1
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
2
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
5
|
Trencsényi G, Halmos G, Képes Z. Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers (Basel) 2023; 15:4459. [PMID: 37760428 PMCID: PMC10526435 DOI: 10.3390/cancers15184459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Since angiogenesis/neoangiogenesis has a major role in tumor development, progression and metastatic spread, the establishment of angiogenesis-targeting imaging and therapeutic vectors is of utmost significance. Aminopeptidase N (APN/CD13) is a pivotal biomarker of angiogenic processes abundantly expressed on the cell surface of active vascular endothelial and various neoplastic cells, constituting a valuable target for cancer diagnostics and therapy. Since the asparagine-glycine-arginine (NGR) sequence has been shown to colocalize with APN/CD13, the research interest in NGR-peptide-mediated vascular targeting is steadily growing. Earlier preclinical experiments have already demonstrated the imaging and therapeutic feasibility of NGR-based probes labeled with different positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radionuclides, including Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re) or Bismuth-213 (213Bi). To improve the tumor binding affinity and the retention time of single-receptor targeting peptides, NGR motifs containing heterodimers have been introduced to identify multi-receptor overexpressing malignancies. Preclinical studies with various tumor-bearing experimental animals provide useful tools for the investigation of the in vivo imaging behavior of NGR-based heterobivalent ligands. Herein, we review the reported preclinical achievements on NGR heterodimers that could be highly relevant for the development of further target-specific multivalent compounds in diagnostic and therapeutic settings.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
6
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
7
|
Liu Y, Chang R, Xing R, Yan X. Bioactive Peptide Nanodrugs Based on Supramolecular Assembly for Boosting Immunogenic Cell Death-Induced Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201708. [PMID: 36720041 DOI: 10.1002/smtd.202201708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD)-induced immunotherapy holds promise for complete elimination and long-term protective immune responses against cancer by combining direct tumor cell killing and antitumor immune response. Some therapeutic approaches (such as hyperthermia, photodynamic therapy, or radiotherapy) and inducers (certain chemotherapy drugs, oncolytic viruses) have been devoted to initiating and/or boosting ICD, leading to the activation of tumor-specific immune responses. Recently, supramolecular assembled bioactive peptide nanodrugs have been employed to improve the efficacy of ICD-induced cancer immunotherapy by increasing tumor targeted accumulation as well as responsive release of ICD inducers, directly inducing high levels of ICD and realizing the simultaneous enhancement of immune response through the immune function of the active peptide itself. Here, the authors review bioactive peptide nanodrugs based on supramolecular assembly, mainly as an intelligent delivery system, a direct ICD inducer and an immune response enhancer, for boosting ICD induced cancer immunotherapy. The functions of diverse bioactive peptides used in the construction of nanodrugs are described. The design of a supramolecular assembly, the mechanism of boosting ICD, and synergetic effects of bioactive peptides combined immunotherapy are critically emphasized.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
9
|
Tong S, Zhao W, Zhao D, Zhang W, Zhang Z. Biomaterials-Mediated Tumor Infarction Therapy. Front Bioeng Biotechnol 2022; 10:916926. [PMID: 35757801 PMCID: PMC9218593 DOI: 10.3389/fbioe.2022.916926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Agents for tumor vascular infarction are recently developed therapeutic agents for the vascular destruction of tumors. They can suppress the progression of the tumor by preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular infarction can be divided into three categories according to the differences in their pathways of action: those that use the thrombin-activating pathway, fibrin-activating pathway, and platelet-activating pathway. However, poor targeting ability, low permeation, and potential side-effects restrict the development of the corresponding drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this article, the authors summarize currently used biomaterials for tumor infarction therapy with the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of this kind.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Nuclear Molecular Imaging of Cardiac Remodeling after Myocardial Infarction. Pharmaceuticals (Basel) 2022; 15:ph15020183. [PMID: 35215296 PMCID: PMC8875369 DOI: 10.3390/ph15020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
The role of molecular imaging technologies in detecting, evaluating, and monitoring cardiovascular disease and their treatment is expanding rapidly. Gradually replacing the conventional anatomical or physiological approaches, molecular imaging strategies using biologically targeted markers provide unique insight into pathobiological processes at molecular and cellular levels and allow for cardiovascular disease evaluation and individualized therapy. This review paper will discuss currently available and developing molecular-based single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging strategies to evaluate post-infarction cardiac remodeling. These approaches include potential targeted methods of evaluating critical biological processes, such as inflammation, angiogenesis, and scar formation.
Collapse
|
11
|
Synthesis of 68Ga-Labeled cNGR-Based Glycopeptides and In Vivo Evaluation by PET Imaging. Pharmaceutics 2021; 13:pharmaceutics13122103. [PMID: 34959383 PMCID: PMC8703807 DOI: 10.3390/pharmaceutics13122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tumor hypoxia induces angiogenesis, which is required for tumor cell survival. The aminopeptidase N receptor (APN/CD13) is an excellent marker of angiogenesis since it is overexpressed in angiogenic blood vessels and in tumor cells. Asparagine-glycine-arginine (NGR) peptide analogs bind selectively to the APN/CD13 recepto, therefore, they are important vector molecules in the development of a PET radiotracer which is capable of detecting APN-rich tumors. To investigate the effect of glycosylation and pegylation on in-vivo efficacy of an NGR-based radiotracer, two 68Ga-labeled radioglycopeptides were synthesized. A lactosamine derivative was applied to glycosylation of the NGR derivative and PEG4 moiety was used for pegylation. The receptor targeting potential and biodistribution of the radiopeptides were evaluated with in vivo PET imaging studies and ex vivo tissue distribution studies using B16-F10 melanoma tumor-bearing mice. According to these studies, all synthesized radiopeptides were capable of detecting APN expression in B16-F10 melanoma tumor. In addition, lower hepatic uptake, higher tumor-to background (T/M) ratio and prolonged circulation time were observed for the novel [68Ga]-10 radiotracer due to pegylation and glycosylation, resulting in more contrasting PET imaging. These in vivo PET imaging results correlated well with the ex vivo tissue distribution data.
Collapse
|
12
|
Integrin αvβ3 and disulfide bonds play important roles in NGR-retargeted adenovirus transduction efficiency. Life Sci 2021; 291:120116. [PMID: 34740576 DOI: 10.1016/j.lfs.2021.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
AIMS Adenoviruses that have CNGRCVSGCAGRC peptide inserted into fiber (AdFNGR) or hexon (AdHNGR) protein, respectively, showed increased transduction of endothelial cells. In this study we investigated if cysteines within the CNGRCVSGCAGRC sequence inserted into Ad5 fiber or hexon protein form disulfide bond(s) and whether they play a role in retargeting potential of AdFNGR and AdHNGR. METHODS Transduction efficiency of adenoviruses was done by counting infected cells under the microscope. Adenovirus attachment and internalization were measured by qPCR. Flow cytometry was used to evaluate the expression of CD13 and integrins. Gene knockdown was achieved by transfection of small interfering RNA. Mass spectrometry was used for determining disulfide bonds in adenovirus fiber and hexon protein. Molecular modeling was use to predict interaction of CNGRCVSGCAGRC peptide and CD13. KEY FINDINGS AdFNGR and AdHNGR attach better to CD13 and/or αvβ3 integrin-positive cells than Adwt. Reducing disulfide bonds using DTT decreased transduction efficiency and attachment of both AdFNGR and AdHNGR. Cysteins from CNGRCVSGCAGRC peptide within AdHNGR do not form disulfide bonds. Knockdown of αvβ3 integrin reduced increased transduction efficiency of both AdFNGR and AdHNGR, while CD13 knockdown had no effect, indicating that retargeting properties of these viruses rely mainly on αvβ3 integrin expression. SIGNIFICANCE Insertion site of NGR-containing peptides as well as NGR flanking residues are critical for receptor binding affinity/specificity and transduction efficiency of NGR retargeted adenoviral vectors.
Collapse
|
13
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
14
|
Zhu L, Ding Z, Li X, Wei H, Chen Y. Research Progress of Radiolabeled Asn-Gly-Arg (NGR) Peptides for Imaging and Therapy. Mol Imaging 2021; 19:1536012120934957. [PMID: 32862776 PMCID: PMC7466889 DOI: 10.1177/1536012120934957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asn-Gly-Arg (NGR) motifs have vasculature-homing properties via interactions with the aminopeptidase N (CD13) expressed on tumor neovasculature. Numerous NGR peptides with different molecular scaffolds have been exploited for targeted delivery of different compounds for imaging and therapy. When conjugated with NGR, complexes recognize the CD13 receptor expressed on the tumor vasculature, which improves the specificity to tumor and avoids systematic toxic reactions. Both preclinical and clinical studies performed with these products suggest that NGR-mediated vascular targeting is an effective strategy for delivering bioactive amounts of cytokines to tumor endothelial cells. For molecular imaging, radiolabeled peptides have been the most successful approach and have been translated into clinic. This review describes current data on radiolabeled tumor vasculature-homing NGR peptides for imaging and therapy.
Collapse
Affiliation(s)
- Liqin Zhu
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhikai Ding
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| | - Hongyuan Wei
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Targeting Tissue Factor to Tumor Vasculature to Induce Tumor Infarction. Cancers (Basel) 2021; 13:cancers13112841. [PMID: 34200318 PMCID: PMC8201357 DOI: 10.3390/cancers13112841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Among multiple other functional roles of tissue factor (TF) and other coagulation proteins in the development and targeting of malignant disease, some scientific groups are attempting to modify TF and target the molecule or truncated forms of the molecule to tumor vasculature to selectively induce local blood vessel thromboembolic occlusion resulting in tumor infarction. This review briefly describes the characteristics and development of some of these proteins and structures, including tTF-NGR, which as the first drug candidate from this class has entered clinical trials in cancer patients. Abstract Besides its central functional role in coagulation, TF has been described as being operational in the development of malignancies and is currently being studied as a possible therapeutic tool against cancer. One of the avenues being explored is retargeting TF or its truncated extracellular part (tTF) to the tumor vasculature to induce tumor vessel occlusion and tumor infarction. To this end, multiple structures on tumor vascular wall cells have been studied at which tTF has been aimed via antibodies, derivatives, or as bifunctional fusion protein through targeting peptides. Among these targets were vascular adhesion molecules, oncofetal variants of fibronectin, prostate-specific membrane antigens, vascular endothelial growth factor receptors and co-receptors, integrins, fibroblast activation proteins, NG2 proteoglycan, microthrombus-associated fibrin-fibronectin, and aminopeptidase N. Targeting was also attempted toward cellular membranes within an acidic milieu or toward necrotic tumor areas. tTF-NGR, targeting tTF primarily at aminopeptidase N on angiogenic endothelial cells, was the first drug candidate from this emerging class of coaguligands translated to clinical studies in cancer patients. Upon completion of a phase I study, tTF-NGR entered randomized studies in oncology to test the therapeutic impact of this novel therapeutic modality.
Collapse
|
16
|
Staszak K, Wieszczycka K, Bajek A, Staszak M, Tylkowski B, Roszkowski K. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochim Biophys Acta Rev Cancer 2021; 1876:188560. [PMID: 33965512 DOI: 10.1016/j.bbcan.2021.188560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Karlowicza St. 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
17
|
Ayo A, Laakkonen P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021; 13:pharmaceutics13040481. [PMID: 33918106 PMCID: PMC8065807 DOI: 10.3390/pharmaceutics13040481] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure–function relationship data that have been used to improve the peptide’s activity and conjugation strategies are highlighted.
Collapse
Affiliation(s)
- Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Laboratory Animal Center, HiLIFE—Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-4489100
| |
Collapse
|
18
|
Ceruloplasmin Deamidation in Neurodegeneration: From Loss to Gain of Function. Int J Mol Sci 2021; 22:ijms22020663. [PMID: 33440850 PMCID: PMC7827708 DOI: 10.3390/ijms22020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders can induce modifications of several proteins; one of which is ceruloplasmin (Cp), a ferroxidase enzyme found modified in the cerebrospinal fluid (CSF) of neurodegenerative diseases patients. Cp modifications are caused by the oxidation induced by the pathological environment and are usually associated with activity loss. Together with oxidation, deamidation of Cp was found in the CSF from Alzheimer’s and Parkinson’s disease patients. Protein deamidation is a process characterized by asparagine residues conversion in either aspartate or isoaspartate, depending on protein sequence/structure and cellular environment. Cp deamidation occurs at two Asparagine-Glycine-Arginine (NGR)-motifs which, once deamidated to isoAspartate-Glycine-Arginine (isoDGR), bind integrins, a family of receptors mediating cell adhesion. Therefore, on the one hand, Cp modifications lead to loss of enzymatic activity, while on the other hand, these alterations confer gain of function to Cp. In fact, deamidated Cp binds to integrins and triggers intracellular signaling on choroid plexus epithelial cells, changing cell functioning. Working in concert with the oxidative environment, Cp deamidation could reach different target cells in the brain, altering their physiology and causing detrimental effects, which might contribute to the pathological mechanism.
Collapse
|
19
|
Balza E, Carnemolla B, Orecchia P, Rubartelli A, Poggi A, Mortara L. Tumor Vasculature Targeted TNFα Therapy: Reversion of Microenvironment Anergy and Enhancement of the Anti-tumor Efficiency. Curr Med Chem 2020; 27:4233-4248. [PMID: 30182839 DOI: 10.2174/0929867325666180904121118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Tumor cells and tumor-associated stromal cells such as immune, endothelial and mesenchimal cells create a Tumor Microenvironment (TME) which allows tumor cell promotion, growth and dissemination while dampening the anti-tumor immune response. Efficient anti-tumor interventions have to keep into consideration the complexity of the TME and take advantage of immunotherapy and chemotherapy combined approaches. Thus, the aim of tumor therapy is to directly hit tumor cells and reverse endothelial and immune cell anergy. Selective targeting of tumor vasculature using TNFα-associated peptides or antibody fragments in association with chemotherapeutic agents, has been shown to exert a potent stimulatory effect on endothelial cells as well as on innate and adaptive immune responses. These drug combinations reducing the dose of single agents employed have led to minimize the associated side effects. In this review, we will analyze different TNFα-mediated tumor vesseltargeted therapies in both humans and tumor mouse models, with emphasis on the role played by the cross-talk between natural killer and dendritic cells and on the ability of TNFα to trigger tumor vessel activation and normalization. The improvement of the TNFα-based therapy with anti-angiogenic immunomodulatory drugs that may convert the TME from immunosuppressive to immunostimulant, will be discussed as well.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Paola Orecchia
- Immunology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Policlinico San Martino, Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy
| |
Collapse
|
20
|
Kis A, Dénes N, Szabó JP, Arató V, Jószai I, Enyedi KN, Lakatos S, Garai I, Mező G, Kertész I, Trencsényi G. In vivo assessment of aminopeptidase N (APN/CD13) specificity of different 68Ga-labelled NGR derivatives using PET/MRI imaging. Int J Pharm 2020; 589:119881. [PMID: 32946975 DOI: 10.1016/j.ijpharm.2020.119881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Aminopeptidase N (APN/CD13) plays an important role in neoangiogenic process in malignancies. Our previous studies have already shown that 68Ga-labelled NOTA conjugated asparagine-glycine-arginine peptide (c[KNGRE]-NH2) specifically bind to APN/CD13 expressing tumors. The aim of this study was to evaluate and compare the APN/CD13 specificity of newly synthesized 68Ga-labelled NGR derivatives in vivo by PET/MRI imaging using hepatocellular carcinoma (He/De) and mesoblastic nephroma (Ne/De) tumor models. PET/MRI and ex vivo biodistribution studies were performed 11 ± 1 days after subcutaneous injection of tumor cells and 90 min after intravenous injection of 68Ga-NOTA-c(NGR), 68Ga-NODAGA-c(NGR), 68Ga-NODAGA-c(NGR) (MG1) or 68Ga-NODAGA-c(NGR) (MG2). The APN/CD13 selectivity was confirmed by blocking experiments and the APN/CD13 expression was verified by immunohistochemistry. 68Ga-labelled c(NGR) derivatives were produced with high specific activity and radiochemical purity. In control animals, low radiotracer accumulation was found in abdominal and thoracic organs. Using tumor-bearing animals we found that the 68Ga-NOTA-c(NGR), 68Ga-NODAGA-c(NGR), and 68Ga-NODAGA-c(NGR) (MG1) derivatives showed higher uptake in He/De and Ne/De tumors, than that of the accumulation of 68Ga-NODAGA-c(NGR) (MG2). APN/CD13 is a very promising target in PET imaging, however, the selection of the appropriate 68Ga-labelled NGR-based radiopharmaceutical is critical for the precise detection of tumor neo-angiogenesis and for monitoring the efficacy of anticancer therapy.
Collapse
Key Words
- (68)Ga
- Aminopeptidase N
- Angiogenesis
- CD13
- CID: 2796029, 1-hydroxybenzotriazole (HOBt)
- CID: 3036142, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)
- CID: 33032, L-Glutamic acid
- CID: 5962, L-Lysine
- CID: 6228, N,N-dimethylformamide (DMF)
- CID: 6267, L-Asparagine
- CID: 6322, L-Arginine
- CID: 6422, triflouroacetic acid (TFA)
- CID: 750, Glyicine
- NGR
- PET/MRI imaging
Collapse
Affiliation(s)
- Adrienn Kis
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary; Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Noémi Dénes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Judit P Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary; Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Viktória Arató
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - István Jószai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - Kata Nóra Enyedi
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Budapest, Hungary
| | - Szilvia Lakatos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary; Scanomed LTD, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Budapest, Hungary; MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary; Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary.
| |
Collapse
|
21
|
Corti A, Gasparri AM, Sacchi A, Colombo B, Monieri M, Rrapaj E, Ferreri AJM, Curnis F. NGR-TNF Engineering with an N-Terminal Serine Reduces Degradation and Post-Translational Modifications and Improves Its Tumor-Targeting Activity. Mol Pharm 2020; 17:3813-3824. [PMID: 32805112 DOI: 10.1021/acs.molpharmaceut.0c00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic index of cytokines in cancer therapy can be increased by targeting strategies based on protein engineering with peptides containing the CNGRC (NGR) motif, a ligand that recognizes CD13-positive tumor vessels. We show here that the targeting domain of recombinant CNGRC-cytokine fusion proteins, such as NGR-TNF (a CNGRC-tumor necrosis factor-α (TNF) conjugate used in clinical studies) and NGR-EMAP-II, undergoes various post-translational modification and degradation reactions that lead to the formation of markedly heterogeneous products. These modifications include N-terminal cysteine acetylation or the formation of various asparagine degradation products, the latter owing to intramolecular interactions of the cysteine α-amino group with asparagine and/or its succinimide derivative. Blocking the cysteine α-amino group with a serine (SCNGRC) reduced both post-translational and degradation reactions. Furthermore, the serine residue reduced the asparagine deamidation rate to isoaspartate (another degradation product) and improved the affinity of NGR for CD13. Accordingly, genetic engineering of NGR-TNF with the N-terminal serine produced a more stable and homogeneous drug (called S-NGR-TNF) with improved antitumor activity in tumor-bearing mice, either when used alone or in combination with chemotherapy. In conclusion, the targeting domain of NGR-cytokine conjugates can undergo various untoward modification and degradation reactions, which can be markedly reduced by fusing a serine to the N-terminus. The SCNGRC peptide may represent a ligand for cytokine delivery to tumors more robust than conventional CNGRC. The S-NGR-TNF conjugate (more stable, homogeneous, and active than NGR-TNF) could be rapidly developed for clinical trials.
Collapse
Affiliation(s)
- Angelo Corti
- Università Vita-Salute San Raffaele, Milan 20132, Italy.,Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Barbara Colombo
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Matteo Monieri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eltjona Rrapaj
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-hematology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
22
|
Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, Hasnain MS, Nayak AK, Aminabhavi TM. Molecular insights and novel approaches for targeting tumor metastasis. Int J Pharm 2020; 585:119556. [PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, Kajang, Selangor 43500, Malaysia
| | - Muneera D F ALKahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 102275, Riyadh 11675, Saudi Arabia
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Md Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, U.P., India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj 757086, Odisha, India.
| | | |
Collapse
|
23
|
Phillips AM, Pombeiro AJ. Transition Metal-Based Prodrugs for Anticancer Drug Delivery. Curr Med Chem 2020; 26:7476-7519. [DOI: 10.2174/0929867326666181203141122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
:
Transition metal complexes, of which the platinum(II) complex cisplatin is an example,
have been used in medicine to treat cancer for more than 40 years. Although many successes have
been achieved, there are problems associated with the use of these drugs, such as side effects and
drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to
the tumour site unchanged and release the drug in its active form only there, is a strategy which is
the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic
agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes,
by differences in metabolic rates, etc., which characteristically distinguish cancer cells from
normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex
into a prodrug may also be used to improve its pharmacological properties. In some cases, the
metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs
have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals.
This review presents the recent developments in this area, including the types of complexes
used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery
to cells.
Collapse
Affiliation(s)
- Ana M.F. Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J.L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
24
|
Vats K, Sharma R, Kameswaran M, Sarma HD, Satpati D, Dash A. Design, synthesis, and comparative evaluation of 99m Tc(CO) 3 -labeled N-terminal and C-terminal modified asparagine-glycine-arginine peptide constructs. J Pept Sci 2019; 25:e3192. [PMID: 31309677 DOI: 10.1002/psc.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The present study describes modification of asparagine-glycine-arginine (NGR) peptide at N-terminally and C-terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N-terminal and C-terminal modified peptides were radiometalated with [99m Tc(CO)3 ]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N-terminally modified peptide construct 5 and C-terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor-to-blood (T/B) and tumor-to-liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N- or C-terminus without hampering tumor targeting and pharmacokinetics.
Collapse
Affiliation(s)
- Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| |
Collapse
|
25
|
Tripodi AAP, Ranđelović I, Biri-Kovács B, Szeder B, Mező G, Tóvári J. In Vivo Tumor Growth Inhibition and Antiangiogenic Effect of Cyclic NGR Peptide-Daunorubicin Conjugates Developed for Targeted Drug Delivery. Pathol Oncol Res 2019; 26:1879-1892. [PMID: 31820302 PMCID: PMC7297862 DOI: 10.1007/s12253-019-00773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
Abstract
Among various homing devices, peptides containing the NGR tripeptide sequence represent a promising approach to selectively recognize CD13 receptor isoforms on the surface of tumor cells. They have been successfully used for the delivery of various chemotherapeutic drugs to tumor vessels. Here, we report on the murine plasma stability, in vitro and in vivo antitumor activity of our recently described bioconjugates containing daunorubicin as payload. Furthermore, CD13 expression of KS Kaposi’s Sarcoma cell line and HT-29 human colon carcinoma cell line was investigated. Flow cytometry studies confirm the fast cellular uptake resulting in the rapid delivery of the active metabolite Dau = Aoa-Gly-OH to tumor cells. The increased in vitro antitumor effect might be explained by the faster rearrangement from NGR to isoDGR in case of conjugate 2 (Dau = Aoa-GFLGK(c[NleNGRE]-GG)-NH2) in comparison with conjugate 1 (Dau = Aoa-GFLGK(c[KNGRE]-GG)-NH2). Nevertheless, results indicated that both conjugates showed significant effect on inhibition of proliferation in the primary tumor and also on blood vessel formation making them a potential candidate for targeting angiogenesis processes in tumors where CD13 and integrins are involved.
Collapse
Affiliation(s)
- Andrea Angelo Pierluigi Tripodi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
26
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
27
|
Gallart-Palau X, Tan LM, Serra A, Gao Y, Ho HH, Richards AM, Kandiah N, Chen CP, Kalaria RN, Sze SK. Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Res Rev 2019; 53:100909. [PMID: 31116994 DOI: 10.1016/j.arr.2019.100909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Aging influences the pathogenesis and progression of several major diseases affecting both the cardiovascular system (CVS) and central nervous system (CNS). Defining the common molecular features that underpin these disorders in these crucial body systems will likely lead to increased quality of life and improved 'health-span' in the global aging population. Degenerative protein modifications (DPMs) have been strongly implicated in the molecular pathogenesis of several age-related diseases affecting the CVS and CNS, including atherosclerosis, heart disease, dementia syndromes, and stroke. However, these isolated findings have yet to be integrated into a wider framework, which considers the possibility that, despite their distinct features, CVS and CNS disorders may in fact be closely related phenomena. In this work, we review the current literature describing molecular roles of the major age-associated DPMs thought to significantly impact on human health, including carbamylation, citrullination and deamidation. In particular, we focus on data indicating that specific DPMs are shared between multiple age-related diseases in both CVS and CNS settings. By contextualizing these data, we aim to assist future studies in defining the universal mechanisms that underpin both vascular and neurological manifestations of age-related protein degeneration.
Collapse
|
28
|
Shokri B, Zarghi A, Shahhoseini S, Mohammadi R, Kobarfard F. Design, synthesis and biological evaluation of peptide-NSAID conjugates for targeted cancer therapy. Arch Pharm (Weinheim) 2019; 352:e1800379. [PMID: 31318093 DOI: 10.1002/ardp.201800379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023]
Abstract
Linear arginine-glycine-aspartic acid (RGD) and asparagine-glycine-arginine (NGR) peptide-nonsteroidal anti-inflammatory drug conjugates were synthesized to evaluate their anticancer effect. Two well-known targeting peptide sequences, RGD and NGR, were conjugated with naproxen and ibuprofen. It is expected that the RGD peptide selectively binds to αv -integrin receptors, which are highly expressed in cancer cells, and that the NGR peptide selectively targets aminopeptidase N (APN/CD13, EC 3.4.11.2), which is overexpressed in blood vessels of tumors. To investigate the impact of possible steric hindrance due to the attachment of the drug to the peptide, a linear six-carbon linker (hexanoic acid) was also used as a spacer. Cytotoxic effects of the synthesized compounds were evaluated against several cancer cell lines, including MCF-7, A2780 (αv β3 positive), OVCAR3 (high αv β3 ), HT-1-80, and SKOV-3 cells (CD13 positive). The NGR conjugate forms of both ibuprofen and naproxen showed better activity against the SKOV-3 tumor cell line. The improved binding of these conjugates to their receptors was confirmed by docking studies.
Collapse
Affiliation(s)
- Bahareh Shokri
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhoseini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Jiang D, Xu M, Pei Y, Huang Y, Chen Y, Ma F, Lu H, Chen J. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Acta Biomater 2019; 88:406-421. [PMID: 30763634 DOI: 10.1016/j.actbio.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/22/2022]
Abstract
Emergence of drug resistance in tumors causes therapeutic failure or tumor relapse. Combination of chemotherapy and photodynamic therapy holds significant promise to treat drug-resistant tumors. However, stubborn hydrophobicity of photosensitizer (PS), low encapsulation efficiency and leaking problem of PS in organic carrier, and disparate physicochemical properties of PS and chemotherapeutics make the combination unachievable. Thus how to efficiently co-deliver the two functional agents to enable photo-chemotherapy seems to be one of the key challenges. Here, core-matched technology (CMT) was developed to realize efficient co-delivery of PS and chemotherapeutics, in which PS verteporfin (VP), tumor angiogenesis-targeting iNGR peptide and poly(lactic acid) (PLA) were respectively pre-modified with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and the conjugates self-assembled into iNGR-modified and VP conjugated nanoassemblies (iNGR-VP-NA) with chemotherapeutic agent docetaxel (DTX) loaded in the hydrophobic core. The obtained iNGR-VP-NA-DTX was characterized by mean size of 166.0 ± 9.2 nm and morphology of uniformly spherical shape. In vitro, with the assistance of laser, iNGR-VP-NA-DTX exhibited higher cellular uptake, stronger cytotoxicity in HUVEC cells, drug-resistant HCT-15 tumor cells and more effective inhibition of tube formation than iNGR-VP-NA-DTX without laser or VP-NA-DTX with laser. After intravenously injected into mice, through the near-infrared light emitted by VP, iNGR-VP-NA exhibited improved accumulation compared to VP-NA in drug-resistant HCT-15 tumor. Besides, iNGR-VP-NA-DTX with laser enhanced inhibition of angiogenesis and induced severe apoptosis and necrosis in tumor tissues along with minimal impact to normal areas. These evidences demonstrated that iNGR-VP-NA-DTX was of great potential to treat drug-resistant tumors via efficient angiogenesis-targeted photo-chemotherapy. STATEMENT OF SIGNIFICANCE: Combination of chemotherapy and photodynamic therapy is thought to be a potential approach to treat drug-resistant cancer. However, it is difficult to realize optimized photo-chemotherapy in one nano-system. Here, iNGR-modified nanoassemblies is created based on core-matched nanotechnology to realize targeted photo-chemotherapy. In this study, the improved co-loading of chemotherapy and photosensitizer in the nanoassemblies exerted a synergistic anti-tumor effect and the decoration with iNGR enhanced tumor-targeting efficiency. In the presence of laser irradiation, the nanoassemblies exhibited enhanced and targeted anti-tumor efficacy in drug-resistant HCT-15 tumor both in vitro and in vivo.
Collapse
|
30
|
Pastorino F, Brignole C, Di Paolo D, Perri P, Curnis F, Corti A, Ponzoni M. Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804591. [PMID: 30706636 DOI: 10.1002/smll.201804591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
- Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
31
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
32
|
Probst P, Stringhini M, Ritz D, Fugmann T, Neri D. Antibody-based Delivery of TNF to the Tumor Neovasculature Potentiates the Therapeutic Activity of a Peptide Anticancer Vaccine. Clin Cancer Res 2018; 25:698-709. [PMID: 30327303 DOI: 10.1158/1078-0432.ccr-18-1728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE There is a growing interest in the use of tumor antigens for therapeutic vaccination strategies. Unfortunately, in most cases, the use of peptide vaccines in patients does not mediate shrinkage of solid tumor masses.Experimental Design: Here, we studied the opportunity to boost peptide vaccination with F8-TNF, an antibody fusion protein that selectively delivers TNF to the tumor extracellular matrix. AH1, a model antigen to investigate CD8+ T-cell immunity in BALB/c mice, was used as vaccine. RESULTS Peptide antigens alone exhibited only a modest tumor growth inhibition. However, anticancer activity could be substantially increased by combination with F8-TNF. Analysis of T cells in tumors and in draining lymph nodes revealed a dramatic expansion of AH1-specific CD8+ T cells, which were strongly positive for PD-1, LAG-3, and TIM-3. The synergistic anticancer activity, observed in the combined use of peptide vaccination and F8-TNF, was largely due to the ability of the fusion protein to induce a rapid hemorrhagic necrosis in the tumor mass, thus leaving few residual tumor cells. While the cell surface phenotype of tumor-infiltrating CD8+ T cells did not substantially change upon treatment, the proportion of AH1-specific T cells was strongly increased in the combination therapy group, reaching more than 50% of the CD8+ T cells within the tumor mass. CONCLUSIONS Because both peptide vaccination strategies and tumor-homing TNF fusion proteins are currently being studied in clinical trials, our study provides a rationale for the combination of these 2 regimens for the treatment of patients with cancer.
Collapse
Affiliation(s)
- Philipp Probst
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
33
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Kirikoshi R, Manabe N, Takahashi O. Phosphate-Catalyzed Succinimide Formation from an NGR-Containing Cyclic Peptide: A Novel Mechanism for Deammoniation of the Tetrahedral Intermediate. Molecules 2018; 23:E2217. [PMID: 30200364 PMCID: PMC6225186 DOI: 10.3390/molecules23092217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Spontaneous deamidation in the Asn-Gly-Arg (NGR) motif that yields an isoAsp-Gly-Arg (isoDGR) sequence has recently attracted considerable attention because of the possibility of application to dual tumor targeting. It is well known that Asn deamidation reactions in peptide chains occur via the five-membered ring succinimide intermediate. Recently, we computationally showed by the B3LYP density functional theory method, that inorganic phosphate and the Arg side chain can catalyze the NGR deamidation using a cyclic peptide, c[CH₂CO⁻NGRC]⁻NH₂. In this previous study, the tetrahedral intermediate of the succinimide formation was assumed to be readily protonated at the nitrogen originating from the Asn side chain by the solvent water before the release of an NH₃ molecule. In the present study, we found a new mechanism for the decomposition of the tetrahedral intermediate that does not require the protonation by an external proton source. The computational method is the same as in the previous study. In the new mechanism, the release of an NH₃ molecule occurs after a proton exchange between the peptide and the phosphate and conformational changes. The rate-determining step of the overall reaction course is the previously reported first step, i.e., the cyclization to form the tetrahedral intermediate.
Collapse
Affiliation(s)
- Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
35
|
Mohammadi-Farsani A, Habibi-Roudkenar M, Golkar M, Shokrgozar MA, Jahanian-Najafabadi A, KhanAhmad H, Valiyari S, Bouzari S. A-NGR fusion protein induces apoptosis in human cancer cells. EXCLI JOURNAL 2018; 17:590-597. [PMID: 30108463 PMCID: PMC6088213 DOI: 10.17179/excli2018-1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
The NGR peptide is one of the well-known peptides for targeting tumor cells. It has the ability to target aminopeptidase N (CD13) on tumor cells or the tumor vascular endothelium. In this study, the NGR peptide was used for targeting A subunit of the Shiga toxin to cancer cells. The cytotoxic effect of the A-NGR fusion protein was assessed on HT1080, U937, HT29 cancer cells and MRC-5 normal cells. For this purpose, cells were treated with different concentrations of A-NGR (0.5-40 µg/ml). The evaluation of cell viability was achieved by MTT assay. Apoptosis was determined by annexin-V/PI double staining flow cytometry. Alterations in the mRNA expression of apoptosis - related genes were assessed by real time RT- PCR. The results showed that A-NGR fusion protein effectively inhibited the growth of HT1080 and U937 cancer cells in comparison to negative control (PBS) but for CD13-negative HT-29 cancer cells, only at high concentrations of fusion protein was inhibited growth recorded. On the other hand, A-NGR had little cytotoxic effect on MRC-5 normal cells. The flow cytometry results showed that A-NGR induces apoptosis. Furthermore, the results of real time RT-PCR revealed that A-NGR significantly increases the mRNA expression of caspase 3 and caspase 9. Conclusively, A-NGR fusion protein has the ability of targeting CD13-positive cancer cells, the cytotoxic effect on CD13-positive cancer cells as well as has low cytotoxic effect on normal cells.
Collapse
Affiliation(s)
| | - Mehryar Habibi-Roudkenar
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Valiyari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
36
|
|
37
|
Lei Z, Chai N, Tian M, Zhang Y, Wang G, Liu J, Tian Z, Yi X, Chen D, Li X, Yu P, Hu H, Xu B, Jian C, Bian Z, Guo H, Wang J, Peng S, Nie Y, Huang N, Hu S, Wu K. Novel peptide GX1 inhibits angiogenesis by specifically binding to transglutaminase-2 in the tumorous endothelial cells of gastric cancer. Cell Death Dis 2018; 9:579. [PMID: 29785022 PMCID: PMC5962530 DOI: 10.1038/s41419-018-0594-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 12/28/2022]
Abstract
The clinical application of GX1, an optimal gastric cancer (GC) targeting peptide, is greatly limited because its receptor in the GC vasculature is unknown. In this study, we screened the candidate receptor of GX1, transglutaminase-2(TGM2), by co-immunoprecipitation (co-IP) combined with mass spectrometry. We found that TGM2 was up-regulated in GC vascular endothelial cells and that GX1 receptor expression was suppressed correspondingly after TGM2 downregulation. A highly consistent co-localization of GX1 receptor and TGM2 was detected at both the cellular and tissue levels. High TGM2 expression was evident in GC tissues from patients with poor prognosis. After TGM2 downregulation, the GX1-mediated inhibition of proliferation and migration and the induction of the apoptosis of GC vascular endothelial cells were weakened or even reversed. Finally, we observed that GX1 could inhibit the GTP-binding activity of TGM2 by reducing its intracellular distribution and downregulating its downstream molecular targets (nuclear factor-kappa B, NF-κB; hypoxia-inducible factor 1-α, HIF1α) in GC vascular endothelial cells. Our study confirms that peptide GX1 can inhibit angiogenesis by directly binding to TGM2, subsequently reducing the GTP-binding activity of TGM2 and thereby suppressing its downstream pathway(NF-κB/HIF1α). Our conclusions suggest that GX1/TGM2 may provide a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhijie Lei
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Na Chai
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Miaomiao Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Ying Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Guodong Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Jian Liu
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zuhong Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaofang Yi
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Di Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaowei Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Pengfei Yu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Bing Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Chao Jian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Jinpeng Wang
- Department of Orthopedics, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Shiming Peng
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China.
| | - Sijun Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
38
|
NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene 2018; 37:3967-3980. [PMID: 29662195 PMCID: PMC6053358 DOI: 10.1038/s41388-018-0213-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Abstract
Induction of selective thrombosis and infarction in tumor-feeding vessels represents an attractive strategy to combat cancer. Here we took advantage of the unique coagulation properties of staphylocoagulase and genetically engineered it to generate a new fusion protein with novel anti-cancer properties. This novel bi-functional protein consists of truncated coagulase (tCoa) and an NGR (GNGRAHA) motif that recognizes CD13 and αvβ3 integrin receptors, targeting it to tumor endothelial cells. Herein, we report that tCoa coupled by its C-terminus to an NGR sequence retained its normal binding activity with prothrombin and avβ3 integrins, as confirmed in silico and in vitro. Moreover, in vivo biodistribution studies demonstrated selective accumulation of FITC-labeled tCoa-NGR fusion proteins at the site of subcutaneously implanted PC3 tumor xenografts in nude mice. Notably, systemic administration of tCoa-NGR to mice bearing 4T1 mouse mammary xenografts or PC3 human prostate tumors resulted in a significant reduction in tumor growth. These anti-tumor effects were accompanied by massive thrombotic occlusion of small and large tumor vessels, tumor infarction and tumor cell death. From these findings, we propose tCoa-NGR mediated tumor infarction as a novel and promising anti-cancer strategy targeting both CD13 and integrin αvβ3 positive tumor neovasculature.
Collapse
|
39
|
Stucke-Ring J, Ronnacker J, Brand C, Höltke C, Schliemann C, Kessler T, Schmidt LH, Harrach S, Mantke V, Hintelmann H, Hartmann W, Wardelmann E, Lenz G, Wünsch B, Müller-Tidow C, Mesters RM, Schwöppe C, Berdel WE. Combinatorial effects of doxorubicin and retargeted tissue factor by intratumoral entrapment of doxorubicin and proapoptotic increase of tumor vascular infarction. Oncotarget 2018; 7:82458-82472. [PMID: 27738341 PMCID: PMC5347705 DOI: 10.18632/oncotarget.12559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Truncated tissue factor (tTF), retargeted to tumor vasculature by GNGRAHA peptide (tTF-NGR), and doxorubicin have therapeutic activity against a variety of tumors. We report on combination experiments of both drugs using different schedules. We have tested fluorescence- and HPLC-based intratumoral pharmacokinetics of doxorubicin, flow cytometry for cellular phosphatidylserine (PS) expression, and tumor xenograft studies for showing in vivo apoptosis, proliferation decrease, and tumor shrinkage upon combination therapy with doxorubicin and induced tumor vascular infarction. tTF-NGR given before doxorubicin inhibits the uptake of the drug into human fibrosarcoma xenografts in vivo. Reverse sequence does not influence the uptake of doxorubicin into tumor, but significantly inhibits the late wash-out phase, thus entrapping doxorubicin in tumor tissue by vascular occlusion. Incubation of endothelial and tumor cells with doxorubicin in vitro increases PS concentrations in the outer layer of the cell membrane as a sign of early apoptosis. Cells expressing increased PS concentrations show comparatively higher procoagulatory efficacy on the basis of equimolar tTF-NGR present in the Factor X assay. Experiments using human M21 melanoma and HT1080 fibrosarcoma xenografts in athymic nude mice indeed show a combinatorial tumor growth inhibition applying doxorubicin and tTF-NGR in sequence over single drug treatment. Combination of cytotoxic drugs such as doxorubicin with tTF-NGR-induced tumor vessel infarction can improve pharmacodynamics of the drugs by new mechanisms, entrapping a cytotoxic molecule inside tumor tissue and reciprocally improving procoagulatory activity of tTF-NGR in the tumor vasculature via apoptosis induction in tumor endothelial and tumor cells.
Collapse
Affiliation(s)
- Janine Stucke-Ring
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Julian Ronnacker
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Caroline Brand
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Carsten Höltke
- Department of Clinical Radiology, University Hospital of Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Torsten Kessler
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Lars Henning Schmidt
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Saliha Harrach
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Verena Mantke
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Heike Hintelmann
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk Institute for Pathology, University Hospital of Muenster, Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk Institute for Pathology, University Hospital of Muenster, Muenster, Germany
| | - Georg Lenz
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical Chemistry, Westfalian Wilhelms-University, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University Hospital Halle, Halle, Germany
| | - Rolf M Mesters
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Christian Schwöppe
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A (Hematology, Hemostaseology, Oncology and Pneumology), University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
40
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
41
|
177Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J Pharm Biomed Anal 2018; 152:173-178. [PMID: 29414010 DOI: 10.1016/j.jpba.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
This study explores the potential of 177Lu-labeled carbon nanospheres as radio-nanoprobes for molecular imaging and therapy. The carboxyl functionalized surface of carbon nanospheres (CNS) was conjugated with [Gly-Gly-Gly-c(Asn-Gly-Arg)], G3-cNGR peptide through amide bond for targeting tumor vasculature and with [2-(4-Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid], p-NH2-Bz-DOTA for chelation with 177Lu. The nanosphere-peptide conjugate, DOTA-CNS-cNGR, was characterized by dynamic light scattering and zeta potential measurements, IR and UV experiments and did not show any in vitro cytotoxicity. The pharmacokinetics and biodistribution of 177Lu-labeled nanosphere-peptide conjugate, 177Lu-DOTA-CNS-cNGR was compared with 177Lu-DOTA-CNS (without the peptide) as well as with 177Lu-DOTA-cNGR (without carbon nanospheres). The radiolabeled nanosphere-peptide conjugate exhibited higher tumor accumulation than nanosphere-free radiolabeled peptide. The accumulation of the two radiolabeled probes in the tumor reduced to half during blocking studies with unlabeled G3-cNGR peptide. 177Lu-DOTA-CNS exhibited higher tumor uptake than 177Lu-DOTA-CNS-cNGR but rapid clearance of the latter nanoprobe from non-target organs resulted in significantly higher (p < 0.05) tumor-to-blood and tumor-to-muscle ratios at 24 and 48 h p.i. It is evident from this study that carbon nanospheres conjugated to specific vectors shall form an important part of targeted radionanomedicine in future.
Collapse
|
42
|
Satpati D, Sharma R, Sarma HD, Dash A. Comparative evaluation of 68 Ga-labeled NODAGA, DOTAGA, and HBED-CC-conjugated cNGR peptide chelates as tumor-targeted molecular imaging probes. Chem Biol Drug Des 2017; 91:781-788. [PMID: 29130625 DOI: 10.1111/cbdd.13143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The biological behavior of 68 Ga-based radiopharmaceuticals can be significantly affected by the chelators' attributes (size, charge, lipophilicity). Thus, this study aimed at examining the influence of three different chelators, DOTAGA, NODAGA, and HBED-CC on the distribution pattern of 68 Ga-labeled NGR peptides targeting CD13 receptors. 68 Ga-DOTAGA-c(NGR), 68 Ga-NODAGA-c(NGR), and 68 Ga-HBED-CC-c(NGR) were observed to be hydrophilic with respective log p values being -3.5 ± 0.2, -3.3 ± 0.08, and -2.8 ± 0.14. The three radiotracers exhibited nearly similar uptake in human fibrosarcoma HT-1080 tumor cells with 86%, 63%, and 33% reduction during blocking studies with unlabeled cNGR peptide for 68 Ga-DOTAGA-c(NGR), 68 Ga-NODAGA-c(NGR), and 68 Ga-HBED-CC-c(NGR), respectively, indicating higher receptor specificity of the first two radiotracers. The neutral radiotracer 68 Ga-NODAGA-c(NGR) demonstrated better target-to-non-target ratios during in vivo studies compared to its negatively charged counterparts, 68 Ga-DOTAGA-c(NGR) and 68 Ga-HBED-CC-c(NGR). The three radiotracers had similar HT-1080 tumor uptake and being hydrophilic exhibited renal excretion with minimal uptake in non-target organs. Significant reduction (p < .005) in HT-1080 tumor uptake of the radiotracers was observed during blocking studies. It may be inferred from these studies that the three radiotracers are promising probes for in vivo imaging of CD13 receptor expressing cancer sites; however, 68 Ga-NODAGA-c(NGR) is a better candidate.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
43
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
44
|
Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10–NGR9 ultrasmall superparamagnetic iron oxide nanoparticles. Clin Transl Oncol 2017; 20:599-606. [DOI: 10.1007/s12094-017-1753-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
45
|
Corti A, Gasparri AM, Ghitti M, Sacchi A, Sudati F, Fiocchi M, Buttiglione V, Perani L, Gori A, Valtorta S, Moresco RM, Pastorino F, Ponzoni M, Musco G, Curnis F. Glycine N-methylation in NGR-Tagged Nanocarriers Prevents Isoaspartate formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1701245. [PMID: 28979182 PMCID: PMC5624507 DOI: 10.1002/adfm.201701245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
NGR (asparagine-glycine-arginine) is a tumor vasculature-homing peptide motif widely used for the functionalization of drugs, nanomaterials and imaging compounds for cancer treatment and diagnosis. Unfortunately, this motif has a strong propensity to undergo rapid deamidation. This reaction, which converts NGR into isoDGR, is associated with receptor switching from CD13 to integrins, with potentially important manufacturing, pharmacological and toxicological implications. It is found that glycine N-methylation of NGR-tagged nanocarriers completely prevents asparagine deamidation without impairing CD13 recognition. Studies in animal models have shown that the methylated NGR motif can be exploited for delivering radiolabeled compounds and nanocarriers, such as tumor necrosis factor-α (TNF)-bearing nanogold and liposomal doxorubicin, to tumors with improved selectivity. These findings suggest that this NGR derivative is a stable and efficient tumor-homing ligand that can be used for delivering functional nanomaterials to tumor vasculature.
Collapse
Affiliation(s)
- Angelo Corti
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, 20132, Italy
| | - Anna Maria Gasparri
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Ghitti
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, 20132, Italy
| | - Francesco Sudati
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Martina Fiocchi
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | | | - Laura Perani
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy
| | - Silvia Valtorta
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Rosa Maria Moresco
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | | | - Mirco Ponzoni
- Istituto G. Gaslini, Via G. Gaslini 5, 16148, Genoa, Italy
| | - Giovanna Musco
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| |
Collapse
|
46
|
David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 2017; 119:120-142. [PMID: 28506743 DOI: 10.1016/j.addr.2017.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Since their initial discovery more than 30years ago, tumor-homing peptides have become an increasingly useful tool for targeted delivery of therapeutic and diagnostic agents into tumors. Today, it is well accepted that cells at the tumor microenvironment (TME) contribute in many ways to cancer development and progression. Tumor-homing peptide-decorated nanomedicines can interact specifically with surface receptors expressed on cells in the TME, improve cellular uptake of nanomedicines by target cells, and impair tumor growth and progression. Moreover, peptide ligand-modified nanomedicines can potentially accumulate in the target tissue at higher concentrations than would small conjugates, thus increasing overall target tissue exposure to the therapeutic agent, enhance therapeutic efficacy and reduce side effects. This review describes the most studied peptide ligands aimed at targeting cells in the TME, discusses major obstacles and principles in the design of ligands for drug targeting and provides an overview of homing peptides in ligand-targeted nanomedicines that are currently in development for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
47
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
48
|
Dissecting intrinsic and ligand-induced structural communication in the β3 headpiece of integrins. Biochim Biophys Acta Gen Subj 2017; 1861:2367-2381. [DOI: 10.1016/j.bbagen.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
49
|
Gao Y, Wang Z, Ma X, Ma W, Zhao M, Fu T, Li G, Wang S, Wang Z, Yang W, Kang F, Wang J. The uptake exploration of 68Ga-labeled NGR in well-differentiated hepatocellular carcinoma xenografts: Indication for the new clinical translational of a tracer based on NGR. Oncol Rep 2017; 38:2859-2866. [PMID: 28901442 DOI: 10.3892/or.2017.5933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
18F-FDG has low uptake and poor diagnostic efficiency in hepatocellular carcinoma (HCC), particularly in well-differentiated HCC. The NGR peptide selectively targets CD13, which is overexpressed in many types of tumor cells as well as neovasculature cells. In the present study, we aimed to evaluate the feasibility of utilizing 68Ga-NGR to image CD13-positive well-differentiated HCC xenografts. The in vitro cellular uptake, in vivo micro-PET/CT imaging and biodistribution studies of 68Ga-NGR and 18F-FDG were quantitatively compared in SMMC-7721-based well‑differentiated HCC xenografts. The human fibrosarcoma (HT-1080) and human colorectal adenocarcinoma (HT-29) xenografts were respectively used as positive and negative reference groups for CD13. The expression of CD13 was qualitatively verified by immunofluorescence staining and immunohistostaining studies. The expression levels of CD13 and glucose-6-phosphatase (G6Pase) were semi-quantitatively analyzed by western blotting. The in vitro SMMC-7721 cellular uptake of 68Ga‑NGR was significantly higher than that of 18F-FDG (1.23±0.11 vs. 0.515±0.14%; P<0.01). The in vivo micro-PET/CT imaging results revealed that the uptake of 68Ga-NGR in SMMC-7721-derived tumors was 2.17±0.21% ID/g (percentage of injected dose per gram of tissue), which was higher compared to that of 18F-FDG (0.73±0.26% ID/g; P<0.01); however, the tumor/liver ratio of 68Ga-NGR was 2-fold higher than that of 18F-FDG. We concluded that the uptake of 68Ga-NGR was significantly higher both in vitro and in vivo than 18F-FDG in the well‑differentiated HCC xenografts and therefore, it is promising for further clinical translation in well-differentiated HCC PET/CT diagnosis.
Collapse
Affiliation(s)
- Yongheng Gao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhengjie Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mingxuan Zhao
- Department of Nuclear Medicine, Kunming General Hospital of the People's Liberation Army, Kunming, Yunnan 650032, P.R. China
| | - Tianming Fu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengjun Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
50
|
Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Sci Rep 2017; 7:5765. [PMID: 28720870 PMCID: PMC5515959 DOI: 10.1038/s41598-017-06202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis arises from leukocyte infiltration and thickening of the artery walls and constitutes a major component of vascular disease pathology, but the molecular events underpinning this process are not fully understood. Proteins containing an Asn-Gly-Arg (NGR) motif readily undergo deamidation of asparagine to generate isoDGR structures that bind to integrin αvβ3 on circulating leukocytes. Here we report the identification of isoDGR motifs in human atherosclerotic plaque components including extracellular matrix (ECM) proteins fibronectin and tenascin C, which have been strongly implicated in human atherosclerosis. We further demonstrate that deamidation of NGR motifs in fibronectin and tenascin C leads to increased adhesion of the monocytic cell line U937 and enhanced binding of primary human monocytes, except in the presence of a αvβ3-blocking antibody or the αv-selective inhibitor cilengitide. In contrast, under the same deamidating conditions monocyte-macrophages displayed only weak binding to the alternative ECM component vitronectin which lacks NGR motifs. Together, these findings confirm a critical role for isoDGR motifs in mediating leukocyte adhesion to the ECM via integrin αvβ3 and suggest that protein deamidation may promote the pathological progression of human atherosclerosis by enhancing monocyte recruitment to developing plaques.
Collapse
|