami S, Fasan R. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization. ACS CENTRAL SCIENCE 2021; 7:841-857. [PMID: 34079900 PMCID: PMC8161485 DOI: 10.1021/acscentsci.0c01624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.
Collapse
Affiliation(s)
- Hanan Alwaseem
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Simone Giovani
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michele Crotti
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Kevin Welle
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
| | - Craig T. Jordan
- Department
of Hematology, School of Medicine, University
of Colorado, Aurora, Colorado 80045, United
States
| | - Sina Ghaemmaghami
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
10
|
Ma D, Liu P, Wang P, Zhou Z, Fang Q, Wang J. PKC-β/Alox5 axis activation promotes Bcr-Abl-independent TKI-resistance in chronic myeloid leukemia. J Cell Physiol 2021; 236:6312-6327. [PMID: 33561320 DOI: 10.1002/jcp.30301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Bcr-Abl independent resistance to tyrosine kinase inhibitor (TKI) is a crucial factor lead to relapse or acute leukemia transformation in chronic myeloid leukemia (CML). However, its mechanism is still unclear. Herein, we found that of nine common protein kinases C (PKCs), PKC-β overexpression was significantly related with TKI resistance. Blockage of its expression in CD34+ cells and CML cell lines increased sensitivity to imatinib. Then, eighty-four leukemia related genes were compared between TKI-resistant CML cell lines with PKC-β silenced or not. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that Arachidonate 5-lipoxygenase (Alox5) and its relative pathway mainly participated in the resistance induced by PKC-β overexpression. It's also observed that Alox5 was increased not only in bone marrow biopsy but also in CD34+ cells derived from IM-resistant CML patients. The signaling pathway exploration indicated that ERK1/2 pathway mediates Alox5 upregulation by PKC-β. Meanwhile, we also proved that Alox5 induces TKI-insensitivity in CML through inactivation of PTEN. In vivo experiment, PKC-β elective inhibitor LY333531 prolonged survival time in CML-PDX mice model. In conclusion, targeted on PKC-β overexpression might be a novel therapy mechanism to overcome TKI-resistance in CML.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Liu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Zhen Zhou
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| |
Collapse
|
11
|
Rudd CE. GSK-3 Inhibition as a Therapeutic Approach Against SARs CoV2: Dual Benefit of Inhibiting Viral Replication While Potentiating the Immune Response. Front Immunol 2020; 11:1638. [PMID: 32695123 PMCID: PMC7333796 DOI: 10.3389/fimmu.2020.01638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
The SARS-CoV2 (COVID-19) pandemic and uncertainties in developing a vaccine have created an urgent need for new therapeutic approaches. A key question is whether it is possible to make rational predictions of new therapies based on the presently available scientific and medical information. In this regard, I have noticed an omission in the present analysis in the literature related to the exploitation of glycogen synthase kinase 3 (GSK-3) as a therapeutic approach. This is based on two key observations, that GSK-3 inhibitors can simultaneously block SARs viral replication, while boosting CD8+ adaptive T-cell and innate natural killer (NK) responses. Firstly, it is already clear that GSK-3 phosphorylation of SARs CoV1 N protein on key serine residues is needed for viral replication such that small molecule inhibitors (SMIs) of GSK-3 can inhibit viral replication. In comparing protein sequences, I show here that the key sites in the N protein of SARs CoV1 N for replication are conserved in SARs CoV2. This strongly suggests that GSK-3 SMIs will also inhibit SARs Cov2 replication. Secondly, we and others have previously documented that GSK-3 SMIs markedly enhance CD8+ cytolytic T-cell (CTL) and NK cell anti-viral effector functions leading to a reduction in both acute and chronic viral infections in mice. My hypothesis is that the repurposing of low-cost inhibitors of GSK-3 such as lithium will limit SARS-CoV2 infections by both reducing viral replication and potentiating the immune response against the virus. To date, there has been no mention of this dual connection between GSK-3 and SARs CoV2 in the literature. To my knowledge, no other drugs exist with the potential to simultaneously target both viral replication and immune response against SARs CoV2.
Collapse
Affiliation(s)
- Christopher E Rudd
- Centre de Recherche- Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC, Canada.,Département de Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Division of Endocrinology & Medical Biochemistry, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
12
|
The Novel Phospholipid Mimetic KPC34 Is Highly Active Against Acute Myeloid Leukemia with Activated Protein Kinase C. Transl Oncol 2020; 13:100780. [PMID: 32428837 PMCID: PMC7232109 DOI: 10.1016/j.tranon.2020.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy with poor outcomes. Nucleoside analogs are subject to resistance mechanisms including downregulation of equilibrative nucleoside transporter (ENT1) and deoxycytidine kinase (dCK). KPC34 is a novel phospholipid mimetic that when cleaved by phospholipase C (PLC) liberates gemcitabine monophosphate and a diacylglycerol mimetic that inhibits the classical isoforms of protein kinase C (PKC). KPC34 acts independently of ENT1 and dCK. KPC34 was active against all AML cell lines tested with IC50s in the nanomolar range. Enforced expression of PLC increased response to KPC34 in vivo. In an orthotopic, xenograft model, KPC34 treatment resulted in a significant increase in survival compared to control animals and those treated with high-dose cytarabine. In a PDX model with activated PKC, there was a significant survival benefit with KPC34, and at progression, there was attenuation of PKC activation in the resistant cells. In contrast, KPC34 was ineffective against a syngeneic, orthotopic AML model without activated PKC. However, when cells from that model were forced to express PKC, there were significantly increased sensitivity in vitro and survival benefit in vivo. These data suggest that KPC34 is active against AML and that the presence of activated PKC can be a predictive biomarker.
Collapse
|
13
|
Liang T, Ju H, Zhou Y, Yang Y, Shi Y, Fang H. Inhibition of glycogen synthase kinase 3β improves cognitive function in aged mice by upregulating claudin presences in cerebral endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:363-370. [PMID: 32141492 DOI: 10.1093/abbs/gmaa002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 11/12/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, is widely distributed in mammalian brains. Since GSK-3β plays a vital role in the development of neurodegenerative disorders, the present study was designed to investigate the role of GSK-3β in the blood-brain barrier (BBB) permeability in aged mice. Morris water maze test was used to examine mouse cognitive function. BBB permeability was examined by the leakage of fluorescence signals of low-molecular weight dextran. GSK-3β inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), was administrated in aged mice and in cultured mouse brain microvascular endothelial cells (bEnd.3). Compared with young mice, aged mice had increased leftover signals of dextran in the hippocampus and a lower score in the maze test, suggesting that aged mice have abnormal leakage of BBB and cognitive dysfunction. The protein expression of Toll-like receptor 4 (TLR4) was increased, whereas the protein expressions of junction proteins (claudin1 and claudin5) were reduced in endothelial cells of BBB in aged mice. Phosphorylated level of serine 9, an inhibitory residue in GSK-3β protein, was decreased. TDZD-8 treatment downregulated TLR4 protein expression, upregulated claudin1 and claudin5 protein expressions, and significantly improved cognitive function in aged mice. In bEnd.3 cells, TDZD-8 treatment reduced TLR4 expression and increased claudin5 expression in cells stimulated with lipopolysaccharides. In conclusion, the inhibition of GSK-3β activity downregulates aging-induced TLR4 expression and restores the BBB integrity, resulting in the improvement of cognitive function in aged mice.
Collapse
Affiliation(s)
- Tao Liang
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Huihui Ju
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
- Department of Anesthesiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yile Zhou
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital of Fudan University, Shanghai 200540, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Shanghai 200032, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Minhang Branch Zhongshan Hospital of Fudan University, Shanghai 201100, China
| |
Collapse
|
14
|
Vegi NM, Chakrabortty S, Zegota MM, Kuan SL, Stumper A, Rawat VPS, Sieste S, Buske C, Rau S, Weil T, Feuring-Buske M. Somatostatin receptor mediated targeting of acute myeloid leukemia by photodynamic metal complexes for light induced apoptosis. Sci Rep 2020; 10:371. [PMID: 31941913 PMCID: PMC6962389 DOI: 10.1038/s41598-019-57172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by relapse and treatment resistance in a major fraction of patients, underlining the need of innovative AML targeting therapies. Here we analysed the therapeutic potential of an innovative biohybrid consisting of the tumor-associated peptide somatostatin and the photosensitizer ruthenium in AML cell lines and primary AML patient samples. Selective toxicity was analyzed by using CD34 enriched cord blood cells as control. Treatment of OCI AML3, HL60 and THP1 resulted in a 92, and 99 and 97% decrease in clonogenic growth compared to the controls. Primary AML cells demonstrated a major response with a 74 to 99% reduction in clonogenicity in 5 of 6 patient samples. In contrast, treatment of CD34+ CB cells resulted in substantially less reduction in colony numbers. Subcellular localization assays of RU-SST in OCI-AML3 cells confirmed strong co-localization of RU-SST in the lysosomes compared to the other cellular organelles. Our data demonstrate that conjugation of a Ruthenium complex with somatostatin is efficiently eradicating LSC candidates of patients with AML. This indicates that receptor mediated lysosomal accumulation of photodynamic metal complexes is a highly attractive approach for targeting AML cells.
Collapse
Affiliation(s)
- Naidu M Vegi
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University, AP - Amaravati, Andhra Pradesh, 522502, India.,Max Planck Institute for Polymer Research, D-55128, Mainz, Germany
| | - Maksymilian M Zegota
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Michaela Feuring-Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany. .,Department of Internal Medicine III, University Hospital Ulm, D-89081, Ulm, Germany.
| |
Collapse
|
15
|
Wang X, Gao M, Zhang J, Ma Y, Qu W, Liang J, Wu H, Wen H. Peperomin E and its orally bioavailable analog induce oxidative stress-mediated apoptosis of acute myeloid leukemia progenitor cells by targeting thioredoxin reductase. Redox Biol 2019; 24:101153. [PMID: 30909158 PMCID: PMC6434189 DOI: 10.1016/j.redox.2019.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
The early immature CD34+ acute myeloid leukemia (AML) cell subpopulation-acute myeloid leukemia progenitor cells (APCs), is often resistant to conventional chemotherapy, making them largely responsible for the relapse of AML. However, to date, the eradication of APCs remains a major challenge. We previously reported a naturally occurring secolignan- Peperomin E (PepE) and its analog 6-methyl (hydroxyethyl) amino-2, 6-dihydropeperomin E (DMAPE) that selectively target and induce oxidative stress-mediated apoptosis in KG-1a CD34+ cells (an APCs-like cell line) in vitro. We therefore further evaluated the efficacy and the mechanism of action of these compounds in this study. We found that PepE and DMAPE have similar potential to eliminate primary APCs, with no substantial toxicities to the normal cells in vitro and in vivo. Mechanistically, these agents selectively inhibit TrxR1, an antioxidant enzyme aberrantly expressed in APCs, by covalently binding to its selenocysteine residue at the C-terminal redox center. TrxR1 inhibition mediated by PepE (DMAPE) leads to the formation of cellular selenium compromised thioredoxin reductase-derived apoptotic protein (SecTRAP), oxidation of Trx, induction of oxidative stress and finally activation of apoptosis of APCs. Our results demonstrate a potential anti-APCs molecular target – TrxR1 and provide valuable insights into the mechanism underlying PepE (DMAPE)-induced cytotoxicity of APCs, and support the further preclinical investigations on PepE (DMAPE)-related therapies for the treatment of relapsed AML.
Collapse
Affiliation(s)
- Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| | - Ming Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Jiyun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Ying Ma
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Xiaolinwei Lane No. 200, Nanjing 210094, People's Republic of China
| | - Wenshu Qu
- People's Liberation Army Cancer Center, Nanjing Bayi Hospital, Yanggongjing Street No. 34, Nanjing 210002, People's Republic of China
| | - Jingyu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Tongjia Lane No.24, Nanjing 210009, People's Republic of China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| |
Collapse
|
16
|
Leukemia Stem Cells in Chronic Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:191-215. [PMID: 31338821 DOI: 10.1007/978-981-13-7342-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the BCR-ABL oncogene encoding a constitutively activated tyrosine kinase. Although BCR-ABL tyrosine kinase inhibitors (TKIs) are highly effective in treating CML at chronic phase, a number of patients develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs). Similar to other types of hematopoietic malignancies, LSCs in CML are believed to be a rare cell population responsible for leukemia initiation, disease progression, and drug resistance. Therefore, a full understanding of the biology of LSCs will help to develop novel therapeutic strategies for effective treatment of CML to possibly reach a cure. In recent years, a significant progress has been made in studying the biology of LSCs in both animal models and human patients at cellular and molecular levels, providing a basis for designing and testing potential molecular targets for eradicating LSCs in CML.
Collapse
|
17
|
Gatzka MV. Targeted Tumor Therapy Remixed-An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers (Basel) 2018; 10:E155. [PMID: 29794999 PMCID: PMC6025289 DOI: 10.3390/cancers10060155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.
Collapse
Affiliation(s)
- Martina V Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
18
|
Gao HE, Sun Y, Ding YH, Long J, Liu XL, Yang M, Ji Q, Li YH, Chen Y, Zhang Q, Gao YD. Antineoplastic effects of CPPTL via the ROS/JNK pathway in acute myeloid leukemia. Oncotarget 2018; 8:38990-39000. [PMID: 28473664 PMCID: PMC5503589 DOI: 10.18632/oncotarget.17166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
Drug resistance and human leukocyte antigen (HLA) matching limit conventional treatment of acute myeloid leukemia (AML). Although several small molecule drugs are clinically used, single drug administration is not sufficient to cure AML, which has a high molecular diversity. Metabolic homeostasis plays a key role in determining cellular fate. Appropriate levels of reactive oxygen species (ROS) maintain the redox system balance, and excessive amounts of ROS cause oxidative damage, thus providing a strategy to eliminate cancer cells. CPPTL is a novel analogue of parthenolide that exhibited significant cytotoxicity to AML cells in vitro and induced apoptosis in a dose-dependent manner. Additionally, CPPTL's prodrug DMA-CPPTL decreased the burden of AML engraftment and prolonged survival in a mouse model administered human primary AML cells in vivo. CPPTL induced apoptosis of AML cells by stimulating ROS production, and accumulation of ROS then activated the JNK pathway, thereby promoting mitochondrial damage. These results demonstrated that CPPTL effectively eradicated AML cells in vitro and in vivo and suggested that CPPTL may be a novel candidate for auxiliary AML therapy.
Collapse
Affiliation(s)
- Hui-Er Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Yue Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Ya-Hui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P. R. China
| | - Jing Long
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P. R. China
| | - Xiao-Lei Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Qing Ji
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Ying-Hui Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P. R. China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P. R. China
| | - Ying-Dai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P. R. China
| |
Collapse
|
19
|
Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol 2017; 8:897. [PMID: 29270125 PMCID: PMC5725465 DOI: 10.3389/fphar.2017.00897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
Collapse
Affiliation(s)
- Habsah Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chow Y Ping
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Gunasekara DC, Zheng MM, Mojtahed T, Woods JR, Fandy TE, Riofski MV, Glackin CA, Hassan HE, Kirshner J, Colby DA. 15-Methylene-Eburnamonine Kills Leukemic Stem Cells and Reduces Engraftment in a Humanized Bone Marrow Xenograft Mouse Model of Leukemia. ChemMedChem 2016; 11:2392-2397. [PMID: 27677525 DOI: 10.1002/cmdc.201600334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/18/2022]
Abstract
Recent studies suggest that leukemia stem cells (LSCs) play a critical role in the initiation, propagation, and relapse of leukemia. Herein we show that (-)-15-methylene-eburnamonine, a derivative of the alkaloid (-)-eburnamonine, is cytotoxic against acute and chronic lymphocytic leukemias (ALL and CLL) and acute myelogenous leukemia (AML). The agent also decreases primary LSC frequency in vitro. The cytotoxic effects appear to be mediated via the oxidative stress pathways. Furthermore, we show that the compound kills AML, ALL, and CLL stem cells. By the use of a novel humanized bone marrow murine model of leukemia (huBM/NSG), it was found to decrease progenitor cell engraftment.
Collapse
Affiliation(s)
- Dilini C Gunasekara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mary M Zheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Tara Mojtahed
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tamer E Fandy
- Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, VT, USA
| | - Mark V Riofski
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Carlotta A Glackin
- Division of Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.,Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Cairo, Egypt
| | | | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
21
|
Ding Y, Gao H, Zhang Y, Li Y, Vasdev N, Gao Y, Chen Y, Zhang Q. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells. J Hematol Oncol 2016; 9:93. [PMID: 27658462 PMCID: PMC5034521 DOI: 10.1186/s13045-016-0327-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The poor outcomes for patients diagnosed with acute myeloid leukemia (AML) are largely attributed to leukemia stem cells (LSCs) which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. METHODS The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. RESULTS The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C), alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. CONCLUSIONS Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, 02114, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
22
|
Tyagi V, Alwaseem H, O'Dwyer KM, Ponder J, Li QY, Jordan CT, Fasan R. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs. Bioorg Med Chem 2016; 24:3876-3886. [PMID: 27396927 PMCID: PMC5083853 DOI: 10.1016/j.bmc.2016.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O-H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.
Collapse
Affiliation(s)
- Vikas Tyagi
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Kristen M O'Dwyer
- Department of Hematology/Oncology, University of Rochester, Rochester, NY 14627, United States
| | - Jessica Ponder
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States; Division of Toxicology, University of Colorado, Aurora, CO 80045, United States
| | - Qi Ying Li
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
23
|
Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, Schmidt C, Wang L, Pulikkan JA, Zong H, Parlak M, Kuscu C, Pickin A, Zhou Y, Gao Y, Mishra L, Adli M, Castilla LH, Rajewski RA, Janes KA, Guzman ML, Bonifer C, Bushweller JH. Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine 2016; 8:117-131. [PMID: 27428424 PMCID: PMC4919611 DOI: 10.1016/j.ebiom.2016.04.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 10/29/2022] Open
Abstract
Transcription factors have traditionally been viewed with skepticism as viable drug targets, but they offer the potential for completely novel mechanisms of action that could more effectively address the stem cell like properties, such as self-renewal and chemo-resistance, that lead to the failure of traditional chemotherapy approaches. Core binding factor is a heterodimeric transcription factor comprised of one of 3 RUNX proteins (RUNX1-3) and a CBFβ binding partner. CBFβ enhances DNA binding of RUNX subunits by relieving auto-inhibition. Both RUNX1 and CBFβ are frequently mutated in human leukemia. More recently, RUNX proteins have been shown to be key players in epithelial cancers, suggesting the targeting of this pathway could have broad utility. In order to test this, we developed small molecules which bind to CBFβ and inhibit its binding to RUNX. Treatment with these inhibitors reduces binding of RUNX1 to target genes, alters the expression of RUNX1 target genes, and impacts cell survival and differentiation. These inhibitors show efficacy against leukemia cells as well as basal-like (triple-negative) breast cancer cells. These inhibitors provide effective tools to probe the utility of targeting RUNX transcription factor function in other cancers.
Collapse
Affiliation(s)
- Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jane Gilmour
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Charles Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - John A Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hongliang Zong
- Division of Hematology/Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Mahmut Parlak
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Cem Kuscu
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Anna Pickin
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Yan Gao
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lauren Mishra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Mazhar Adli
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Lucio H Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roger A Rajewski
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Monica L Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Zhang BB, Wang DG, Guo FF, Xuan C. Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer 2015; 14:19-23. [PMID: 25266577 DOI: 10.1007/s10689-014-9757-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are believed as the initiators of the occurrence, development and recurrence of malignant tumors. Targeting this unique cell population would provide a less toxic approach than regular chemotherapeutic agents that kill bulk rapid proliferating tumor cells and also normal cells which divide rapidly. To date, major research effort has been aimed at identifying and eradicating CSC population. The metabolism heterogeneity of mitochondria in CSCs shows a big promise for cancer research. Of them, mitochondrial membrane potential (Δψm), reflecting the functional status of the mitochondrion is proved to be highly related to cancer malignancy. Reactive oxygen species, mainly produced from mitochondria, are also increased in many types of cancer cells. However, their statuses in CSCs remain poorly understood. Here we shall review the mitochondrial membrane potential and reactive oxygen species of CSCs and propose the novel potential targets for cancer therapy.
Collapse
Affiliation(s)
- Bei-bei Zhang
- Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | | | | | | |
Collapse
|
25
|
A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species. Cell Rep 2015; 13:2159-73. [PMID: 26628369 PMCID: PMC4699804 DOI: 10.1016/j.celrep.2015.10.073] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90). Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.
Collapse
|
26
|
Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L. Antioxidants of Edible Mushrooms. Molecules 2015; 20:19489-525. [PMID: 26516828 PMCID: PMC6331815 DOI: 10.3390/molecules201019489] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.
Collapse
Affiliation(s)
- Maja Kozarski
- Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Anita Klaus
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Dragica Jakovljevic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
| | - Nina Todorovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
| | - Jovana Vunduk
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Predrag Petrović
- Institute of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia.
| | - Miomir Niksic
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Miroslav M Vrvic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Leo van Griensven
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700 AA, The Netherlands.
| |
Collapse
|
27
|
NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β. Cell Signal 2015; 27:1731-41. [PMID: 26022178 DOI: 10.1016/j.cellsig.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3β as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3β or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3α isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3β. Importantly, the regulation of NK cell function by GSK-3β was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3β negatively regulates NK cell activation and that modulation of GSK-3β function could be used to enhance NK cell activation.
Collapse
|
28
|
Abstract
Cancer stem cells (CSCs) play an important role in cancer growth, self-renewal, metastasis, recurrence and radio/chemotherapy. However, the underlying mechanisms remain elusive. In this review, we explore the roles of CSCs in cancer's relapse and progression and discuss the biomarkers of CSCs to predict clinical outcome and their diagnostic potential. The different approaches of CSC therapies are also reviewed, including cytotoxic, radiation, differentiation and targeting signaling pathways. We also discuss the challenge of targeting CSCs in cancer therapy. In addition, non-coding RNAs in CSC therapies are also discussed.
Collapse
|
29
|
IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood 2015; 125:3144-52. [PMID: 25810490 DOI: 10.1182/blood-2015-01-621631] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/15/2015] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.
Collapse
|
30
|
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSC-associated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and its-associated targets, and the potential clinical application in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Department of Hematology, Zhejiang University, Hangzhou, 310009, China
| | | |
Collapse
|
31
|
Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell 2015; 6:403-12. [PMID: 25749979 PMCID: PMC4444810 DOI: 10.1007/s13238-015-0143-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSC-associated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and its-associated targets, and the potential clinical application in chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Epigenesis, Genetic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Transcription Factors/metabolism
- Tumor Microenvironment
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Department of Hematology, Zhejiang University, Hangzhou, 310009 China
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Rongzhen Xu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Department of Hematology, Zhejiang University, Hangzhou, 310009 China
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| |
Collapse
|
32
|
Zhang B, Shimada Y, Kuroyanagi J, Ariyoshi M, Nomoto T, Shintou T, Umemoto N, Nishimura Y, Miyazaki T, Tanaka T. In vivo selective imaging and inhibition of leukemia stem-like cells using the fluorescent carbocyanine derivative, DiOC5(3). Biomaterials 2015; 52:14-25. [PMID: 25818410 DOI: 10.1016/j.biomaterials.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/14/2015] [Accepted: 02/01/2015] [Indexed: 12/22/2022]
Abstract
Elimination of leukemia stem cells (LSCs) is necessary for the destruction of malignant cell populations. Owing to the very small number of LSCs in leukemia cells, xenotransplantation studies are difficult in terms of functionally and pathophysiologically replicating clinical conditions of cell culture experiments. There is currently a limited number of lead compounds that target LSCs. Using the LSC-xenograft zebrafish screening method we previously developed, we found that the fluorescent compound 3,3'-dipentyloxacarbocyanine iodide (DiOC5(3)) selectively marked LSCs and suppressed their proliferation in vivo and in vitro. DiOC5(3) had no obvious toxicity to human umbilical cord blood CD34+ progenitor cells and normal zebrafish. It accumulated in mitochondria through organic anion transporter polypeptides that are overexpressed in the plasma membrane of LSCs, and induced apoptosis via ROS overproduction. DiOC5(3) also inhibited the nuclear translocation of NF-κB through the downregulation of LSC-selective pathways, as indicated from DNA microarray analysis. In summary, DiOC5(3) is a new type of anti-LSC compound available for diagnostic imaging and therapeutics that has the advantage of being a single fluorescent chemical.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Tsuyoshi Nomoto
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Taichi Shintou
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takeshi Miyazaki
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
33
|
Guo D, Zhang J, Huang Z, Jiang S, Gu N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf B Biointerfaces 2015; 126:198-203. [DOI: 10.1016/j.colsurfb.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
34
|
Semaphorin3A-induced axonal transport mediated through phosphorylation of Axin-1 by GSK3β. Brain Res 2014; 1598:46-56. [PMID: 25528666 DOI: 10.1016/j.brainres.2014.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
Abstract
The establishment of neuronal polarity is necessary for proper neuronal wiring. Semaphorin3A (Sema3A), originally identified as a repulsive axon guidance molecule, exerts a wide variety of biological functions through signaling pathways including sequential phosphorylation of collapsin response mediator protein by cyclin-dependent kinase-5 (Cdk5) and glycogen synthase kinase-3β (GSK3β). Sema3A acts on its receptor neuropilin-1 to regulate axonal transport. To delineate mechanism by which Sema3A induces axonal transport, we investigate whether GSK3β is involved in mediating Sema3A-induced axonal transport. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione, an inhibitor of GSK3β, suppressed Sema3A-induced antero- and retrograde axonal transport. Introduction of either GSK3β mutants, GSK3β-L128A or K85M, suppressed Sema3A-induced axonal transport. On the other hand, introduction of GSK3β-R96A did not affect the Sema3A effect, suggesting that unprimed substrates are primarily involved in Sema3A-induced axonal transport. Overexpression of a partial fragment of frequently rearranged in advanced T-cell lymphomas 1 (FRATtide), which interferes the interaction between GSK3β and Axis inhibitor-1 (Axin-1), also suppressed Sema3A-induced transport. siRNA knockdown of Axin-1, an unprimed substrate of GSK3β, suppressed Sema3A-induced antero- and retrograde axonal transport. These results indicate that GSK3β and Axin-1 are involved in Sema3A-induced bidirectional axonal transport. This finding should provide a clue for understanding of mechanisms of a wide variety of biological activities of Sema3A.
Collapse
|
35
|
Hatfield KJ, Reikvam H, Bruserud Ø. Identification of a subset of patients with acute myeloid leukemia characterized by long-termin vitroproliferation and altered cell cycle regulation of the leukemic cells. Expert Opin Ther Targets 2014; 18:1237-51. [DOI: 10.1517/14728222.2014.957671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Mencalha AL, Corrêa S, Abdelhay E. Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 2014; 7:1247-54. [PMID: 25045273 PMCID: PMC4099416 DOI: 10.2147/ott.s64303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Biophysics and Biometry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro's State University (UERJ), Rio de Janeiro, Brazil
| | - Stephany Corrêa
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Zhang H, Fang H, Wang K. Reactive oxygen species in eradicating acute myeloid leukemic stem cells. Stem Cell Investig 2014; 1:13. [PMID: 27358859 DOI: 10.3978/j.issn.2306-9759.2014.04.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy.
Collapse
Affiliation(s)
- Hui Zhang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hai Fang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Kankan Wang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
38
|
Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T. Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS One 2014; 9:e85439. [PMID: 24454867 PMCID: PMC3893211 DOI: 10.1371/journal.pone.0085439] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
39
|
Abstract
Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarize what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.
Collapse
Affiliation(s)
- Thomas W Owens
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | | |
Collapse
|
40
|
Keshari KR, Sai V, Wang ZJ, Vanbrocklin HF, Kurhanewicz J, Wilson DM. Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J Nucl Med 2013; 54:922-8. [PMID: 23575993 DOI: 10.2967/jnumed.112.115402] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Reduction and oxidation (redox) chemistry is increasingly implicated in cancer pathogenesis. To interrogate the redox status of prostate tumors noninvasively, we developed hyperpolarized [1-(13)C]dehydroascorbate ((13)C-DHA), the oxidized form of vitamin C, as an MR probe. In a model of transgenic adenocarcinoma of the mouse prostate (TRAMP), increased reduction of hyperpolarized (13)C-DHA to vitamin C was observed in tumor, as compared with normal prostate and surrounding benign tissue. We hypothesized that this difference was due to higher concentrations of glutathione and increased transport of hyperpolarized (13)C-DHA via the glucose transporters (GLUT1, GLUT3, and GLUT4) in TRAMP tumor. To test these hypotheses, hyperpolarized (13)C-DHA MR spectroscopy (MRS) and (18)F-FDG PET were applied as complementary technologies in the TRAMP model. METHODS Late-stage TRAMP tumors (>4 cm(3)) were studied at similar time points (MR studies conducted < 24 h after PET) in fasting mice by (18)F-FDG PET and hyperpolarized (13)C-DHA MR imaging on a small-animal PET/CT scanner and a (1)H/(3)C 3-T MR scanner. PET data were processed using open-source AMIDE software to compare the standardized uptake values of tumor with those of surrounding muscle, and (13)C-DHA MRS data were processed using custom software to compare the metabolite ratios (vitamin C/[vitamin C + (13)C-DHA]). After in vivo studies, the tumor glutathione concentrations were determined using a spectrophotometric assay, and thiol staining was performed using mercury orange. Real-time polymerase chain reaction was used to evaluate the relevant transporters GLUT1, GLUT3, and GLUT4 and vitamin C transporters SVCT1 and SVCT2. GLUT1 was also evaluated by immunohistochemistry. RESULTS The average metabolite ratio was 0.28 ± 0.02 in TRAMP tumor, versus 0.11 ± 0.02 in surrounding benign tissue (n = 4), representing a 2.5-fold difference. The corresponding tumor-to-nontumor (18)F-FDG uptake ratio was 3.0. The total glutathione was 5.1 ± 0.4 mM in tumor and 1.0 ± 0.2 mM in normal prostate, whereas reduced glutathione was 2.0 ± 0.3 mM and 0.8 ± 0.3 mM, respectively, corresponding to a 2.5-fold difference. In TRAMP tumor, mercury orange staining demonstrated increased thiols. Real-time polymerase chain reaction showed no significant difference in GLUT1 messenger RNA between TRAMP tumor and normal prostate, with immunohistochemistry (anti-GLUT1) also showing comparable staining. CONCLUSION Both hyperpolarized (13)C-DHA and (18)F-FDG provide similar tumor contrast in the TRAMP model. Our findings suggest that the mechanism of in vivo hyperpolarized (13)C-DHA reduction and the resulting tumor contrast correlates most strongly with glutathione concentration. In the TRAMP model, GLUT1 is not significantly upregulated and is unlikely to account for the contrast obtained using hyperpolarized (13)C-DHA or (18)F-FDG.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
41
|
Preferential eradication of acute myelogenous leukemia stem cells by fenretinide. Proc Natl Acad Sci U S A 2013; 110:5606-11. [PMID: 23513221 DOI: 10.1073/pnas.1302352110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression, and relapse, and thus represent a critical target for therapeutic intervention. However, relatively few agents have been shown to target LSCs, slowing progress in the treatment of acute myelogenous leukemia (AML). Based on in vitro and in vivo evidence, we report here that fenretinide, a well-tolerated vitamin A derivative, is capable of eradicating LSCs but not normal hematopoietic progenitor/stem cells at physiologically achievable concentrations. Fenretinide exerted a selective cytotoxic effect on primary AML CD34(+) cells, especially the LSC-enriched CD34(+)CD38(-) subpopulation, whereas no significant effect was observed on normal counterparts. Methylcellulose colony formation assays further showed that fenretinide significantly suppressed the formation of colonies derived from AML CD34(+) cells but not those from normal CD34(+) cells. Moreover, fenretinide significantly reduced the in vivo engraftment of AML stem cells but not normal hematopoietic stem cells in a nonobese diabetic/SCID mouse xenotransplantation model. Mechanistic studies revealed that fenretinide-induced cell death was linked to a series of characteristic events, including the rapid generation of reactive oxygen species, induction of genes associated with stress responses and apoptosis, and repression of genes involved in NF-κB and Wnt signaling. Further bioinformatic analysis revealed that the fenretinide-down-regulated genes were significantly correlated with the existing poor-prognosis signatures in AML patients. Based on these findings, we propose that fenretinide is a potent agent that selectively targets LSCs, and may be of value in the treatment of AML.
Collapse
|
42
|
Schürch C, Riether C, Amrein MA, Ochsenbein AF. Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-γ. ACTA ACUST UNITED AC 2013; 210:605-21. [PMID: 23401488 PMCID: PMC3600910 DOI: 10.1084/jem.20121229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host's immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8(+) effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34(+) stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell-based immunotherapy against leukemia.
Collapse
Affiliation(s)
- Christian Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | | | | | |
Collapse
|
43
|
Abstract
Although acute myeloid leukaemia (AML) has long been recognized for its morphological and cytogenetic heterogeneity, recent high-resolution genomic profiling has demonstrated a complexity even greater than previously imagined. This complexity can be seen in the number and diversity of genetic alterations, epigenetic modifications, and characteristics of the leukaemic stem cells. The broad range of abnormalities across different AML subtypes suggests that improvements in clinical outcome will require the development of targeted therapies for each subtype of disease and the design of novel clinical trials to test these strategies. It is highly unlikely that further gains in long-term survival rates will be possible by mere intensification of conventional chemotherapy. In this review, we summarize recent studies that provide new insight into the genetics and biology of AML, discuss risk stratification and therapy for this disease, and profile some of the therapeutic agents currently under investigation.
Collapse
Affiliation(s)
- Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
44
|
Turner EM, Blazer LL, Neubig RR, Husbands SM. Small Molecule Inhibitors of Regulator of G Protein Signalling (RGS) Proteins. ACS Med Chem Lett 2012; 3:146-150. [PMID: 22368763 DOI: 10.1021/ml200263y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recently regulators of G protein signalling (RGS) proteins have emerged as potential therapeutic targets since they provide an alternative method of modulating the activity of GPCRs, the target of so many drugs. Inhibitors of RGS proteins must block a protein-protein interaction (RGS-Gα), but also be cell and, depending on the therapeutic target, blood brain barrier permeable. A lead compound (1a) was identified as an inhibitor of RGS4 in a screening assay and this has now been optimised for activity, selectivity and solubility. The newly developed ligands (11b, 13) display substantial selectivity over the closely related RGS8 protein, lack the off-target calcium mobilisation activity of the lead 1a and have excellent aqueous solubility. They are currently being evaluated in vivo in rodent models of depression.
Collapse
Affiliation(s)
- Emma M. Turner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Levi L. Blazer
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Richard R. Neubig
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Stephen M. Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
45
|
A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood 2012; 119:1200-7. [DOI: 10.1182/blood-2011-01-330019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC–enriched CD34+CD38− AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti–L-IC compounds for human leukemias.
Collapse
|
46
|
Abstract
Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75-85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen.
Collapse
|
47
|
Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Granados-Principal S, Lorente JA, Quiles JL. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit Rev Oncol Hematol 2011; 80:347-68. [DOI: 10.1016/j.critrevonc.2011.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 12/30/2022] Open
|
48
|
Nasim S, Guzman ML, Jordan CT, Crooks PA. Discovery of 1,2,4-thiadiazolidine-3,5-dione analogs that exhibit unusual and selective rapid cell death kinetics against acute myelogenous leukemia cells in culture. Bioorg Med Chem Lett 2011; 21:4879-83. [PMID: 21757349 PMCID: PMC3725994 DOI: 10.1016/j.bmcl.2011.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
Abstract
4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) was previously identified as an antileukemic agent exhibiting no evident toxicity toward normal hematopoietic cells. An SAR study has been carried out to examine the effect of varying the C-2 and C-4- substituents on the thiadiazolidinone ring of TDZD-8 on antileukemic activity. These studies resulted in the identification of more druglike analogs that exhibited comparable potency to TDZD-8 in killing acute myelogenous leukemia (AML) cells in culture. Surprisingly, the cell death kinetics induced by several of these novel analogs on MV-411 cells were extremely fast, with commitment to death occurring within 30 min. At a concentration of 10 μM, 3f (LD(50)=3.5 μM) completely eradicated cell viability of MV-411 cells within 2h, while analog 3e (LD(50)=2.0 μM) decimated cell viability within 30 min at a concentration of 10 μM and effectively abolished cell viability at 5 μM within 1-2h.
Collapse
Affiliation(s)
- Shama Nasim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 501A 725 Rose Street, Lexington, KY 40536, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Craig T. Jordan
- James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 501A 725 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
49
|
Martinez A, Gil C, Perez DI. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer's disease treatment. Int J Alzheimers Dis 2011; 2011:280502. [PMID: 21760986 PMCID: PMC3132520 DOI: 10.4061/2011/280502] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3), a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD) being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.
Collapse
Affiliation(s)
- Ana Martinez
- Instituto de Química Médica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | |
Collapse
|
50
|
Sardina JL, López-Ruano G, Sánchez-Sánchez B, Llanillo M, Hernández-Hernández A. Reactive oxygen species: are they important for haematopoiesis? Crit Rev Oncol Hematol 2011; 81:257-74. [PMID: 21507675 DOI: 10.1016/j.critrevonc.2011.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023] Open
Abstract
The production of reactive oxygen species (ROS) has traditionally been related to deleterious effects for cells. However, it is now widely accepted that ROS can play an important role in regulating cellular signalling and gene expression. NADPH oxidase ROS production seems to be especially important in this regard. Some lines of evidence suggest that ROS may be important modulators of cell differentiation, including haematopoietic differentiation, in both physiologic and pathologic conditions. Here we shall review how ROS can regulate cell signalling and gene expression. We shall also focus on the importance of ROS for haematopoietic stem cell (HSC) biology and for haematopoietic differentiation. We shall review the involvement of ROS and NADPH oxidases in cancer, and in particular what is known about the relationship between ROS and haematological malignancies. Finally, we shall discuss the use of ROS as cancer therapeutic targets.
Collapse
Affiliation(s)
- José L Sardina
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|