1
|
Weng W, Deng Y, Deviatiiarov R, Hamidi S, Kajikawa E, Gusev O, Kiyonari H, Zhang G, Sheng G. ETV2 induces endothelial, but not hematopoietic, lineage specification in birds. Life Sci Alliance 2024; 7:e202402694. [PMID: 38570190 PMCID: PMC10992995 DOI: 10.26508/lsa.202402694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.
Collapse
Affiliation(s)
- Wei Weng
- https://ror.org/02cgss904 International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuan Deng
- Beijing Genome Institute (BGI), Shenzhen, China
| | - Ruslan Deviatiiarov
- https://ror.org/02cgss904 International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sofiane Hamidi
- https://ror.org/02cgss904 International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Oleg Gusev
- https://ror.org/02cgss904 International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | | | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | - Guojun Sheng
- https://ror.org/02cgss904 International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Cho S, Aakash P, Lee S, Yoon YS. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol 2023; 180:22-32. [PMID: 37080451 PMCID: PMC10330356 DOI: 10.1016/j.yjmcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Parthasarathy Aakash
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
5
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
6
|
Differential Etv2 threshold requirement for endothelial and erythropoietic development. Cell Rep 2022; 39:110881. [PMID: 35649376 PMCID: PMC9203129 DOI: 10.1016/j.celrep.2022.110881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Collapse
|
7
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Svedberg A, Björn N, Sigurgeirsson B, Pradhananga S, Brandén E, Koyi H, Lewensohn R, De Petris L, Apellániz-Ruiz M, Rodríguez-Antona C, Lundeberg J, Gréen H. Genetic association of gemcitabine/carboplatin-induced leukopenia and neutropenia in non-small cell lung cancer patients using whole-exome sequencing. Lung Cancer 2020; 147:106-114. [PMID: 32683206 DOI: 10.1016/j.lungcan.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Gemcitabine/carboplatin treatment is known to cause severe adverse drug reactions which can lead to the need for reduction or cessation of chemotherapy. It would be beneficial to identify patients at risk of severe hematological toxicity in advance before treatment start. This study aims to identify genetic markers for gemcitabine/carboplatin-induced leukopenia and neutropenia in non-small cell lung cancer patients. MATERIAL AND METHODS Whole-exome sequencing was performed on 215 patients. Association analysis was performed on single-nucleotide variants (SNVs) and genes, and the validation was based on an independent genome-wide association study (GWAS). Based on the association and validation analyses the genetic variants were then selected for and used in weighted genetic risk score (wGRS) prediction models for leukopenia and neutropenia. RESULTS Association analysis identified 50 and 111 SNVs, and 12 and 20 genes, for leukopenia and neutropenia, respectively. Of these SNVS 20 and 19 were partially validated for leukopenia and neutropenia, respectively. The genes SVIL (p = 2.48E-06) and EFCAB2 (p = 4.63E-06) were significantly associated with leukopenia contain the partially validated SNVs rs3740003, rs10160013, rs1547169, rs10927386 and rs10927387. The wGRS prediction models showed significantly different risk scores for high and low toxicity patients. CONCLUSION We have identified and partially validated genetic biomarkers in SNVs and genes correlated to gemcitabine/carboplatin-induced leukopenia and neutropenia and created wGRS models for predicting the risk of chemotherapy-induced hematological toxicity. These results provide a strong foundation for further studies of chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Anna Svedberg
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Niclas Björn
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Benjamín Sigurgeirsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sailendra Pradhananga
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden; Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden; Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Rolf Lewensohn
- Thoracic Oncology Unit, Tema Cancer, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Luigi De Petris
- Thoracic Oncology Unit, Tema Cancer, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Joakim Lundeberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Henrik Gréen
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
| |
Collapse
|
9
|
Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish. Dev Biol 2020; 465:11-22. [PMID: 32628937 DOI: 10.1016/j.ydbio.2020.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
ETS transcription factors play an important role in the specification and differentiation of endothelial cells during vascular development. Despite previous studies, the role of the founding member of the ETS family, Ets1, in vascular development in vivo is only partially understood. Here, we generated a zebrafish ets1 mutant by TALEN genome editing and tested functional redundancy between Ets1 and a related ETS factor Etv2/Etsrp/ER71. While zebrafish ets1-/- mutants have a normal functional vascular system, etv2-/-;ets1-/embryos had more severe angiogenic defects and lower expression levels of kdr and kdrl, the two zebrafish homologs of the mammalian Vascular Endothelial Growth Factor Receptor 2 VEGFR2/Flk1, than etv2-/-embryos. Expression of constitutively active Mitogen-Activated Protein Kinase1 (MAP2K1) within endothelial cells partially rescued this angiogenic defect. Interestingly, ets1-/- embryos displayed extensive apoptosis within the trunk vasculature despite exhibiting normal vascular patterning. Loss of Ets1 combined with a partial knockdown of Etv2 function resulted in a decrease in endothelial cell numbers in the axial vasculature, which argues for a role of Ets1 in promoting vasculogenesis. We also demonstrate that although both Ets1 and Etv2 can induce ectopic vascular marker expression in zebrafish embryos, Ets1 activity is dependent on MAPK-mediated phosphorylation of its Thr30 and Ser33 residues, while Etv2 activity is not. Together, our results identify a novel function of Ets1 in regulating endothelial cell survival during vasculogenesis in vivo. Based on these findings, we propose a revised model of how Ets1 and Etv2 play unique and partially redundant roles to promote vascular development.
Collapse
Affiliation(s)
- Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Chestnut B, Casie Chetty S, Koenig AL, Sumanas S. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. Nat Commun 2020; 11:2796. [PMID: 32493965 PMCID: PMC7271194 DOI: 10.1038/s41467-020-16515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Center for Cardiovascular Research, Washington University School of Medicine, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
12
|
Chestnut B, Sumanas S. Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Dev Dyn 2019; 249:245-261. [PMID: 31705559 DOI: 10.1002/dvdy.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND ETS transcription factor Etv2/Etsrp is one of the earliest markers for vascular and hematopoietic progenitors and functions as a key regulator of hematovascular development in multiple vertebrates, including zebrafish. Therefore, transgenic etv2 reporter lines provide a valuable tool to study vasculogenesis and hematopoiesis. However, previously generated zebrafish reporter lines do not fully recapitulate the endogenous pattern of etv2 expression. RESULTS Here we used CRISPR/Cas9-mediated homology-independent DNA repair approach to knock-in a Gal4 transcriptional activator into the zebrafish etv2 genomic locus, thus generating etv2 ci32Gt gene trap line. etv2 ci32Gt ; UAS:GFP embryos show GFP expression in vascular endothelial, myeloid and red blood cells. Because gal4 insertion interrupts the etv2 locus, homozygous etv2 ci32Gt embryos display defects in vasculogenesis and myelopoiesis, and enable visualizing etv2-deficient hematovascular progenitors in live embryos. Furthermore, we performed differential transcriptome analysis of sorted GFP-positive cells from heterozygous and homozygous etv2 ci32Gt embryos. Approximately 500 downregulated genes were identified in etv2 ci32Gt homozygous embryos, which include multiple genes expressed in vascular endothelial and myeloid cells. CONCLUSIONS The etv2 ci32Gt gene trap line and the data sets of misregulated genes will be valuable resources to study hematopoietic and vascular development.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Eng TC, Chen W, Okuda KS, Misa JP, Padberg Y, Crosier KE, Crosier PS, Hall CJ, Schulte-Merker S, Hogan BM, Astin JW. Zebrafish facial lymphatics develop through sequential addition of venous and non-venous progenitors. EMBO Rep 2019; 20:embr.201847079. [PMID: 30877134 DOI: 10.15252/embr.201847079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.
Collapse
Affiliation(s)
- Tiffany Cy Eng
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Wenxuan Chen
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kazuhide S Okuda
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - June P Misa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yvonne Padberg
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC 1003-CiM), WWU Münster, Münster, Germany
| | - Kathryn E Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC 1003-CiM), WWU Münster, Münster, Germany
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jonathan W Astin
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Recent studies have established that haematopoietic stem cells (HSCs) remain quiescent in homeostatic conditions, and minimally contribute to haematopoietic homeostasis. However, they undergo extensive cell cycle and expansion upon bone marrow transplantation or haematopoietic injury to reestablish the haematopoietic system. Molecular basis for the HSC activation and expansion is not completely understood. Here, we review the recent study elucidating the role of the developmentally critical Ets transcription factor Etv2 in reestablishing haematopoietic system upon injury through promoting HSC regeneration. RECENT FINDINGS We recently demonstrated that the ETS transcription factor Etv2, a critical factor for haematopoietic and vascular development, is also required for haematopoietic regeneration. Etv2, which is silent in homeostatic HSCs, was transiently activated in regenerating HSPCs and was required for the HSC expansion and regeneration following bone marrow transplantation or haematopoietic injury. As such, while Etv2 is dispensable for maintaining HSCs in steady states, it is required for emergency haematopoiesis. SUMMARY Etv2 has been identified as a novel regulator of haematopoietic regeneration. Comprehensive understanding of the upstream regulators and downstream effectors of Etv2 in haematopoietic regeneration would be critical for fundamental understanding of haematopoietic stem cell biology, and the findings will be broadly applicable to clinical practice involving haematopoietic regenerative medicine; bone marrow transplantation, gene therapy and in-vitro HSC expansion.
Collapse
|
15
|
Jia W, Liang D, Li N, Liu M, Dong Z, Li J, Dong X, Yue Y, Hu P, Yao J, Zhao Q. Zebrafish microRNA miR-210-5p inhibits primitive myelopoiesis by silencing foxj1b and slc3a2a mRNAs downstream of gata4/5/6 transcription factor genes. J Biol Chem 2018; 294:2732-2743. [PMID: 30593510 DOI: 10.1074/jbc.ra118.005079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.
Collapse
Affiliation(s)
- Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Dong Liang
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Nan Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Meijing Liu
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Ping Hu
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Jihua Yao
- the State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061,
| |
Collapse
|
16
|
Zebrafish miR-462-731 regulates hematopoietic specification and pu.1-dependent primitive myelopoiesis. Cell Death Differ 2018; 26:1531-1544. [PMID: 30459392 DOI: 10.1038/s41418-018-0234-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis. In this study, by loss-of-function analysis (morpholino knockdown combined with CRISRP/Cas9 knockout) and mRNA profiling, we suggest that miR-462-731 is required for normal embryonic development by regulating cell survival. We found that loss of miR-462/miR-731 caused a remarkable decrease in the number of erythroid cells as well as an ectopic myeloid cell expansion at 48 hpf, suggesting a skewing of myeloid-erythroid lineage differentiation. Mechanistically, miR-462-731 provides an instructive input for pu.1-dependent primitive myelopoiesis through regulating etsrp/scl signaling combined with a novel pu.1/miR-462-731 feedback loop. On the other hand, morpholino (MO) knockdown of miR-462/miR-731 resulted in an expansion of posterior blood islands at 24 hpf, which is a mild ventralization phenotype resulted from elevation of BMP signaling. Rescue experiments with both BMP type I receptor inhibitor dorsomorphin and alk8 MO indicate that miR-462-731 acts upstream of alk8 within the BMP/Smad signaling pathway and functions as a novel endogenous BMP antagonist. Besides, an impairment of angiogenesis was observed in miR-462/miR-731 morphants. The specification of arteries and veins was also perturbed, as characterized by the irregular patterning of efnb2a and flt4 expression. Our study unveils a previously unrecognized role of miR-462-731 in BMP/Smad signaling mediated hematopoietic specification of mesodermal progenitors and demonstrates a miR-462-731 mediated regulatory mechanism driving primitive myelopoiesis in the ALPM. We also show a requirement for miR-462-731 in regulating arterial-venous specification and definitive hematopoietic stem cell (HSC) production. The current findings might provide further insights into the molecular mechanistic basis of miRNA regulation of embryonic hematopoiesis and hematological malignancy.
Collapse
|
17
|
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7:36187. [PMID: 30188322 PMCID: PMC6126923 DOI: 10.7554/elife.36187] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacob S Heng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
18
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Kabir AU, Lee TJ, Pan H, Berry JC, Krchma K, Wu J, Liu F, Kang HK, Hinman K, Yang L, Hamilton S, Zhou Q, Veis DJ, Mecham RP, Wickline SA, Miller MJ, Choi K. Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 2018; 3:97349. [PMID: 29669933 DOI: 10.1172/jci.insight.97349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis, new blood vessel formation from preexisting vessels, is critical for solid tumor growth. As such, there have been efforts to inhibit angiogenesis as a means to obstruct tumor growth. However, antiangiogenic therapy faces major challenges to the selective targeting of tumor-associated-vessels, as current antiangiogenic targets also disrupt steady-state vessels. Here, we demonstrate that the developmentally critical transcription factor Etv2 is selectively upregulated in both human and mouse tumor-associated endothelial cells (TAECs) and is required for tumor angiogenesis. Two-photon imaging revealed that Etv2-deficient tumor-associated vasculature remained similar to that of steady-state vessels. Etv2-deficient TAECs displayed decreased Flk1 (also known as Vegfr2) expression, FLK1 activation, and proliferation. Endothelial tube formation, proliferation, and sprouting response to VEGF, but not to FGF2, was reduced in Etv2-deficient ECs. ROS activated Etv2 expression in ECs, and ROS blockade inhibited Etv2 expression in TAECs in vivo. Systemic administration of Etv2 siRNA nanoparticles potently inhibited tumor growth and angiogenesis without cardiovascular side effects. These studies highlight a link among vascular oxidative stress, Etv2 expression, and VEGF response that is critical for tumor angiogenesis. Targeting the ETV2 pathway might offer a unique opportunity for more selective antiangiogenic therapies.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pathology and Immunology and.,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Hua Pan
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jeffrey C Berry
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jun Wu
- Department of Pathology and Immunology and
| | - Fang Liu
- Department of Pathology and Immunology and
| | - Hee-Kyoung Kang
- Department of Pharmacology, School of Medicine, Jeju National University, Jeju, South Korea
| | - Kristina Hinman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samantha Hamilton
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel A Wickline
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology and.,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA.,Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
20
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
21
|
Zhao H, Choi K. A CRISPR screen identifies genes controlling Etv2 threshold expression in murine hemangiogenic fate commitment. Nat Commun 2017; 8:541. [PMID: 28912455 PMCID: PMC5599515 DOI: 10.1038/s41467-017-00667-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
The ETS transcription factor Etv2 is necessary and sufficient for the generation of hematopoietic and endothelial cells. However, upstream regulators of Etv2 in hemangiogenesis, generation of hematopoietic and endothelial cells, have not been clearly addressed. Here we track the developmental route of hemangiogenic progenitors from mouse embryonic stem cells, perform genome-wide CRISPR screening, and transcriptome analysis of en route cell populations by utilizing Brachyury, Etv2, or Scl reporter embryonic stem cell lines to further understand the mechanisms that control hemangiogenesis. We identify the forkhead transcription factor Foxh1, in part through Eomes, to be critical for the formation of FLK1+ mesoderm, from which the hemangiogenic fate is specified. Importantly, hemangiogenic fate is specified not simply by the onset of Etv2 expression, but by a threshold-dependent mechanism, in which VEGF-FLK1 signaling plays an instructive role by promoting Etv2 threshold expression. These studies reveal comprehensive cellular and molecular pathways governing the hemangiogenic cell lineage development. How haematopoietic and endothelial cell lineages are specified is unclear. Here, the authors identify the forkhead transcription factor Foxh1 as regulating FLK1+ mesoderm formation in mouse embryonic stem cells, which in turn specifies hemangiogenic fate via Etv2.
Collapse
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
The Ets2 Repressor Factor (Erf) Is Required for Effective Primitive and Definitive Hematopoiesis. Mol Cell Biol 2017; 37:MCB.00183-17. [PMID: 28694332 DOI: 10.1128/mcb.00183-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Erf is a gene for a ubiquitously expressed Ets DNA-binding domain-containing transcriptional repressor. Erf haploinsufficiency causes craniosynostosis in humans and mice, while its absence in mice leads to failed chorioallantoic fusion and death at embryonic day 10.5 (E10.5). In this study, we show that Erf is required in all three waves of embryonic hematopoiesis. Mice lacking Erf in the embryo proper exhibited severe anemia and died around embryonic day 14.5. Erf epiblast-specific knockout embryos had reduced numbers of circulating blood cells from E9.5 onwards, with the development of severe anemia by E14.5. Elimination of Erf resulted in both reduced and more immature primitive erythroblasts at E9.5 to E10.5. Reduced definitive erythroid colony-forming activity was found in the bloodstream of E10.5 embryos and in the fetal liver at E11.5 to E13.5. Finally, elimination of Erf resulted in impaired repopulation ability, indicating that Erf is necessary for hematopoietic stem cell maintenance or differentiation. We conclude that Erf is required for both primitive and erythromyeloid progenitor waves of hematopoietic stem cell (HSC)-independent hematopoiesis as well as for the normal function of HSCs.
Collapse
|
23
|
Xu CX, Lee TJ, Sakurai N, Krchma K, Liu F, Li D, Wang T, Choi K. ETV2/ER71 regulates hematopoietic regeneration by promoting hematopoietic stem cell proliferation. J Exp Med 2017; 214:1643-1653. [PMID: 28461595 PMCID: PMC5460995 DOI: 10.1084/jem.20160923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023] Open
Abstract
Xu et al. show that Etv2 is required for hematopoietic stem and progenitor cell (HSPC) proliferation and expansion after bone marrow transplantation and hematopoietic injury. c-Kit functions downstream of Etv2 in mediating HSPC proliferation and expansion. Recent studies have established that hematopoietic stem cells (HSCs) are quiescent in homeostatic conditions but undergo extensive cell cycle and expansion upon bone marrow (BM) transplantation or hematopoietic injury. The molecular basis for HSC activation and expansion is not completely understood. In this study, we found that key developmentally critical genes controlling hematopoietic stem and progenitor cell (HSPC) generation were up-regulated in HSPCs upon hematopoietic injury. In particular, we found that the ETS transcription factor Ets variant 2 (Etv2; also known as Er71) was up-regulated by reactive oxygen species in HSPCs and was necessary in a cell-autonomous manner for HSPC expansion and regeneration after BM transplantation and hematopoietic injury. We found c-Kit to be downstream of ETV2. As such, lentiviral c-Kit expression rescued Etv2-deficient HSPC proliferation defects in vitro and in short-term BM transplantation in vivo. These findings demonstrate that Etv2 is an important regulator of hematopoietic regeneration.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,The People's Hospital of Hunan Province and Hunan Normal University Institute for Clinical and Translational Science, Changsha, Hunan 410006, China
| | - Tae-Jin Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nagisa Sakurai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 .,Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
24
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Eliades A, Wareing S, Marinopoulou E, Fadlullah MZH, Patel R, Grabarek JB, Plusa B, Lacaud G, Kouskoff V. The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development. Cell Rep 2016; 15:2185-2199. [PMID: 27239041 PMCID: PMC4906370 DOI: 10.1016/j.celrep.2016.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023] Open
Abstract
It is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E)7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression.
Collapse
Affiliation(s)
- Alexia Eliades
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sarah Wareing
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Muhammad Z H Fadlullah
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Joanna B Grabarek
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Berenika Plusa
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
26
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
27
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
28
|
Park C, Lee TJ, Bhang SH, Liu F, Nakamura R, Oladipupo SS, Pitha-Rowe I, Capoccia B, Choi HS, Kim TM, Urao N, Ushio-Fukai M, Lee DJ, Miyoshi H, Kim BS, Lim DS, Apte RS, Ornitz DM, Choi K. Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arterioscler Thromb Vasc Biol 2015; 36:86-96. [PMID: 26586661 DOI: 10.1161/atvbaha.115.306430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Comprehensive understanding of the mechanisms regulating angiogenesis might provide new strategies for angiogenic therapies for treating diverse physiological and pathological ischemic conditions. The E-twenty six (ETS) factor Ets variant 2 (ETV2; aka Ets-related protein 71) is essential for the formation of hematopoietic and vascular systems. Despite its indispensable function in vessel development, ETV2 role in adult angiogenesis has not yet been addressed. We have therefore investigated the role of ETV2 in vascular regeneration. APPROACH AND RESULTS We used endothelial Etv2 conditional knockout mice and ischemic injury models to assess the role of ETV2 in vascular regeneration. Although Etv2 expression was not detectable under steady-state conditions, its expression was readily observed in endothelial cells after injury. Mice lacking endothelial Etv2 displayed impaired neovascularization in response to eye injury, wounding, or hindlimb ischemic injury. Lentiviral Etv2 expression in ischemic hindlimbs led to improved recovery of blood perfusion with enhanced vessel formation. After injury, fetal liver kinase 1 (Flk1), aka VEGFR2, expression and neovascularization were significantly upregulated by Etv2, whereas Flk1 expression and vascular endothelial growth factor response were significantly blunted in Etv2-deficient endothelial cells. Conversely, enforced Etv2 expression enhanced vascular endothelial growth factor-mediated endothelial sprouting from embryoid bodies. Lentiviral Flk1 expression rescued angiogenesis defects in endothelial Etv2 conditional knockout mice after hindlimb ischemic injury. Furthermore, Etv2(+/-); Flk1(+/-) double heterozygous mice displayed a more severe hindlimb ischemic injury response compared with Etv2(+/-) or Flk1(+/-) heterozygous mice, revealing an epistatic interaction between ETV2 and FLK1 in vascular regeneration. CONCLUSIONS Our study demonstrates a novel obligatory role for the ETV2 in postnatal vascular repair and regeneration.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae-Jin Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Suk Ho Bhang
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Fang Liu
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rei Nakamura
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Sunday S Oladipupo
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Ian Pitha-Rowe
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Benjamin Capoccia
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hong Seo Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae Min Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Norifumi Urao
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Masuko Ushio-Fukai
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dong Jun Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hiroyuki Miyoshi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Byung-Soo Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dae-Sik Lim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rajendra S Apte
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - David M Ornitz
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Kyunghee Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| |
Collapse
|
29
|
Galindo-Villegas J. Recent findings on vertebrate developmental immunity using the zebrafish model. Mol Immunol 2015; 69:106-12. [PMID: 26589453 DOI: 10.1016/j.molimm.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023]
Abstract
To grant survival against sterile or microbe induced inflammation, all animals rely on correct immune system functioning. The development of immunity occurs in vertebrates during embryogenesis in a process called hematopoiesis, which is characterized by the formation of blood cellular components such as embryonic erythrocytes and primitive macrophages. These cells are formed in a sterile environment from a rare subset of pluripotent hematopoietic stem cells (HSC) during a brief period of the primitive hematopoietic wave. Diverse signals, like Notch, are indispensable in HSC emergence and differentiation. However, to successfully replicate the process in vitro using pluripotent precursors, the full set of required signals is still a matter of debate. Among the latest findings, proinflammatory signals produced by transient primitive myelocites in zebrafish have been seen to act as essential mediators in establishing the HSC program of the adult vertebrate hematopoietic system. In this regard, the zebrafish immune model has emerged as a feasible live vertebrate model for examining developmental immunity and related host-microbe interactions, both at the molecular and cellular level. Thus, using the zebrafish embryo, this review summarizes recent findings, on the signals required for immune development and further maturation of the system, in a context where no adaptive immune response has yet been developed.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
30
|
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33:269-276. [PMID: 25664528 PMCID: PMC4374163 DOI: 10.1038/nbt.3154] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.
Collapse
Affiliation(s)
- Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laleh Haghverdi
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Andrew J. Lilly
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Yosuke Tanaka
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Adam C. Wilkinson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Iain C. Macaulay
- Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Nir Piterman
- Department of Computer Science, University of Leicester, Leicester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Craig MP, Grajevskaja V, Liao HK, Balciuniene J, Ekker SC, Park JS, Essner JJ, Balciunas D, Sumanas S. Etv2 and fli1b function together as key regulators of vasculogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:865-76. [PMID: 25722433 DOI: 10.1161/atvbaha.114.304768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The E26 transformation-specific domain transcription factor Etv2/Etsrp/ER71 is a master regulator of vascular endothelial differentiation during vasculogenesis, although its later role in sprouting angiogenesis remains unknown. Here, we investigated in the zebrafish model a role for Etv2 and related E26 transformation-specific factors, Fli1a and Fli1b in developmental angiogenesis. APPROACH AND RESULTS Zebrafish fli1a and fli1b mutants were obtained using transposon-mediated gene trap approach. Individual fli1a and fli1b homozygous mutant embryos display normal vascular patterning, yet the angiogenic recovery observed in older etv2 mutant embryos does not occur in embryos lacking both etv2 and fli1b. Etv2 and fli1b double-deficient embryos fail to form any angiogenic sprouts and show greatly increased apoptosis throughout the axial vasculature. In contrast, fli1a mutation did not affect the recovery of etv2 mutant phenotype. Overexpression analyses indicate that both etv2 and fli1b, but not fli1a, induce the expression of multiple vascular markers and of each other. Temporal inhibition of Etv2 function using photoactivatable morpholinos indicates that the function of Etv2 and Fli1b during angiogenesis is independent from the early requirement of Etv2 during vasculogenesis. RNA-Seq analysis and chromatin immunoprecipitation suggest that Etv2 and Fli1b share the same transcriptional targets and bind to the same E26 transformation-specific sites. CONCLUSIONS Our data argue that there are 2 phases of early vascular development with distinct requirements of E26 transformation-specific transcription factors. Etv2 alone is required for early vasculogenesis, whereas Etv2 and Fli1b function redundantly during late vasculogenesis and early embryonic angiogenesis.
Collapse
Affiliation(s)
- Michael P Craig
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Viktorija Grajevskaja
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Hsin-Kai Liao
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jorune Balciuniene
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Stephen C Ekker
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Joo-Seop Park
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jeffrey J Essner
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Darius Balciunas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Saulius Sumanas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.).
| |
Collapse
|
32
|
MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells. PLoS Genet 2015; 11:e1004959. [PMID: 25634354 PMCID: PMC4310609 DOI: 10.1371/journal.pgen.1004959] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm. Studies of mouse embryos and embryonic stem cells (ESCs) have defined the ontogeny of mammalian embryonic hematopoietic cells. The ESC differentiation system has been valuable for dissecting the molecular regulation of the development of mesoderm into HPCs. Extracellular signals regulate a complex network of transcription factors to direct embryonic hematopoietic development. Mammalian miRNAs have previously not been described to regulate this genetic network during embryonic hematopoiesis. However, a role for miRNAs in producing the hemangioblast, and hemogenic endothelium in Xenopus has been described. Our work with ESCs demonstrates a specific requirement for the miRNA, miR-24, in the development of hematopoietic progenitors cells (HPCs). Antagonizing miR-24 in ESCs does not affect generation of BL-CFCs, the in vitro equivalent of the hemangioblast, but does compromise the ability of those BL-CFCs to produced HPCs. Expression of transcription factors required for HPC production downstream of the hemangioblast, Scl, and Runx1, is greatly reduced by antagonizing miR-24. These results identify miR-24, as a mammalian miRNA required for the development of blood from newly formed mesoderm.
Collapse
|
33
|
Org T, Duan D, Ferrari R, Montel-Hagen A, Van Handel B, Kerényi MA, Sasidharan R, Rubbi L, Fujiwara Y, Pellegrini M, Orkin SH, Kurdistani SK, Mikkola HK. Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J 2015; 34:759-77. [PMID: 25564442 PMCID: PMC4369313 DOI: 10.15252/embj.201490542] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Roberto Ferrari
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Amelie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Marc A Kerényi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuko Fujiwara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Hanna Ka Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Israely E, Ginsberg M, Nolan D, Ding BS, James D, Elemento O, Rafii S, Rabbany SY. Akt suppression of TGFβ signaling contributes to the maintenance of vascular identity in embryonic stem cell-derived endothelial cells. Stem Cells 2014; 32:177-90. [PMID: 23963623 DOI: 10.1002/stem.1521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/04/2023]
Abstract
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (ECs) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates.
Collapse
Affiliation(s)
- Edo Israely
- Department of Genetic Medicine, Ansary Stem Cell Institute, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li J, Li K, Dong X, Liang D, Zhao Q. Ncor1 and Ncor2 play essential but distinct roles in zebrafish primitive myelopoiesis. Dev Dyn 2014; 243:1544-53. [PMID: 25156564 DOI: 10.1002/dvdy.24181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although Ncor1 and Ncor2, the co-repressors that can actively repress gene transcription through binding nuclear receptors in the absence of ligands, are crucial to vertebrate embryogenesis, their roles in its primitive myelopoiesis remain unknown. We investigated the function of ncor1 or ncor2 in zebrafish embryos by antisense morpholino knocking down technologies. RESULTS Development of both mfap4(+) macrophages and mpx(+) neutrophils was abolished in ncor2 morphants, whereas development of mpx(+) neutrophils was depleted in ncor1 morphants. ncor2 was essential to the development of spi1b(+) myeloid precursors but not anterior hemangioblasts whereas ncor1 was dispensable to the specification of spi1b(+) myeloid precursors and anterior hemangioblasts. Overexpressing spi1b could partially rescue expressions of mfap4 and mpx in ncor2 morphants. Furthermore, overexpressing tal1/lmo2 could well rescue the defective myelopoiesis in both ncor1 and ncor2 morphants. CONCLUSIONS Ncor1 and Ncor2 play essential but distinct roles in zebrafish primitive myelopoiesis. ncor2 could parallel with tal1/lmo2 and acted upstream of spi1b to produce mature macrophages and neutrophils during primitive myelopoiesis. The role of ncor1 in zebrafish myelopoiesis could be substituted by excessive Tal1/Lmo2.
Collapse
Affiliation(s)
- Jingyun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
36
|
Mommaerts H, Esguerra CV, Hartmann U, Luyten FP, Tylzanowski P. Smoc2 modulates embryonic myelopoiesis during zebrafish development. Dev Dyn 2014; 243:1375-90. [PMID: 25044883 DOI: 10.1002/dvdy.24164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/14/2014] [Accepted: 07/02/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. RESULTS In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. CONCLUSIONS Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development.
Collapse
Affiliation(s)
- Hendrik Mommaerts
- Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
37
|
Glenn NO, Schumacher JA, Kim HJ, Zhao EJ, Skerniskyte J, Sumanas S. Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish. Dev Biol 2014; 393:149-159. [PMID: 24956419 DOI: 10.1016/j.ydbio.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022]
Abstract
Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM). An ETS-family transcription factor Etsrp/Etv2/ER71 has been implicated in vasculogenesis and hematopoiesis in multiple vertebrates. However, its role during neutrophil development is not well understood. Here we demonstrate using zebrafish embryos that Etv2 has a specific cell-autonomous function during primitive neutropoiesis in the anterior lateral plate mesoderm (ALPM) but has little effect on erythropoiesis or the posterior lateral plate mesoderm (PLPM) expression of neutrophil marker myeloperoxidase mpo/mpx. Our results argue that ALPM-derived neutrophils originate from etv2-expressing cells which downregulate etv2 during neutropoiesis. We further show that Scl functions downstream of Etv2 in anterior neutropoiesis. Additionally, we demonstrate that mpx expression within the PLPM overlaps with gata1 expression, potentially marking the cells with a dual myelo-erythroid potential. Intriguingly, initiation of mpx expression in the PLPM is dependent on gata1 but not etv2 function. Our results demonstrate that mpx expression is controlled differently in the ALPM and PLPM regions and describe novel roles for etv2 and gata1 during primitive neutropoiesis.
Collapse
Affiliation(s)
- Nicole O Glenn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Hyon J Kim
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Emma J Zhao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurate Skerniskyte
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp Hematol 2014; 42:669-83. [PMID: 24950425 DOI: 10.1016/j.exphem.2014.06.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
Hematopoietic stem cells (HSCs) sustain blood production throughout life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly because of the poor mechanistic understanding of their programming. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the midgestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialized endothelium, the hemogenic endothelium, localized in the ventral wall of the DA through an evolutionarily conserved process called the endothelial-to-hematopoietic transition. However, the endothelial-to-hematopoietic transition represents one of the last steps in HSC creation, and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Because of their ready availability and external development, zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whereas the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.
Collapse
|
39
|
DeVilbiss AW, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points. Exp Hematol 2014; 42:618-29. [PMID: 24816274 DOI: 10.1016/j.exphem.2014.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms.
Collapse
Affiliation(s)
- Andrew W DeVilbiss
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Rajendran Sanalkumar
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Kirby D Johnson
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Sunduz Keles
- University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H Bresnick
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA.
| |
Collapse
|
40
|
Rydeen AB, Waxman JS. Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm. Development 2014; 141:1638-48. [PMID: 24667328 DOI: 10.1242/dev.105874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal heart development requires appropriate levels of retinoic acid (RA) signaling. RA levels in embryos are dampened by Cyp26 enzymes, which metabolize RA into easily degraded derivatives. Loss of Cyp26 function in humans is associated with numerous developmental syndromes that include cardiovascular defects. Although previous studies have shown that Cyp26-deficient vertebrate models also have cardiovascular defects, the mechanisms underlying these defects are not understood. Here, we found that in zebrafish, two Cyp26 enzymes, Cyp26a1 and Cyp26c1, are expressed in the anterior lateral plate mesoderm (ALPM) and predominantly overlap with vascular progenitors (VPs). Although singular knockdown of Cyp26a1 or Cyp26c1 does not overtly affect cardiovascular development, double Cyp26a1 and Cyp26c1 (referred to here as Cyp26)-deficient embryos have increased atrial cells and reduced cranial vasculature cells. Examining the ALPM using lineage tracing indicated that in Cyp26-deficient embryos the myocardial progenitor field contains excess atrial progenitors and is shifted anteriorly into a region that normally solely gives rise to VPs. Although Cyp26 expression partially overlaps with VPs in the ALPM, we found that Cyp26 enzymes largely act cell non-autonomously to promote appropriate cardiovascular development. Our results suggest that localized expression of Cyp26 enzymes cell non-autonomously defines the boundaries between the cardiac and VP fields within the ALPM through regulating RA levels, which ensures a proper balance of myocardial and endothelial lineages. Our study provides novel insight into the earliest consequences of Cyp26 deficiency that underlie cardiovascular malformations in vertebrate embryos.
Collapse
Affiliation(s)
- Ariel B Rydeen
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
41
|
Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev Biol 2014; 389:208-18. [PMID: 24583263 DOI: 10.1016/j.ydbio.2014.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
Abstract
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
Collapse
|
42
|
Fang F, Wasserman SM, Torres-Vazquez J, Weinstein B, Cao F, Li Z, Wilson KD, Yue W, Wu JC, Xie X, Pei X. The role of Hath6, a newly identified shear-stress-responsive transcription factor, in endothelial cell differentiation and function. J Cell Sci 2014; 127:1428-40. [PMID: 24463812 DOI: 10.1242/jcs.136358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The key regulators of endothelial differentiation that is induced by shear stress are mostly unclear. Human atonal homolog 6 (Hath6 or ATOH8) is an endothelial-selective and shear-stress-responsive transcription factor. In this study, we sought to elucidate the role of Hath6 in the endothelial specification of embryonic stem cells. In a stepwise human embryonic stem cell to endothelial cell (hESC-EC) induction system, Hath6 mRNA was upregulated synchronously with endothelial determination. Subsequently, gain-of-function and loss-of-function studies of Hath6 were performed using the hESC-EC induction model and endothelial cell lines. The overexpression of Hath6, which mimics shear stress treatment, resulted in an increased CD45(-)CD31(+)KDR(+) population, a higher tubular-structure-formation capacity and increased endothelial-specific gene expression. By contrast, the knockdown of Hath6 mRNA markedly decreased endothelial differentiation. Hath6 also facilitated the maturation of endothelial cells in terms of endothelial gene expression, tubular-structure formation and cell migration. We further demonstrated that the gene encoding eNOS is a direct target of Hath6 through a reporter system assay and western blot analysis, and that the inhibition of eNOS diminishes hESC-EC differentiation. These results suggest that eNOS plays a key role in linking Hath6 to the endothelial phenotype. Further in situ hybridization studies in zebrafish and mouse embryos indicated that homologs of Hath6 are involved in vasculogenesis and angiogenesis. This study provides the first confirmation of the positive impact of Hath6 on human embryonic endothelial differentiation and function. Moreover, we present a potential signaling pathway through which shear stress stimulates endothelial differentiation.
Collapse
Affiliation(s)
- Fang Fang
- Stem Cells and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ciau-Uitz A, Wang L, Patient R, Liu F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol Dis 2013; 51:248-55. [DOI: 10.1016/j.bcmd.2013.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/04/2013] [Indexed: 01/08/2023]
|
44
|
BMP-mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors. Blood 2013; 122:3929-39. [PMID: 24100450 DOI: 10.1182/blood-2013-03-490045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The developmental relationship between the blood and endothelial cell (EC) lineages remains unclear. In the extra-embryonic blood islands of birds and mammals, ECs and blood cells are closely intermixed, and blood island precursor cells in the primitive streak express many of the same molecular markers, leading to the suggestion that both lineages arise from a common precursor, called the hemangioblast. Cells within the blood island of Xenopus also coexpress predifferentiation markers of the blood and EC lineages. However, using multiple assays, we find that precursor cells in the Xenopus blood island do not normally differentiate into ECs, suggesting that classic hemangioblasts are rare or nonexistent in Xenopus. What prevents these precursor cells from developing into mature ECs? We have found that bone morphogenetic protein (BMP) signaling is essential for erythroid differentiation, and in the absence of BMP signaling, precursor cells adopt an EC fate. Furthermore, inhibition of the erythroid transcription pathway leads to endothelial differentiation. Our results indicate that bipotential endothelial/erythroid precursor cells do indeed exist in the Xenopus blood island, but BMP signaling normally acts to constrain EC fate. More generally, these results provide evidence that commitment to the erythroid lineage limits development of bipotential precursors toward an endothelial fate.
Collapse
|
45
|
Moignard V, Woodhouse S, Fisher J, Göttgens B. Transcriptional hierarchies regulating early blood cell development. Blood Cells Mol Dis 2013; 51:239-47. [PMID: 23948234 DOI: 10.1016/j.bcmd.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 11/15/2022]
Abstract
Hematopoiesis represents one of the paradigmatic systems for studying stem cell biology, but our understanding of how the hematopoietic system develops during embryogenesis is still incomplete. While many lessons have been learned from studying the mouse embryo, embryonic stem cells have come to the fore as an alternative and more tractable model to recapitulate hematopoietic development. Here we review what is known about the embryonic origin of blood from these complementary systems and how transcription factor networks regulate the emergence of hematopoietic tissue from the mesoderm. Furthermore, we have performed an integrated analysis of genome-wide microarray and ChIP-seq data sets from mouse embryos and embryonic stem (ES) cell lines deficient in key regulators and demonstrate how this type of analysis can be used to reconstruct regulatory hierarchies that both confirm existing regulatory linkages and suggest additional interactions.
Collapse
Affiliation(s)
- Victoria Moignard
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
| | | | | | | |
Collapse
|
46
|
Abstract
Hematopoiesis - the process by which blood cells are formed - has been studied intensely for over a century using a variety of model systems. There is conservation of the overall hematopoietic process between vertebrates, although some differences do exist. Over the last decade, the zebrafish has come to the forefront as a new model in hematopoiesis research, as it allows the use of large-scale genetics, chemical screens and transgenics. This comparative approach to understanding hematopoiesis has led to fundamental knowledge about the process and to the development of new therapies for disease. Here, we provide a broad overview of vertebrate hematopoiesis. We also highlight the benefits of using zebrafish as a model.
Collapse
|
47
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
48
|
Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 2013; 25:196-206. [PMID: 23639444 DOI: 10.1016/j.devcel.2013.03.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 01/14/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
Abstract
Currently, it remains controversial how vascular endothelial progenitor cells (angioblasts) establish their arterial or venous fates. We show using zebrafish that the arterial progenitors of the major axial vessels originate earlier and closer to the midline than the venous progenitors. Both medial and lateral progenitor populations migrate to distinct arterial and venous positions and not into a common precursor vessel as previously suggested. Overexpression of VEGF or Hedgehog (Hh) homologs results in the partially randomized distribution of arterial and venous progenitors within the axial vessels. We further demonstrate that the function of the Etv2 transcription factor is required at earlier stages for arterial development than for venous. Our results argue that the medial angioblasts undergo arterial differentiation because they receive higher concentration of Vegf and Hh morphogens than the lateral angioblasts. We propose a revised model of arterial-venous differentiation that explains how angioblasts choose between an arterial and venous fate.
Collapse
|
49
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
50
|
Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM. Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2013; 2:a006684. [PMID: 22553495 DOI: 10.1101/cshperspect.a006684] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The zebrafish has emerged as an excellent vertebrate model system for studying blood and lymphatic vascular development. The small size, external and rapid development, and optical transparency of zebrafish embryos are some of the advantages the zebrafish model system offers. Multiple well-established techniques have been developed for imaging and functionally manipulating vascular tissues in zebrafish embryos, expanding on and amplifying these basic advantages and accelerating use of this model system for studying vascular development. In the past decade, studies performed using zebrafish as a model system have provided many novel insights into vascular development. In this article we discuss the amenability of this model system for studying blood vessel development and review contributions made by this system to our understanding of vascular development.
Collapse
Affiliation(s)
- Aniket V Gore
- Program in Genomics of Differentiation, Laboratory of Molecular Genetics, Section on Vertebrate Organogenesis, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|