1
|
Song J, Wang M, Zhou L, Tian P, Sun Z, Sun J, Wang X, Zhuang G, Jiang D, Wu Y, Zhang G. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. J Nanobiotechnology 2023; 21:424. [PMID: 37964304 PMCID: PMC10647103 DOI: 10.1186/s12951-023-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.
Collapse
Affiliation(s)
- Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - ZhuoYa Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuannian Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, Paz-Elizur T, Grossman R, Ram Z, Volovitz I. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers (Basel) 2023; 15:574. [PMID: 36765532 PMCID: PMC9913544 DOI: 10.3390/cancers15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.
Collapse
Affiliation(s)
- Meytal Dror Levinsky
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Baruch Brenner
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Institute of Oncology, Davidoff Cancer Center, The Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Michal Yalon
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Pediatric Hematology-Oncology Department, Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zohar Levi
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Gastroenterology Department; The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Zvi Livneh
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zoya Cohen
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Tamar Paz-Elizur
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rachel Grossman
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zvi Ram
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2020; 219:107709. [PMID: 33091428 DOI: 10.1016/j.pharmthera.2020.107709] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The CD40 receptor and its ligand CD40L is one of the most critical molecular pairs of the stimulatory immune checkpoints. Both CD40 and CD40L have a membrane form and a soluble form generated by proteolytic cleavage or alternative splicing. CD40 and CD40L are widely expressed in various types of cells, among which B cells and myeloid cells constitutively express high levels of CD40, and T cells and platelets express high levels of CD40L upon activation. CD40L self-assembles into functional trimers which induce CD40 trimerization and downstream signaling. The canonical CD40/CD40L signaling is mediated by recruitment of TRAFs and NF-κB activation, which is supplemented by signal pathways such as PI3K/AKT, MAPKs and JAK3/STATs. CD40/CD40L immune checkpoint leads to activation of both innate and adaptive immune cells via two-way signaling. CD40/CD40L interaction also participates in regulating thrombosis, tissue inflammation, hematopoiesis and tumor cell fate. Because of its essential role in immune activation, CD40/CD40L interaction has been regarded as an attractive immunotherapy target. In recent years, significant advance has been made in CD40/CD40L-targeted therapy. Various types of agents, including agonistic/antagonistic monoclonal antibodies, cellular vaccines, adenoviral vectors and protein antagonist, have been developed and evaluated in early-stage clinical trials for treating malignancies, autoimmune diseases and allograft rejection. In general, these agents have demonstrated favorable safety and some of them show promising clinical efficacy. The mechanisms of benefits include immune cell activation and tumor cell lysis/apoptosis in malignancies, or immune cell inactivation in autoimmune diseases and allograft rejection. This review provides a comprehensive overview of the structure, processing, cellular expression pattern, signaling and effector function of CD40/CD40L checkpoint molecules. In addition, we summarize the progress, targeted diseases and outcomes of current ongoing and completed clinical trials of CD40/CD40L-targeted therapy.
Collapse
Affiliation(s)
- TingTing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Billy Truong
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - LiZhe Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - XiaoFeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
4
|
Lamichhane R, Schneider M, de la Harpe SM, Harrop TW, Hannaway RF, Dearden PK, Kirman JR, Tyndall JD, Vernall AJ, Ussher JE. TCR- or Cytokine-Activated CD8+ Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses. Cell Rep 2019; 28:3061-3076.e5. [DOI: 10.1016/j.celrep.2019.08.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
|
5
|
Traunecker E, Gardner R, Fonseca JE, Polido-Pereira J, Seitz M, Villiger PM, Iezzi G, Padovan E. Blocking of LFA-1 enhances expansion of Th17 cells induced by human CD14(+) CD16(++) nonclassical monocytes. Eur J Immunol 2015; 45:1414-25. [PMID: 25678252 DOI: 10.1002/eji.201445100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Emmanuel Traunecker
- Department of Biomedicine (DBM), Basel University Hospital, Basel, Switzerland
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular da Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Michael Seitz
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Peter M Villiger
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Giandomenica Iezzi
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| | - Elisabetta Padovan
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| |
Collapse
|
6
|
Activated primary human B cells efficiently induce early CD40L and CD107a expression in CD4+ T cells. Blood 2011; 118:5979-80. [DOI: 10.1182/blood-2011-05-356683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Response: peripheral blood monocytes, but not resting, activated, or transformed B cells, costimulate early CD40L expression. Blood 2011. [DOI: 10.1182/blood-2011-09-372235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|