1
|
Madhok A, Bhat SA, Philip CS, Sureshbabu SK, Chiplunkar S, Galande S. Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways. Front Immunol 2021; 12:660361. [PMID: 34526984 PMCID: PMC8435775 DOI: 10.3389/fimmu.2021.660361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.
Collapse
Affiliation(s)
- Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India
| | - Sajad Ahmad Bhat
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chinna Susan Philip
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
2
|
Shen L, Huang D, Qaqish A, Frencher J, Yang R, Shen H, Chen ZW. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol Rev 2020; 298:254-263. [PMID: 33037700 DOI: 10.1111/imr.12927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Unique Vγ2Vδ2 (Vγ9Vδ2) T cells existing only in human and non-human primates, account for the majority of circulating γδ T cells in human adults. Vγ2Vδ2 T cells are the sole γδ T-cell subpopulation capable of recognizing the microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by selected pathogens during infections. Recent seminal studies in non-human primate models have demonstrated that the unique HMBPP-specific Vγ2Vδ2 T cells are fast-acting, multi-functional, and protective during infections. This article reviews the recent seminal observations of Vγ2Vδ2 T cells in protective mechanisms against tuberculosis and other infections.
Collapse
Affiliation(s)
- Ling Shen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Dan Huang
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Arwa Qaqish
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - James Frencher
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage‐Targeted Isoniazid–Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Ling Shen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Dan Huang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Richard Wang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hua Jin
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Huaihong Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Jiye Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Gucheng Zeng
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Zheng W. Chen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| |
Collapse
|
4
|
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc Biol 2020; 107:1045-1055. [DOI: 10.1002/jlb.2mr1219-233r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Morath
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Center for Chronic Immunodeficiency (CCI) Medical Center Freiburg and Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
5
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020; 59:3226-3234. [PMID: 31756258 DOI: 10.1002/anie.201912122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.
Collapse
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA.,Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hua Jin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
6
|
Yan L, Shen H, Xiao H. Characteristics of peripheral Vγ2Vδ2 T cells in interferon-γ release assay negative pulmonary tuberculosis patients. BMC Infect Dis 2018; 18:453. [PMID: 30180814 PMCID: PMC6123966 DOI: 10.1186/s12879-018-3328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Background It is not fully explained why some active tuberculosis patients show negative interferon-γ release assays (IGRAs). In this study, we tried to explore associations of IGRAs with the characteristics of peripheral Vγ2Vδ2 T cells and their functions of producing cytokines. Methods 32 pulmonary tuberculosis patients were enrolled and divided into two groups according to their IGRAs results: 16 with IGRA-negative as test group and 16 with IGRA-positive as control group. Chest X-rays and T-SPOT.TB tests were performed and the severity of the lung lesions was scored. The amount of Vγ2Vδ2T cell and their expression levels of the apoptosis-related membrane surface molecule Fas and FasL in peripheral blood were analyzed by flow cytometry, and the function of secreting cytokines (IFN-γ, TNF-α and IL-17A) of Vγ2Vδ2 T cell were determined by intracellular cytokine staining. Results The IGRA-negative TB patients had more lesion severity scores and displayed reduced peripheral blood Vγ2Vδ2 T cell counts (p = 0.009) as well as higher Fas and FasL expression in peripheral blood Vγ2Vδ2 T cells (p = 0.043, 0.026). A high lesion severity score was correlated with a decreased Vδ2+ T cell number and increased Vγ2Vδ2 T cells Fas/FasL expression leve in the peripheral blood (p = 0.00, P < 0.01). The function of secreting cytokines was slightly impaired in IGRA-negative TB patients (p = 0.402). There is no significant differences in expression levels of Fas and FasL in CD4+ T cells (p = 0.224, 0.287) or CD8+ T cells (p = 0.184, 0.067) between test and control groups. Conclusion Compared with IGRA-positive TB patients, the IGRA-negative TB patients had more lesion severity scores, the number of Vγ2Vδ2 T cells decreased and the function of secreting cytokines impaired. In addition, we suggest that increased expression of Fas/FasL triggers Vγ2Vδ2 T cell apoptosis. Electronic supplementary material The online version of this article (10.1186/s12879-018-3328-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Yan
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Hongbo Shen
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Heping Xiao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
7
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
8
|
Gao Y, Zhang S, Ou Q, Shen L, Wang S, Wu J, Weng X, Chen ZW, Zhang W, Shao L. Characterization of CD4/CD8+ αβ and Vγ2Vδ2+ T cells in HIV-negative individuals with different Mycobacterium tuberculosis infection statuses. Hum Immunol 2015; 76:801-7. [PMID: 26429305 DOI: 10.1016/j.humimm.2015.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The immune responses of T cell subsets among patients with different Mycobacterium tuberculosis (M.tb) infection statuses [i.e., active tuberculosis (ATB), latent tuberculosis infection (LTBI) and non-infection (healthy control, HC)] have not been fully elucidated in HIV-negative individuals. Specifically, data are limiting in high tuberculosis epidemic regions in China. To investigate the distributions and functions of T cell subsets (i.e., CD3+, CD4+, CD8+ αβ and Vγ2Vδ2+ T cells) in HIV-negative subjects with different M.tb infection statuses, we conducted a case-control study that enrolled 125 participants, including ATB patients (n = 46), LTBI subjects (n = 34), and HC (n = 45). RESULTS An IFN-γ release assay (IGRA) was employed to screen LTBI subjects. Whole blood cell surface staining and flow cytometry were used to detect phenotypic distributions of T cells in the peripheral blood mononuclear cells (PBMCs) and tuberculous pleural fluid mononuclear cells (PFMCs). PPD and the phosphorylated antigen HMBPP were employed as stimulators for the detection of M.tb antigen-specific T cell functions via intracellular cytokine staining (ICS). The absolute numbers of T cell subsets, including CD3+ CD4+, CD3+ CD8+ αβ and Vγ2Vδ2+ T cells, were significantly reduced in active tuberculosis compared with latent tuberculosis or the healthy controls. Importantly, PPD-specific CD3+ CD4+ and CD3+ CD8+ αβ T cells and HMBPP-specific Vγ2Vδ2+ T cells in ATB patients were also significantly reduced compared to the LTBI/HC subjects (P<0.05). In contrast, the proportion of CD4+ T cells in PFMCs was higher compared to PBMCs, while CD8+ and Vγ2Vδ2+ T cells in PFMCs were lower compared to PBMCs (all P < 0.05). PPD-specific CD4+ T cells predominated among CD3+ T cells in PFMCs. CONCLUSIONS Cellular immune responses are impaired in ATB patients. Antigen-specific CD4+ T cell may migrate from the periphery to the lesion site, where they exert anti-tuberculosis functions.
Collapse
Affiliation(s)
- Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shu Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi No. 5 People's Hospital, Wuxi 214005, China.
| | - Lei Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, 835 S. Wolcott Avenue, MC790 Chicago, IL 60612, United States.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
9
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 562] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
10
|
Migration mechanism of mesenchymal stem cells studied by QD/NSOM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:859-68. [PMID: 25534714 DOI: 10.1016/j.bbamem.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/31/2023]
Abstract
The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements. Before VEGF-induced migration of MSCs, both CD44 and CD29 formed 200-220 nm nano-domains respectively, with little co-localization between the two types of domains. Surprisingly, the size of the CD44 nano-domain rapidly increased in size to 295 nm and apparently larger aggregates were formed following MSC treatment with VEGF for 10 min, while the area of co-localization increased to 0.327 μm2. Compared with CD44, CD29 was activated obviously later, for the fact that CD29 aggregation didn't appear until 30 min after VEGF treatment. Consistently, its co-localization area increased to 0.917 μm2. The CD44 and CD29 nano-domains further aggregated into larger nano-domains or even formed micro-domains on the membrane of activated MSCs. The aggregation and co-localization of these molecules promoted FAK formation and cytoskeleton rearrangement. All of the above changes induced by VEGF contributed to MSC migration. Taken together, our data of NSOM-based dual color fluorescent imaging demonstrated for the first time that CD44, together with CD29, involved in VEGF-induced migration of MSCs through the interaction between CD44 and its co-receptor of VEGFR-2.
Collapse
|
11
|
Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. NANOSCALE 2014; 6:12229-12249. [PMID: 25227707 DOI: 10.1039/c4nr04195j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technique, Macau, China.
| | | | | | | | | |
Collapse
|
12
|
AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells. J Membr Biol 2014; 247:189-200. [DOI: 10.1007/s00232-013-9624-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/26/2013] [Indexed: 01/08/2023]
|
13
|
NSOM/QD-based visualization of GM1 serving as platforms for TCR/CD3 mediated T-cell activation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:276498. [PMID: 24288672 PMCID: PMC3830804 DOI: 10.1155/2013/276498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Abstract
Direct molecular imaging of nanoscale relationship between T-cell receptor complexes (TCR/CD3) and gangliosidosis GM1 before and after T-cell activation has not been reported. In this study, we made use of our expertise of near-field scanning optical microscopy(NSOM)/immune-labeling quantum dots- (QD-)based dual-color imaging system to visualize nanoscale profiles for distribution and organization of TCR/CD3, GM1, as well as their nanospatial relationship and their correlation with PKCθ signaling cascade during T-cell activation. Interestingly, after anti-CD3/anti-CD28 Ab co-stimulation, both TCR/CD3 and GM1 were clustered to form nanodomains; moreover, all of TCR/CD3 nanodomains were colocalized with GM1 nanodomains, indicating that the formation of GM1 nanodomains was greatly correlated with TCR/CD3 mediated signaling. Specially, while T-cells were pretreated with PKCθ signaling inhibitor rottlerin to suppress IL-2 cytokine production, no visible TCR/CD3 nanodomains appeared while a lot of GM1 nanodomains were still observed. However, while T-cells are pretreated with PKCαβ signaling inhibitor GÖ6976 to suppress calcium-dependent manner, all of TCR/CD3 nanodomains were still colocalized with GM1 nanodomains. These findings possibly support the notion that the formation of GM1 nanodomains indeed serves as platforms for the recruitment of TCR/CD3 nanodomains, and TCR/CD3 nanodomains are required for PKCθ signaling cascades and T-cell activation
Collapse
|
14
|
A novel gold nanoparticle-doped polyaniline nanofibers-based cytosensor confers simple and efficient evaluation of T-cell activation. Biosens Bioelectron 2013; 50:167-73. [PMID: 23850784 DOI: 10.1016/j.bios.2013.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/22/2022]
Abstract
A rapid, easy assay for monitoring dynamics of T-cell activation should help to guide potential medical evaluation of immune responses or immunopathogenesis. Here, we report development of novel electrochemical cytosensors for dynamic analyses of T-cell activation markers on living cells. Gold nanoparticles-doped polyaniline nanofiber (Au/PANI-NFs) composite was greenly prepared by in situ one-step chemical inertness of PANI-NFs with gold nanoparticles to fabricate impedance-based electrochemical biosensors. Transmission electron micrographs indicated that the gold nanoparticles were uniformly anchored along with the structure of PANI-NF surface, displaying fibrillar morphology with a ~60 nm diameter. Au/PANI-NFs-based cytosensors coated with anti-CD Ab molecules could provide biomimetic interface for multiple immunosensing of T-cell surface activation markers (CD69, CD25, and CD71). The dual signal amplification of Au nanoparticle and PANI-NFs-based electrochemical impedance spectroscopic (EIS) measurements enabled the cytosensors considerably sensitive, with a detection limit of 1×10(4) cells/ml of activated T-cells. The activation-targeted cytosensors detected early, middle and late stages for expression of activation markers CD69, CD25, and CD71 at 8 h, 24 h, and 36 h, respectively, after concanvalin A stimulation of T cells. The quantitative results consisted with those derived from flow cytometric analysis. Furthermore, activation-targeted cytosensor allowed for dynamic analysis of the immune inhibition of T-cell activation by immune regulatory drug icariin (ICA). Thus, Au/PANI-NFs-based cytosensors offer simple and fast approach for non-destructive, quantitative evaluation of T-cell activation markers, with considerable specificity, reproducibility, and low background noise.
Collapse
|
15
|
Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. APPLIED SPECTROSCOPY 2013; 67:215-52. [PMID: 23452487 DOI: 10.1366/12-06948] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | |
Collapse
|
16
|
Chen ZW. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 2012; 10:58-64. [PMID: 23147720 DOI: 10.1038/cmi.2012.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vγ2Vδ2 T (also known as Vγ9Vδ2 T) cells exist only in primates, and in humans represent a major γδ T-cell sub-population in the total population of circulating γδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vγ2Vδ2 T cells, the Vγ2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vγ2Vδ2 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vγ2Vδ2 T cells. Primary infections with HMBPP-producing pathogens drive the evolution of multieffector functional responses in Vγ2Vδ2 T cells, although Vγ2Vδ2 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vγ2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vγ2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vγ2Vδ2 T cells appears to impact other immune cells during infection.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Boyle S, Kolin DL, Bieler JG, Schneck JP, Wiseman PW, Edidin M. Quantum dot fluorescence characterizes the nanoscale organization of T cell receptors for antigen. Biophys J 2012; 101:L57-9. [PMID: 22261075 DOI: 10.1016/j.bpj.2011.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/19/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022] Open
Abstract
Changes in the clustering of surface receptors modulate cell responses to ligands. Hence, global measures of receptor clustering can be useful for characterizing cell states. Using T cell receptor for antigen as an example, we show that k-space image correlation spectroscopy of quantum dots blinking detects T cell receptor clusters on a scale of tens of nanometers and reports changes in clustering after T cell activation. Our results offer a general approach to the global analysis of lateral organization and receptor clustering in single cells, and can thus be applied when the cell type of interest is rare.
Collapse
Affiliation(s)
- Sarah Boyle
- Biology Department, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
18
|
Huang D, Chen CY, Zhang M, Qiu L, Shen Y, Du G, Zhou K, Wang R, Chen ZW. Clonal immune responses of Mycobacterium-specific γδ T cells in tuberculous and non-tuberculous tissues during M. tuberculosis infection. PLoS One 2012; 7:e30631. [PMID: 22319574 PMCID: PMC3271047 DOI: 10.1371/journal.pone.0030631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We previously demonstrated that unvaccinated macaques infected with large-dose M.tuberculosis(Mtb) exhibited delays for pulmonary trafficking of Ag-specific αβ and γδ T effector cells, and developed severe lung tuberculosis(TB) and "secondary" Mtb infection in remote organs such as liver and kidney. Despite delays in lungs, local immunity in remote organs may accumulate since progressive immune activation after pulmonary Mtb infection may allow IFNγ-producing γδ T cells to adequately develop and traffic to lately-infected remote organs. As initial efforts to test this hypothesis, we comparatively examined TCR repertoire/clonality, tissue trafficking and effector function of Vγ2Vδ2 T cells in lung with severe TB and in liver/kidney without apparent TB. METHODOLOGY/PRINCIPAL FINDINGS We utilized conventional infection-immunity approaches in macaque TB model, and employed our decades-long expertise for TCR repertoire analyses. TCR repertoires in Vγ2Vδ2 T-cell subpopulation were broad during primary Mtb infection as most TCR clones found in lymphoid system, lung, kidney and liver were distinct. Polyclonally-expanded Vγ2Vδ2 T-cell clones from lymphoid tissues appeared to distribute and localize in lung TB granuloms at the endpoint after Mtb infection by aerosol. Interestingly, some TCR clones appeared to be more predominant than others in lymphocytes from liver or kidney without apparent TB lesions. TCR CDR3 spetratyping revealed such clonal dominance, and the clonal dominance of expanded Vγ2Vδ2 T cells in kidney/liver tissues was associated with undetectable or low-level TB burdens. Furthermore, Vγ2Vδ2 T cells from tissue compartments could mount effector function for producing anti-mycobacterium cytokine. CONCLUSION We were the first to demonstrate clonal immune responses of mycobacterium-specific Vγ2Vδ2 T cells in the lymphoid system, heavily-infected lungs and lately subtly-infected kidneys or livers during primary Mtb infection. While clonally-expanded Vγ2Vδ2 T cells accumulated in lately-infected kidneys/livers without apparent TB lesions, TB burdens or lesions appeared to impact TCR repertoires and tissue trafficking patterns of activated Vγ2Vδ2 T cells.
Collapse
Affiliation(s)
- Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Meihong Zhang
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, China
- Key Laboratory of Medical Molecular Activity Research, Guangdong Medical College, Dongguan, China
| | - Liyou Qiu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Yun Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - George Du
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Keyuan Zhou
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, China
- Key Laboratory of Medical Molecular Activity Research, Guangdong Medical College, Dongguan, China
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Abstract
Cells respond to biochemical and mechanical stimuli through a series of steps that begin at the molecular, nanometre level, and translate finally in global cell response. Defects in biochemical- and/or mechanical-sensing, transduction or cellular response are the cause of multiple diseases, including cancer and immune disorders among others. Within the booming field of regenerative medicine, there is an increasing need for developing and applying nanotechnology tools to bring understanding on the cellular machinery and molecular interactions at the nanoscale. Nanotechnology, nanophotonics and in particular, high-resolution-based fluorescence approaches are already delivering crucial information on the way that cells respond to their environment and how they organize their receptors to perform specialized functions. This chapter focuses on emerging super-resolution optical techniques, summarizing their principles, technical implementation, and reviewing some of the achievements reached so far.
Collapse
Affiliation(s)
- Maria F Garcia-Parajo
- BioNanoPhotonics Group, IBEC - Institute for Bioengineering of Catalonia and CIBER-BBN, Barcelona, Spain.
| |
Collapse
|
20
|
Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011; 118:992-1001. [DOI: 10.1182/blood-2011-02-339135] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The success of cancer immunotherapy depends on productive tumor cell recognition by killer lymphocytes. γδ T cells are a population of innate-like lymphocytes endowed with strong, MHC-unrestricted cytotoxicity against tumor cells. This notwithstanding, we recently showed that a large proportion of human hematologic tumors is resistant to γδ peripheral blood lymphocytes (PBLs) activated with specific agonists to the highly prevalent Vγ9Vδ2 TCR. Although this probably constitutes an important limitation to current γδ T cell–mediated immunotherapy strategies, we describe here the differentiation of a novel subset of Vδ2− Vδ1+ PBLs expressing natural cytotoxicity receptors (NCRs) that directly mediate killing of leukemia cell lines and chronic lymphocytic leukemia patient neoplastic cells. We show that Vδ1+ T cells can be selectively induced to express NKp30, NKp44 and NKp46, through a process that requires functional phosphatidylinositol 3-kinase (PI-3K)/AKT signaling on stimulation with γc cytokines and TCR agonists. The stable expression of NCRs is associated with high levels of granzyme B and enhanced cytotoxicity against lymphoid leukemia cells. Specific gain-of-function and loss-of-function experiments demonstrated that NKp30 makes the most important contribution to TCR-independent leukemia cell recognition. Thus, NKp30+ Vδ1+ T cells constitute a novel, inducible and specialized killer lymphocyte population with high potential for immunotherapy of human cancer.
Collapse
|
21
|
Prinz I. Dynamics of the interaction of γδ T cells with their neighbors in vivo. Cell Mol Life Sci 2011; 68:2391-8. [PMID: 21584813 PMCID: PMC11114905 DOI: 10.1007/s00018-011-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/15/2022]
Abstract
γδ T cells are a diverse component of the immune system in humans and mice with presumably important but still largely unknown functions. Understanding the dynamic interaction of γδ T cells with their neighbors should help to understand their physiological role. This review addresses recent advances and strategies to visualize the dynamic interactions of γδ T cells with their neighbors in vivo. Current knowledge regarding the dynamic contacts of tissue resident γδ T cells and epithelial cells, but also of the communication between circulating γδ T cells and DCs, monocytes and FoxP3(+) regulatory T cells is revisited with emphasis on the role of γδ T cell motility.
Collapse
MESH Headings
- Animals
- Cell Communication/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/methods
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany, Prinz.
| |
Collapse
|
22
|
Zeng G, Chen CY, Huang D, Yao S, Wang RC, Chen ZW. Membrane-bound IL-22 after de novo production in tuberculosis and anti-Mycobacterium tuberculosis effector function of IL-22+ CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:190-9. [PMID: 21632708 PMCID: PMC3586328 DOI: 10.4049/jimmunol.1004129] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of IL-22-producing CD4(+) T cells in intracellular pathogen infections is poorly characterized. IL-22-producing CD4(+) T cells may express some effector molecules on the membrane, and therefore synergize or contribute to antimicrobial effector function. This hypothesis cannot be tested by conventional approaches manipulating a single IL-22 cytokine at genetic and protein levels, and IL-22(+) T cells cannot be purified for evaluation due to secretion nature of cytokines. In this study, we surprisingly found that upon activation, CD4(+) T cells in Mycobacterium tuberculosis-infected macaques or humans could evolve into T effector cells bearing membrane-bound IL-22 after de novo IL-22 production. Membrane-bound IL-22(+) CD4(+) T effector cells appeared to mature in vivo and sustain membrane distribution in highly inflammatory environments during active M. tuberculosis infection. Near-field scanning optical microscopy/quantum dot-based nanoscale molecular imaging revealed that membrane-bound IL-22, like CD3, distributed in membrane and engaged as ∼100-200 nm nanoclusters or ∼300-600 nm nanodomains for potential interaction with IL-22R. Importantly, purified membrane-bound IL-22(+) CD4(+) T cells inhibited intracellular M. tuberculosis replication in macrophages. Our findings suggest that IL-22-producing T cells can evolve to retain IL-22 on membrane for prolonged IL-22 t(1/2) and to exert efficient cell-cell interaction for anti-M. tuberculosis effector function.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| | - Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
23
|
Zhong L, Zhang Z, Lu X, Huang D, Chen CY, Wang R, Chen ZW. NSOM/QD-based fluorescence-topographic image fusion directly reveals nano-spatial peak-valley polarities of CD69 and CD71 activation molecules on cell-membrane fluctuations during T-cell activation. Immunol Lett 2011; 140:44-51. [PMID: 21704079 DOI: 10.1016/j.imlet.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 05/20/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
Abstract
Nano-spatial distribution of cell surface molecules on cell membrane fluctuations during T-cell activation has not been reported. In this study, we innovated application of near-field scanning optical microscopy (NSOM)/quantum dots (QDs)-based nanotechnology through three-dimensional image fusion algorithm to merge the simultaneously obtained dual-color fluorescence information and three-dimensional topography. This novel imaging system made it possible to visualize nano-spatial distribution and organization of early-activation molecules CD69 and late-activation molecules CD71 on cell-membrane fluctuations during T-cell activation. Interestingly, most CD69 molecules were clustered to form 250-500nm nano-domains polarizing predominantly in the peak of the cell-membrane fluctuations. In contrast, although CD71 molecules were also clustered as 250-500nm nano-domains, they polarized dominantly in the valley of the cell-membrane fluctuations. The peak-valley polarities of CD69 nano-domains and CD71 nano-domains implied their different functions. CD69 nano-domains polarizing on membrane-peak fluctuations might serve as transient platforms driving TCR/CD3-induced signaling and activation, whereas CD71 nano-domains distributing in the membrane-valley fluctuations appeared to facilitate iron uptake for increased metabolisms in T-cell activation. Importantly, this NSOM/QD-based fluorescence-topographic image fusion provides a powerful tool to visualize nano-spatial distribution of cell-surface molecules on cell-membrane fluctuations and enable better understanding of distribution-function relationship.
Collapse
Affiliation(s)
- Liyun Zhong
- Department of Microbiology & Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, United States.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen ZW. Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci 2011; 68:2409-17. [PMID: 21667064 DOI: 10.1007/s00018-011-0703-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Accumulating evidence suggests that human γδ T cells act as non-classical T cells and contribute to both innate and adaptive immune responses in infections. Vγ2 Vδ2 T (also termed Vγ9 Vδ2 T) cells exist only in primates, and in humans represent a dominant circulating γδ T-cell subset. Primate Vγ2 Vδ2 T cells are the only γδ T cell subset capable of recognizing microbial phosphoantigen. Since nonhuman primate Vγ2 Vδ2 T cells resemble their human counterparts, in-depth studies have been undertaken in macaques to understand the biology and function of human Vγ2 Vδ2 T cells. This article reviews the recent progress for immune biology of Vγ2 Vδ2 T cells in infections.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Abstract
Quantum dots (QDs) are novel photostable semiconductor nanocrystals possessing wide excitation spectra and narrow, symmetrical emission spectra and can be conjugated to a wide range of biological targets, including proteins, antibodies and nucleic acid probes. These characteristics have provoked considerable interest in their use for bioimaging. Much investigation has been performed into their use for multiplex immunohistochemistry and in situ hybridisation which, when combined with multispectral imaging, has enabled quantitation and colocalisation of gene expression in clinical tissue. Many advances have recently been made using QDs for live cell and in vivo imaging, in which QD-labelled molecules can be tracked and visualised in 3-D. This review aims to outline the beneficial properties presented by QDs along with important advances in their biological application.
Collapse
Affiliation(s)
- Richard J Byers
- School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
26
|
Jin H, Zhao H, Chen X, Ma L, Huang X, Ye H, Cai J. An easy method to detect the kinetics of CD44 antibody and its receptors on B16 cells using atomic force microscopy. Mol Biol Rep 2010; 38:4495-500. [PMID: 21140224 DOI: 10.1007/s11033-010-0580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
CD44 is the principle cell surface receptor for the extracellular matrix. The altered expression or dysfunction of CD44 proteins contributes to numerous pathological processes. Therefore, it is very necessary to detect the distribution and density of CD44 proteins on cell surface. In this paper, the unbinding force between the tip of an atomic force microscope modified with anti-human CD44 antibody (a kind of CD44 pathway ligation proteins, currently used to induce the apoptosis of some types of tumors) and B16 (human melanoma cell line) cells was measured. The results indicated that the distribution of CD44 was nonuniform and represented clusters on B16 cell surface. And, the data of kinetics of CD44 antibody-antigen binding experiments indicated that the CD44 signal pathway in B16 cells could be blocked by anti-CD44 monoclonal antibody. This methodology can be extended to the evaluation and screening of molecular targeted drugs for pharmacological use.
Collapse
Affiliation(s)
- Hua Jin
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, 510632 Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
27
|
DeBarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol 2010; 41:195-201. [PMID: 21182090 DOI: 10.1002/eji.201040905] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/09/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
Human Vγ9Vδ2 T cells are potent anti-tumor lymphocytes that specifically respond to pyrophosphate (phospho-) antigens, which constitute the basis of current γδ T-cell-based immunotherapy strategies. Despite a clear involvement of the TCR, the costimulation requirements of Vγ9Vδ2 T cells remain ill-defined. Here, we show that the expression of the CD27 receptor by the vast majority of Vγ9Vδ2 peripheral blood lymphocytes endows them with enhanced proliferative capacity upon ligation by its unique ligand CD70, a tumor necrosis factor superfamily member expressed on lymphoma B-cells but also on TCR-activated γδ T cells. Moreover, Vγ9Vδ2 T-cell treatment with soluble recombinant CD70 induced calcium signals and increased transcription of anti-apoptotic Bcl2a1 and cell-cycle-promoting Cyclin D2 genes. We further demonstrate that the manipulation of CD70-CD27 interactions significantly impacted on Vγ9Vδ2 T-cell survival, proliferation and cytokine secretion, in both loss-of-function and gain-of-function experiments. Thus, CD27 coreceptor signals strongly promoted the expansion of Th1-biased, CD27(+) Vγ9Vδ2 peripheral blood lymphocytes in the context of TCR-mediated stimulation with phosphoantigens. These data collectively establish a novel role for the CD70-CD27 axis in human γδ T-cell activation and hence open new perspectives for its modulation in clinical settings.
Collapse
Affiliation(s)
- Ana DeBarros
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
28
|
Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D Costimulates Human Vγ9Vδ2 T Cell Antitumor Cytotoxicity through Protein Kinase Cθ-Dependent Modulation of Early TCR-Induced Calcium and Transduction Signals. THE JOURNAL OF IMMUNOLOGY 2010; 185:55-63. [DOI: 10.4049/jimmunol.1000373] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Nedellec S, Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 2010; 22:199-206. [PMID: 20447835 DOI: 10.1016/j.smim.2010.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/05/2010] [Indexed: 01/04/2023]
Abstract
Human Vgamma9Vdelta2 T cells, a major innate-like peripheral T cell subset, are thought to play in vivo a key role in innate and adaptive immune responses to infection agents and tumors. Vgamma9Vdelta2 T cell activation is tightly regulated by a variety of activating or inhibitory receptors which are specific for constitutively expressed or stress-modulated ligands. However, the mechanisms and signal transduction pathways regulating their broad effector functions, such as cytotoxicity and cytokine responses, remain poorly understood. Here we provide an updated overview of the activation modalities of Vgamma9Vdelta2 T cells by highlighting the respective role played by T cell receptor (TCR) versus non-TCR stimuli, and focus on recent studies showing how Vgamma9Vdelta2 T cells integrate the numerous activating and inhibitory signals and translate them into a particular effector and biological function. A better understanding of these critical issues should help optimize immunotherapeutic approaches targeting Vgamma9Vdelta2 T cells.
Collapse
Affiliation(s)
- Steven Nedellec
- INSERM, U892, Centre de Recherche en Cancérologie Nantes-Angers, Nantes, France
| | | | | |
Collapse
|
30
|
A nanometer scale optical view on the compartmentalization of cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:777-87. [DOI: 10.1016/j.bbamem.2009.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/13/2009] [Accepted: 09/20/2009] [Indexed: 12/30/2022]
|
31
|
Dickenson NE, Armendariz KP, Huckabay HA, Livanec PW, Dunn RC. Near-field scanning optical microscopy: a tool for nanometric exploration of biological membranes. Anal Bioanal Chem 2010; 396:31-43. [PMID: 19730836 DOI: 10.1007/s00216-009-3040-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/07/2009] [Accepted: 08/08/2009] [Indexed: 11/28/2022]
Abstract
Near-field scanning optical microscopy (NSOM) is an emerging optical technique that enables simultaneous high-resolution fluorescence and topography measurements. Here we discuss selected applications of NSOM to biological systems that help illustrate the utility of its high spatial resolution and simultaneous collection of both fluorescence and topography. For the biological sciences, these attributes seem particularly well suited for addressing ongoing issues in membrane organization, such as those regarding lipid rafts, and protein-protein interactions. Here we highlight a few NSOM measurements on model membranes, isolated biological membranes, and cultured cells that help illustrate some of these capabilities. We finish by highlighting nontraditional applications of NSOM that take advantage of the small probe to create nanometric sensors or new modes of imaging.
Collapse
Affiliation(s)
- Nicholas E Dickenson
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | | | | | | | | |
Collapse
|
32
|
Cai X, Yang X, Cai J, Wu S, Chen Q. Atomic Force Microscope-Related Study Membrane-Associated Cytotoxicity in Human Pterygium Fibroblasts Induced by Mitomycin C. J Phys Chem B 2010; 114:3833-9. [PMID: 20196562 DOI: 10.1021/jp910682q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofang Cai
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Xiaoxi Yang
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Jiye Cai
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Shixian Wu
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Qian Chen
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| |
Collapse
|
33
|
Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC, Chen ZW. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 2010; 6:e1000789. [PMID: 20195465 PMCID: PMC2829073 DOI: 10.1371/journal.ppat.1000789] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.
Collapse
Affiliation(s)
- Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lisa Halliday
- Biologic Resources Laboratory, University of Illinois, Chicago, Illinois, United States of America
| | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digard P, Canaday DH, Gustafsson K. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5622-9. [PMID: 19843947 DOI: 10.4049/jimmunol.0901772] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Professional phagocytosis in mammals is considered to be performed exclusively by myeloid cell types. In this study, we demonstrate, for the first time, that a mammalian lymphocyte subset can operate as a professional phagocyte. By using confocal microscopy, transmission electron microscopy, and functional Ag presentation assays, we find that freshly isolated human peripheral blood gammadelta T cells can phagocytose Escherichia coli and 1 microm synthetic beads via Ab opsonization and CD16 (FcgammaRIII), leading to Ag processing and presentation on MHC class II. In contrast, other CD16(+) lymphocytes, i.e., CD16(+)/CD56(+) NK cells, were not capable of such functions. These findings of distinct myeloid characteristics in gammadelta T cells strongly support the suggestion that gammadelta T cells are evolutionarily ancient lymphocytes and have implications for our understanding of their role in transitional immunity and the control of infectious diseases and cancer.
Collapse
Affiliation(s)
- Yin Wu
- Molecular Immunology Unit, University College London Institute of Child Health, London, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen J, Pei Y, Chen Z, Cai J. Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron 2009; 41:198-202. [PMID: 19959369 DOI: 10.1016/j.micron.2009.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/08/2009] [Accepted: 11/08/2009] [Indexed: 11/29/2022]
Abstract
The lateral organization of membrane proteins and lipids domains has a direct impact on many cellular processes, but generally these domains are too small to be resolved by diffraction-limited resolution of fluorescence microscopy. Here, we use quantum dot (QD) labeling based on near-field optical imaging, to study the nanoscale organization of hyaluronan receptor CD44 molecules of fixed mesenchymal stem cells (MSCs) in air, with a optical resolution down to 50 nm. The photostability and high luminance of QD evidently improve the signal-to-noise ratio and reproducibility of near-field optical data. Importantly, the blinking-intensity analysis was proposed to identify single QD, providing a calibration to relate intensity to numbers of antibody for the first time. Additionally, the fluorescence-topographic imaging enables us to investigate the topographic location pattern. Our results demonstrate that CD44 molecules on MSCs are enriched into nanosized domain and they predominantly locate on the peak of the membrane protrusions, which may contribute to clarify the underlying mechanism of functions ascribed to these molecules.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | | | | | | |
Collapse
|
36
|
Hu M, Chen J, Wang J, Wang X, Ma S, Cai J, Chen CY, Chen ZW. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+T cell membrane. J Mol Recognit 2009; 22:516-20. [DOI: 10.1002/jmr.976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Zhong L, Zeng G, Lu X, Wang RC, Gong G, Yan L, Huang D, Chen ZW. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS One 2009; 4:e5945. [PMID: 19536289 PMCID: PMC2693923 DOI: 10.1371/journal.pone.0005945] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 05/21/2009] [Indexed: 12/04/2022] Open
Abstract
Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2–4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and ∼6–10% of CD3 were co-clustering with CD4 or CD8 as 70–110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200–500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3–CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation.
Collapse
Affiliation(s)
- Liyun Zhong
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xiaoxu Lu
- School for Information and Optoelectronic Engineering, South China Normal University, Guangzhou, Guangdong, China
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Guangming Gong
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lin Yan
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Hu M, Wang J, Zhao H, Dong S, Cai J. Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 2009; 42:1513-1519. [PMID: 19477449 DOI: 10.1016/j.jbiomech.2009.03.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 11/17/2022]
Abstract
The ultrastructural and mechanical properties of single resting, activated and apoptosis lymphocyte have been investigated by atomic force microscopy (AFM). Using topographic imaging, we showed that the surface of the resting lymphocyte is smooth, while lymphocyte activation and apoptosis are often accompanied by changes in cell morphology. The apoptosis lymphocyte is rougher than those of the two other morphotypes, and coated with many big particles. Using spatially resolved force-distance curves, we found that the valve of the activated lymphocyte is about two to three times stiffer (Young's modulus of approximately 20 kPa) than those of the two other morphotypes (5-11 kPa). These results can improve our understanding of the mechanical properties of cells during growth and differentiation.
Collapse
Affiliation(s)
- Mingqian Hu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiongkun Wang
- Institution for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongxia Zhao
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shisong Dong
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
39
|
Correia DV, d'Orey F, Cardoso BA, Lança T, Grosso AR, deBarros A, Martins LR, Barata JT, Silva-Santos B. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells. PLoS One 2009; 4:e5657. [PMID: 19479075 PMCID: PMC2682580 DOI: 10.1371/journal.pone.0005657] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/20/2009] [Indexed: 02/06/2023] Open
Abstract
Background The unique responsiveness of Vγ9Vδ2 T-cells, the major γδ subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current γδ T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human γδ T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vγ9Vδ2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its γδ T-cell activation and anti-tumor properties. Methodology/Principal Findings We have performed a comparative study between HMB-PP and the anti-CD3ε monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular γδ T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vγ9+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including γδ T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vγ9+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains γδ T-cell activation upon re-stimulation. This ultimately translates in potent human γδ T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, Conclusions/Significance The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vγ9+ T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials.
Collapse
Affiliation(s)
- Daniel V. Correia
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Francisco d'Orey
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bruno A. Cardoso
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Telma Lança
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana R. Grosso
- Cellular Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana deBarros
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Leila R. Martins
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - João T. Barata
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
40
|
Chen Y, Qin J, Cai J, Chen ZW. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One 2009; 4:e5386. [PMID: 19404395 PMCID: PMC2671402 DOI: 10.1371/journal.pone.0005386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/23/2009] [Indexed: 02/06/2023] Open
Abstract
Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.
Collapse
Affiliation(s)
- Yong Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Qin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jiye Cai
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Yan L, Huang D, Chen CY, Chen ZW. NSOM- and AFM-based nanotechnology elucidates nano-structural and atomic-force features of a Y. pestis V immunogen-containing particle vaccine capable of eliciting robust response. Proteomics 2009; 9:1538-47. [PMID: 19253301 DOI: 10.1002/pmic.200800528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is postulated that unique nanoscale proteomic features of immunogen on vaccine particles may determine immunogen-packing density, stability, specificity, and pH-sensitivity on the vaccine particle surface and thus impact the vaccine-elicited immune responses. To test this presumption, we employed near-filed scanning optical microscopy (NSOM)- and atomic force microscopy (AFM)-based nanotechnology to study nano-structural and single-molecule force bases of Yersinia pestis (Y. pestis) V immunogen fused with protein anchor (V-PA) loaded on gram positive enhancer matrix (GEM) vaccine particles. Surprisingly, the single-molecule sensitive NSOM revealed that approximately 90% of V-PA immunogen molecules were packed as high-density nanoclusters on GEM particle. AFM-based single-molecule force analyses indicated a highly stable and specific binding between V-PA and GEM at the physiological pH. In contrast, this specific binding was mostly abrogated at the acidic pH equivalent to the biochemical pH in phagolysosomes of antigen-presenting-cells in which immunogen protein is processed for antigen presentation. Intranasal mucosal vaccination of mice with such immunogen loaded on vaccine particles elicited robust antigen-specific immune response. This study indicated that high-density, high-stability, specific, and immunological pH-responsive loading of immunogen nanoclusters on vaccine particles could readily be presented to the immune system for induction of strong antigen-specific immune responses.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol 2009; 18:605-16. [PMID: 19375302 DOI: 10.1016/j.conb.2009.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 03/02/2009] [Accepted: 03/23/2009] [Indexed: 01/15/2023]
Abstract
Neurobiological processes occur on spatiotemporal scales spanning many orders of magnitude. Greater understanding of these processes therefore demands improvements in the tools used in their study. Here we review recent efforts to enhance the speed and resolution of one such tool, fluorescence microscopy, with an eye toward its application to neurobiological problems. On the speed front, improvements in beam scanning technology, signal generation rates, and photodamage mediation are bringing us closer to the goal of real-time functional imaging of extended neural networks. With regard to resolution, emerging methods of adaptive optics may lead to diffraction-limited imaging or much deeper imaging in optically inhomogeneous tissues, and super-resolution techniques may prove a powerful adjunct to electron microscopic methods for nanometric neural circuit reconstruction.
Collapse
|
43
|
Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B. A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 2009; 5:e1000308. [PMID: 19229322 PMCID: PMC2637987 DOI: 10.1371/journal.ppat.1000308] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/22/2009] [Indexed: 12/02/2022] Open
Abstract
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vγ9/Vδ2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vγ9/Vδ2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL)-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and oncostatin M (OSM); the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL). Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs) with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan) induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4+ effector αβ T cells expressing IFN-γ and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD) patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vγ9/Vδ2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe-responsive γδ T cells, and monocytes in the inflammatory infiltrate, which plays a crucial role in the early response and the generation of microbe-specific immunity. As antibiotic resistance is spreading and posing a significant threat in many bacterial diseases, there is a need for a better understanding of host responses to infection. The precise role of an enigmatic subset of human immune cells, so-called Vγ9/Vδ2 T cells, in early infection still remains to be unveiled. These cells respond to a common molecule shared by the majority of bacterial pathogens and appear to be quickly drawn to sites of acute inflammation, where they will encounter invading microbes in the context of other immune cells, mainly granulocytes and monocytes. We here observed an unexpected interplay between microbe-activated Vγ9/Vδ2 T cells and monocytes that attracts further effector cells, enhances the activity of scavenger cells, and promotes the development of microbe-specific immunity. These findings not only improve our insight into the complex cellular interactions in early infection but may also suggest new therapies by modulating immune responses to improve host defenses and to resolve inflammatory activities.
Collapse
Affiliation(s)
- Matthias Eberl
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Wang X, He D, Cai J, Chen T, Zou F, Li Y, Wu Y, Chen ZW, Chen Y. WGA-QD probe-based AFM detects WGA-binding sites on cell surface and WGA-induced rigidity alternation. Biochem Biophys Res Commun 2009; 379:335-40. [DOI: 10.1016/j.bbrc.2008.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
45
|
Wei H, Huang D, Lai X, Chen M, Zhong W, Wang R, Chen ZW. Definition of APC presentation of phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate to Vgamma2Vdelta 2 TCR. THE JOURNAL OF IMMUNOLOGY 2008; 181:4798-806. [PMID: 18802083 DOI: 10.4049/jimmunol.181.7.4798] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) can activate primate Vgamma2Vdelta2 T cells, molecular mechanisms by which HMBPP interacts with Vgamma2Vdelta2 T cells remain poorly characterized. Here, we developed soluble, tetrameric Vgamma2Vdelta2 TCR of rhesus macaques to define HMBPP/APC interaction with Vgamma2Vdelta2 TCR. While exogenous HMBPP was associated with APC membrane in an appreciable affinity, the membrane-associated HMBPP readily bound to the Vgamma2Vdelta2 TCR tetramer. The Vgamma2Vdelta2 TCR tetramer was shown to bind stably to HMBPP presented on membrane by various APC cell lines from humans and nonhuman primates but not those from mouse, rat, or pig. The Vgamma2Vdelta2 TCR tetramer also bound to the membrane-associated HMBPP on primary monocytes, B cells and T cells. Consistently, endogenous phosphoantigen produced in Mycobacterium-infected dendritic cells was transported and presented on membrane, and bound stably to the Vgamma2Vdelta2 TCR tetramer. The capability of APC to present HMBPP for recognition by Vgamma2Vdelta2 TCR was diminished after protease treatment of APC. Thus, our studies elucidated an affinity HMBPP-APC association conferring stable binding to the Vgamma2Vdelta2 TCR tetramer and the protease-sensitive nature of phosphoantigen presentation. The findings defined APC presentation of phosphoantigen HMBPP to Vgamma2Vdelta2 TCR.
Collapse
Affiliation(s)
- Huiyong Wei
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Potent immune responses of Ag-specific Vgamma2Vdelta2+ T cells and CD8+ T cells associated with latent stage of Mycobacterium tuberculosis coinfection in HIV-1-infected humans. AIDS 2008; 22:2241-50. [PMID: 18981763 DOI: 10.1097/qad.0b013e3283117f18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate immune responses of peptide-specific CD4+ and CD8+ T cells, and nonpeptide-specific Vgamma2Vdelta2+ T cells during clinical quiescence of latent Mycobacterium tuberculosis coinfection in HIV-1-infected humans. METHODS One hundred HIV-1-infected individuals who had HIV infection only [HIV+tuberculosis-(TB-)], latent Mycobacterium tuberculosis coinfection (HIV + LTB), or active tuberculosis (HIV + TB) were recruited to measure mycobacterium purified protein derivative (PPD)-specific IFNgamma+ CD4+ and CD8+ T cells, and phosphoantigen HMBPP-specific IFNgamma+ Vgamma2Vdelta2+ T cells using enzyme-linked immunospot and intracellular cytokine staining assays. RESULTS Both HIV + TB and HIV + LTB groups had low levels of PPD-specific IFNgamma+ CD4+ T cells regardless of CD4+ peripheral blood lymphocytes counts. However, numbers of PPD-specific IFNgamma+ CD8+ T cells in the HIV + LTB group were significantly greater than those in the HIV + TB group. Surprisingly, numbers of phosphoantigen hydroxy-3-methyl-but-2-enyl pyrophosphate-specific IFNgamma+ Vgamma2Vdelta2+ T cells in the HIV + LTB group were much greater than those in the HIV + TB group (P < 0.001). This difference was present in the subgroups of HIV + LTB whatever the levels of CD4+ T-cell counts more than 200/microl or less than 200/microl. Numbers of hydroxy-3-methyl-but-2-enyl pyrophosphate-specific IFNgamma+ Vgamma2Vdelta2+ T cells were even five times greater than those of PPD-specific IFNgamma+ CD8 T cells within the HIV + LTB group. CONCLUSION Potent immune responses of hydroxy-3-methyl-but-2-enyl pyrophosphate-specific IFNgamma+ Vgamma2Vdelta2+ T cells and PPD-specific IFNgamma+ CD8+ T cells were detected in HIV + LTB persons but not HIV + TB patients. The robust immune responses of Vgamma2Vdelta2+ and CD8+ T effector cells were associated with the latent stage of Mycobacterium tuberculosis coinfection in HIV-1-infected humans.
Collapse
|
47
|
Chen J, Wu Y, Wang C, Cai J. Nanoscale organization of CD4 molecules of human T helper cell mapped by NSOM and quantum dots. SCANNING 2008; 30:448-451. [PMID: 18828144 DOI: 10.1002/sca.20128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
CD4 molecule, the surface marker of T helper cell, has been confirmed to be the main cellular receptor for the human immunodeficiency viruses HIV-1, HIV-2 and SIV. Recent research demonstrated the importance of the spatial arrangement of CD4 on the cell membrane to its binding efficiency to virus. In this article, the combined near-field scanning optical microscopy (NSOM) and quantum dots (QDs) fluorescent labeling technology were performed to investigate the nanoscale organization of CD4 molecules with a spatial resolution about 100 nm. Simultaneous topographic image of the T helper cell and fluorescent image of QDs have been directly gained by NSOM/QDs-based system. Intensity- and size-distribution histograms of the QDs fluorescent spots verify that approximately 80% of the CD4 molecules are organized in nanosized domains randomly distributed on the cell surface. Intensity-size correlation analysis revealed heterogeneity in the molecular packing density of the domains. Our results also illustrated the combination of NSOM imaging and QDs labeling is an ultrasensitive, high-resolution technique to probe nanoscale organization of molecules on the cell surface.
Collapse
Affiliation(s)
- Jianan Chen
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
48
|
Hu M, Wang J, Cai J, Wu Y, Wang X. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy. Biochem Biophys Res Commun 2008; 374:90-4. [DOI: 10.1016/j.bbrc.2008.06.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 11/28/2022]
|
49
|
Chen Y, Qin J, Chen ZW. Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J Lipid Res 2008; 49:2268-75. [PMID: 18603643 DOI: 10.1194/jlr.d800031-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simultaneous fluorescence-topographic nanoscale imaging of cell-surface molecules in the context of membrane ultra-structures has not been reported. Here, near-field scanning optical microscopy (NSOM)-based direct fluorescence-topographic imaging indicated that GM3 rafts/nanodomains (190.0 +/- 49.8 nm ranging 84.5-365.0 nm) were localized predominantly on the peaks of microvillus-like protrusions in the apical membrane of GM3 + Madin-Darby canine kidney cells, whereas GM1 rafts/nanodomains (159.5 +/- 63.8 nm ranging 42-360 nm) were distributed mainly on the slops of protrusions or the valleys between protrusions in the plasma membranes of GM1 + MDCK cells. The data demonstrated that gangliosides polarized not only in a well-known apical-basolateral manner but also in the more microscopic peak-valley manner, implicating unique distribution of GM1 or GM3 in cell-surface fluctuations on the apical membrane of polarized cells. The peak-valley polarities of gangliosides also implicated their different functions relevant to lipid rafts, microvilli, or cellular processes. Importantly, our study demonstrated for the first time that the NSOM-based direct fluorescence-topographic imaging is unique and powerful for elucidating nanoscale distribution of specific cell-surface molecules in membrane fluctuations.
Collapse
Affiliation(s)
- Yong Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|