1
|
Park J, Ke W, Kaage A, Feigin CY, Pritykin Y, Donia MS, Mallarino R. Marsupial immune protection is shaped by enhancer sharing and gene cluster duplication of cathelicidin antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605640. [PMID: 39211247 PMCID: PMC11361154 DOI: 10.1101/2024.07.29.605640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.
Collapse
|
2
|
Frank D, Patnana PK, Vorwerk J, Mao L, Gopal LM, Jung N, Hennig T, Ruhnke L, Frenz JM, Kuppusamy M, Autry R, Wei L, Sun K, Mohammed Ahmed HM, Künstner A, Busch H, Müller H, Hutter S, Hoermann G, Liu L, Xie X, Al-Matary Y, Nimmagadda SC, Cano FC, Heuser M, Thol F, Göhring G, Steinemann D, Thomale J, Leitner T, Fischer A, Rad R, Röllig C, Altmann H, Kunadt D, Berdel WE, Hüve J, Neumann F, Klingauf J, Calderon V, Opalka B, Dührsen U, Rosenbauer F, Dugas M, Varghese J, Reinhardt HC, von Bubnoff N, Möröy T, Lenz G, Batcha AMN, Giorgi M, Selvam M, Wang E, McWeeney SK, Tyner JW, Stölzel F, Mann M, Jayavelu AK, Khandanpour C. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023; 142:2175-2191. [PMID: 37756525 PMCID: PMC10733838 DOI: 10.1182/blood.2022015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
ABSTRACT Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Collapse
Affiliation(s)
- Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lavanya Mokada Gopal
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Noelle Jung
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Leo Ruhnke
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maithreyan Kuppusamy
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Robert Autry
- Hopp Children’s Cancer Center, Heidelberg, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Refined Laser Systems GmbH, Münster, Germany
| | - Jürgen Klingauf
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Virginie Calderon
- Bioinformatic Core Facility, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
- Data Integration for Future Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Marianna Giorgi
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Murugan Selvam
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein Kiel, Christian Albrecht University Kiel, Kiel, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center, Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Wang XQD, Fan D, Han Q, Liu Y, Miao H, Wang X, Li Q, Chen D, Gore H, Himadewi P, Pfeifer GP, Cierpicki T, Grembecka J, Su J, Chong S, Wan L, Zhang X. Mutant NPM1 Hijacks Transcriptional Hubs to Maintain Pathogenic Gene Programs in Acute Myeloid Leukemia. Cancer Discov 2023; 13:724-745. [PMID: 36455589 PMCID: PMC9975662 DOI: 10.1158/2159-8290.cd-22-0424] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Xue Qing David Wang
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Dandan Fan
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Qinyu Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Qinglan Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Haley Gore
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Pamela Himadewi
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
- Corresponding Authors: Xiaotian Zhang, University of Texas Health Science Center at Houston, Room MSB 6.202, 6431 Fannin Street, Houston, TX 77030. Phone: 713-500-5146; E-mail: ; Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Shasha Chong, California Institute of Technology, 1200 East California Boulevard, MC 147-75, Pasadena, CA 91125. Phone: 626-395-5736; E-mail:
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding Authors: Xiaotian Zhang, University of Texas Health Science Center at Houston, Room MSB 6.202, 6431 Fannin Street, Houston, TX 77030. Phone: 713-500-5146; E-mail: ; Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Shasha Chong, California Institute of Technology, 1200 East California Boulevard, MC 147-75, Pasadena, CA 91125. Phone: 626-395-5736; E-mail:
| | - Xiaotian Zhang
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
- Corresponding Authors: Xiaotian Zhang, University of Texas Health Science Center at Houston, Room MSB 6.202, 6431 Fannin Street, Houston, TX 77030. Phone: 713-500-5146; E-mail: ; Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Shasha Chong, California Institute of Technology, 1200 East California Boulevard, MC 147-75, Pasadena, CA 91125. Phone: 626-395-5736; E-mail:
| |
Collapse
|
4
|
Xie X, Patnana PK, Frank D, Schütte J, Al-Matary Y, Künstner A, Busch H, Ahmed H, Liu L, Engel DR, Dührsen U, Rosenbauer F, Von Bubnoff N, Lenz G, Khandanpour C. Dose-dependent effect of GFI1 expression in the reconstitution and the differentiation capacity of HSCs. Front Cell Dev Biol 2023; 11:866847. [PMID: 37091981 PMCID: PMC10113925 DOI: 10.3389/fcell.2023.866847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.
Collapse
Affiliation(s)
- Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Judith Schütte
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Axel Künstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Daniel R. Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute for Molecular Tumor Biology, University Hospital Münster, Münster, Germany
| | - Nikolas Von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- *Correspondence: Cyrus Khandanpour,
| |
Collapse
|
5
|
The Hematopoietic TALE-Code Shows Normal Activity of IRX1 in Myeloid Progenitors and Reveals Ectopic Expression of IRX3 and IRX5 in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23063192. [PMID: 35328612 PMCID: PMC8952210 DOI: 10.3390/ijms23063192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Homeobox genes encode transcription factors that control basic developmental decisions. Knowledge of their hematopoietic activities casts light on normal and malignant immune cell development. Recently, we constructed the so-called lymphoid TALE-code that codifies expression patterns of all active TALE class homeobox genes in early hematopoiesis and lymphopoiesis. Here, we present the corresponding myeloid TALE-code to extend this gene signature, covering the entire hematopoietic system. The collective data showed expression patterns for eleven TALE homeobox genes and highlighted the exclusive expression of IRX1 in megakaryocyte-erythroid progenitors (MEPs), implicating this TALE class member in a specific myeloid differentiation process. Analysis of public profiling data from acute myeloid leukemia (AML) patients revealed aberrant activity of IRX1 in addition to IRX3 and IRX5, indicating an oncogenic role for these TALE homeobox genes when deregulated. Screening of RNA-seq data from 100 leukemia/lymphoma cell lines showed overexpression of IRX1, IRX3, and IRX5 in megakaryoblastic and myelomonocytic AML cell lines, chosen as suitable models for studying the regulation and function of these homeo-oncogenes. Genomic copy number analysis of IRX-positive cell lines demonstrated chromosomal amplification of the neighboring IRX3 and IRX5 genes at position 16q12 in MEGAL, underlying their overexpression in this cell line model. Comparative gene expression analysis of these cell lines revealed candidate upstream factors and target genes, namely the co-expression of GATA1 and GATA2 together with IRX1, and of BMP2 and HOXA10 with IRX3/IRX5. Subsequent knockdown and stimulation experiments in AML cell lines confirmed their activating impact in the corresponding IRX gene expression. Furthermore, we demonstrated that IRX1 activated KLF1 and TAL1, while IRX3 inhibited GATA1, GATA2, and FST. Accordingly, we propose that these regulatory relationships may represent major physiological and oncogenic activities of IRX factors in normal and malignant myeloid differentiation, respectively. Finally, the established myeloid TALE-code is a useful tool for evaluating TALE homeobox gene activities in AML.
Collapse
|
6
|
PML-RARα: changing myeloid networks. Blood 2021; 137:1439-1440. [PMID: 33734342 DOI: 10.1182/blood.2020008849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
8
|
Tan Y, Wang X, Song H, Zhang Y, Zhang R, Li S, Jin W, Chen S, Fang H, Chen Z, Wang K. A PML/RARα direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia. Blood 2021; 137:1503-1516. [PMID: 32854112 PMCID: PMC7976511 DOI: 10.1182/blood.2020005698] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transcriptional deregulation initiated by oncogenic fusion proteins plays a vital role in leukemia. The prevailing view is that the oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor-α (PML/RARα), generated by the chromosome translocation t(15;17), functions as a transcriptional repressor in acute promyelocytic leukemia (APL). Here, we provide rich evidence of how PML/RARα drives oncogenesis through both repressive and activating functions, particularly the importance of the newly identified activation role for the leukemogenesis of APL. The activating function of PML/RARα is achieved by recruiting both abundant P300 and HDAC1 and by the formation of super-enhancers. All-trans retinoic acid and arsenic trioxide, 2 widely used drugs in APL therapy, exert synergistic effects on controlling super-enhancer-associated PML/RARα-regulated targets in APL cells. We use a series of in vitro and in vivo experiments to demonstrate that PML/RARα-activated target gene GFI1 is necessary for the maintenance of APL cells and that PML/RARα, likely oligomerized, transactivates GFI1 through chromatin conformation at the super-enhancer region. Finally, we profile GFI1 targets and reveal the interplay between GFI1 and PML/RARα on chromatin in coregulating target genes. Our study provides genomic insight into the dual role of fusion transcription factors in transcriptional deregulation to drive leukemia development, highlighting the importance of globally dissecting regulatory circuits.
Collapse
Affiliation(s)
- Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
| | - Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongsheng Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
| | - Shufen Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; and
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, Ehinger E, Kim C, Mikulski Z, Seumois G, Madrigal A, Vijayanand P, Hedrick CC. Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow. Cell Rep 2020; 24:2329-2341.e8. [PMID: 30157427 DOI: 10.1016/j.celrep.2018.07.097] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/18/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however, unipotent neutrophil progenitors are not well defined. Here, we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly, we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models, including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases, including cancer.
Collapse
Affiliation(s)
- Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | - Lindsey Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Huy Q Dinh
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amy Blatchley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ariel Madrigal
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Gfi1-Mediated Repression of c-Fos, Egr-1 and Egr-2, and Inhibition of ERK1/2 Signaling Contribute to the Role of Gfi1 in Granulopoiesis. Sci Rep 2019; 9:737. [PMID: 30679703 PMCID: PMC6345849 DOI: 10.1038/s41598-018-37402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023] Open
Abstract
Gfi1 supports neutrophil development at the expense of monopoiesis, but the underlying molecular mechanism is incompletely understood. We recently showed that the G-CSFR Y729F mutant, in which tyrosine 729 was mutated to phenylalanine, promoted monocyte rather than neutrophil development in myeloid precursors, which was associated with prolonged activation of Erk1/2 and enhanced activation of c-Fos and Egr-1. We show here that Gfi1 inhibited the expression of c-Fos, Egr-1 and Egr-2, and rescued neutrophil development in cells expressing G-CSFR Y729F. Gfi1 directly bound to and repressed c-Fos and Egr-1, as has been shown for Egr-2, all of which are the immediate early genes (IEGs) of the Erk1/2 pathway. Interestingly, G-CSF- and M-CSF-stimulated activation of Erk1/2 was augmented in lineage-negative (Lin−) bone marrow (BM) cells from Gfi1−/− mice. Suppression of Erk1/2 signaling resulted in diminished expression of c-Fos, Egr-1 and Egr-2, and partially rescued the neutrophil development of Gfi1−/− BM cells, which are intrinsically defective for neutrophil development. Together, our data indicate that Gfi1 inhibits the expression of c-Fos, Egr-1 and Egr-2 through direct transcriptional repression and indirect inhibition of Erk1/2 signaling, and that Gfi1-mediated downregulation of c-Fos, Egr-1 and Egr-2 may contribute to the role of Gfi1 in granulopoiesis.
Collapse
|
11
|
Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia 2018; 33:110-121. [PMID: 29925903 PMCID: PMC6326955 DOI: 10.1038/s41375-018-0166-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Growth factor independent 1 (Gfi1) controls myeloid differentiation by regulating gene expression and limits the activation of p53 by facilitating its de-methylation at Lysine 372. In human myeloid leukemia, low GFI1 levels correlate with an inferior prognosis. Here, we show that knockdown (KD) of Gfi1 in mice causes a fatal myeloproliferative disease (MPN) that could progress to leukemia after additional mutations. Both KO and KD mice accumulate myeloid cells that show signs of metabolic stress and high levels of reactive oxygen species. However, only KO cells have elevated levels of Lysine 372 methylated p53. This suggests that in contrast to absence of GFI1, KD of GFI1 leads to the accumulation of myeloid cells because sufficient amount of GFI1 is present to impede p53-mediated cell death, leading to a fatal MPN. The combination of myeloid accumulation and the ability to counteract p53 activity under metabolic stress could explain the role of reduced GF1 expression in human myeloid leukemia.
Collapse
|
12
|
Marneth AE, Botezatu L, Hönes JM, Israël JCL, Schütte J, Vassen L, Lams RF, Bergevoet SM, Groothuis L, Mandoli A, Martens JHA, Huls G, Jansen JH, Dührsen U, Berg T, Möröy T, Wichmann C, Lo MC, Zhang DE, van der Reijden BA, Khandanpour C. GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica 2018; 103:e395-e399. [PMID: 29674496 DOI: 10.3324/haematol.2017.180844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Jimmy C L Israël
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura Groothuis
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Tobias Berg
- Department of Medicine II-Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Hematopoiesis and Cancer Research Unit, and Université de Montréal, Canada
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Mia-Chia Lo
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, USA
| | - Dong-Er Zhang
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, USA
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany .,Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| |
Collapse
|
13
|
Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Rep 2017; 18:2907-2917. [PMID: 28329683 DOI: 10.1016/j.celrep.2017.02.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.
Collapse
|
14
|
Hönes JM, Thivakaran A, Botezatu L, Patnana P, Castro SVDC, Al-Matary YS, Schütte J, Fischer KBI, Vassen L, Görgens A, Dührsen U, Giebel B, Khandanpour C. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci Rep 2017; 7:15720. [PMID: 29147018 PMCID: PMC5691148 DOI: 10.1038/s41598-017-15866-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation. Analysis of AML patients and different AML mouse models with reduced GFI1 gene expression levels revealed a direct link between low GFI1 protein level and accelerated AML development and inferior prognosis. Here, we report that upregulated expression of GFI1 in several widely used leukemic cell lines inhibits their growth and decreases the ability to generate colonies in vitro. Similarly, elevated expression of GFI1 impedes the in vitro expansion of murine pre-leukemic cells. Using a humanized AML model, we demonstrate that upregulation of GFI1 expression leads to myeloid differentiation morphologically and immunophenotypically, increased level of apoptosis and reduction in number of cKit+ cells. These results suggest that increasing GFI1 level in leukemic cells with low GFI1 expression level could be a therapeutic approach.
Collapse
Affiliation(s)
- Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pradeep Patnana
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Symone Vitoriano da Conceição Castro
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, Brazil
| | - Yahya S Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karen B I Fischer
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Prognostic significance of high GFI1 expression in AML of normal karyotype and its association with a FLT3-ITD signature. Sci Rep 2017; 7:11148. [PMID: 28894287 PMCID: PMC5593973 DOI: 10.1038/s41598-017-11718-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Growth Factor Independence 1 (GFI1) is a transcriptional repressor that plays a critical role during both myeloid and lymphoid haematopoietic lineage commitment. Several studies have demonstrated the involvement of GFI1 in haematological malignancies and have suggested that low expression of GFI1 is a negative indicator of disease progression for both myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). In this study, we have stratified AML patients into those defined as having a normal karyotype (CN-AML). Unlike the overall pattern in AML, those patients with CN-AML have a poorer survival rate when GFI1 expression is high. In this group, high GFI1 expression is paralleled by higher FLT3 expression, and, even when the FLT3 gene is not mutated, exhibit a FLT3-ITD signature of gene expression. Knock-down of GFI1 expression in the human AML Fujioka cell line led to a decrease in the level of FLT3 RNA and protein and to the down regulation of FLT3-ITD signature genes, thus linking two major prognostic indicators for AML.
Collapse
|
16
|
The role of the transcriptional repressor growth factor independent 1 in the formation of myeloid cells. Curr Opin Hematol 2017; 24:32-37. [DOI: 10.1097/moh.0000000000000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Botezatu L, Michel LC, Helness A, Vadnais C, Makishima H, Hönes JM, Robert F, Vassen L, Thivakaran A, Al-Matary Y, Lams RF, Schütte J, Giebel B, Görgens A, Heuser M, Medyouf H, Maciejewski J, Dührsen U, Möröy T, Khandanpour C. Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Exp Hematol 2016; 44:713-726.e14. [PMID: 27216773 DOI: 10.1016/j.exphem.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Epigenetic changes can contribute to development of acute myeloid leukemia (AML), a malignant disease of the bone marrow. A single-nucleotide polymorphism of transcription factor growth factor independence 1 (GFI1) generates a protein with an asparagine at position 36 (GFI1(36N)) instead of a serine at position 36 (GFI1(36S)), which is associated with de novo AML in humans. However, how GFI1(36N) predisposes to AML is poorly understood. To explore the mechanism, we used knock-in mouse strains expressing GFI1(36N) or GFI1(36S). Presence of GFI1(36N) shortened the latency and increased the incidence of AML in different murine models of myelodysplastic syndrome/AML. On a molecular level, GFI1(36N) induced genomewide epigenetic changes, leading to expression of AML-associated genes. On a therapeutic level, use of histone acetyltransferase inhibitors specifically impeded growth of GFI1(36N)-expressing human and murine AML cells in vitro and in vivo. These results establish, as a proof of principle, how epigenetic changes in GFI1(36N)-induced AML can be targeted.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany; Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
18
|
Botezatu L, Michel LC, Makishima H, Schroeder T, Germing U, Haas R, van der Reijden B, Marneth AE, Bergevoet SM, Jansen JH, Przychodzen B, Wlodarski M, Niemeyer C, Platzbecker U, Ehninger G, Unnikrishnan A, Beck D, Pimanda J, Hellström-Lindberg E, Malcovati L, Boultwood J, Pellagatti A, Papaemmanuil E, Le Coutre P, Kaeda J, Opalka B, Möröy T, Dührsen U, Maciejewski J, Khandanpour C. GFI1(36N) as a therapeutic and prognostic marker for myelodysplastic syndrome. Exp Hematol 2016; 44:590-595.e1. [PMID: 27080012 PMCID: PMC4917888 DOI: 10.1016/j.exphem.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/06/2023]
Abstract
Inherited gene variants play an important role in malignant diseases. The transcriptional repressor growth factor independence 1 (GFI1) regulates hematopoietic stem cell (HSC) self-renewal and differentiation. A single-nucleotide polymorphism of GFI1 (rs34631763) generates a protein with an asparagine (N) instead of a serine (S) at position 36 (GFI136N) and has a prevalence of 3%–5% among Caucasians. Because GFI1 regulates myeloid development, we examined the role of GFI136N on the course of MDS disease. To this end, we determined allele frequencies of GFI136N in four independent MDS cohorts from the Netherlands and Belgium, Germany, the ICGC consortium, and the United States. The GFI136N allele frequency in the 723 MDS patients genotyped ranged between 9% and 12%. GFI136N was an independent adverse prognostic factor for overall survival, acute myeloid leukemia-free survival, and event-free survival in a univariate analysis. After adjustment for age, bone marrow blast percentage, IPSS score, mutational status, and cytogenetic findings, GFI136N remained an independent adverse prognostic marker. GFI136S homozygous patients exhibited a sustained response to treatment with hypomethylating agents, whereas GFI136N patients had a poor sustained response to this therapy. Because allele status of GFI136N is readily determined using basic molecular techniques, we propose inclusion of GFI136N status in future prospective studies for MDS patients to better predict prognosis and guide therapeutic decisions. GFI136N is present in about 9%–12% of all Caucasian patients with myelodysplastic syndrome. GFI136N is an independent, adverse prognostic factor for survival. GFI136N patients with myelodysplastic syndrome respond poorly to hypomethylating agents.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Thomas Schroeder
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bert van der Reijden
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anne E Marneth
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Platzbecker
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Ashwin Unnikrishnan
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - John Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Philipp Le Coutre
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Jaspal Kaeda
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Hematopoiesis and Cancer Research Unit, and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
19
|
GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 2016; 30:1237-45. [DOI: 10.1038/leu.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
20
|
From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 2015; 126:2561-9. [PMID: 26447191 DOI: 10.1182/blood-2015-06-655043] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
The DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type-specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.
Collapse
|
21
|
Ciccone M, Calin GA. MicroRNAs in Myeloid Hematological Malignancies. Curr Genomics 2015; 16:336-48. [PMID: 27047254 PMCID: PMC4763972 DOI: 10.2174/138920291605150710122815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
23
|
Kim W, Klarmann KD, Keller JR. Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells. Blood 2014; 124:1586-96. [PMID: 25051963 PMCID: PMC4155270 DOI: 10.1182/blood-2014-02-556522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
Growth factor independence 1 (Gfi-1) is a part of the transcriptional network that regulates the development of adult hematopoietic stem and progenitor cells. Gfi-1-null (Gfi-1(-/-)) mice have reduced numbers of hematopoietic stem cells (HSCs), impaired radioprotective function of hematopoietic progenitor cells (HPCs), and myeloid and erythroid hyperplasia. We found that the development of HPCs and erythropoiesis, but not HSC function, was rescued by reducing the expression of inhibitor of DNA-binding protein 2 (Id2) in Gfi-1(-/-) mice. Analysis of Gfi-1(-/-);Id2(+/-) mice revealed that short-term HSCs, common myeloid progenitors (CMPs), erythroid burst-forming units, colony-forming units in spleen, and more differentiated red cells were partially restored by reducing Id2 levels in Gfi-1(-/-) mice. Moreover, short-term reconstituting cells, and, to a greater extent, CMP and megakaryocyte-erythroid progenitor development, and red blood cell production (anemia) were rescued in mice transplanted with Gfi-1(-/-);Id2(+/-) bone marrow cells (BMCs) in comparison with Gfi-1(-/-) BMCs. Reduction of Id2 expression in Gfi-1(-/-) mice increased the expression of Gata1, Eklf, and EpoR, which are required for proper erythropoiesis. Reducing the levels of other Id family members (Id1 and Id3) in Gfi-1(-/-) mice did not rescue impaired HPC function or erythropoiesis. These data provide new evidence that Gfi-1 is linked to the erythroid gene regulatory network by repressing Id2 expression.
Collapse
Affiliation(s)
- Wonil Kim
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kimberly D Klarmann
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jonathan R Keller
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
24
|
Velu CS, Chaubey A, Phelan JD, Horman SR, Wunderlich M, Guzman ML, Jegga AG, Zeleznik-Le NJ, Chen J, Mulloy JC, Cancelas JA, Jordan CT, Aronow BJ, Marcucci G, Bhat B, Gebelein B, Grimes HL. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest 2014; 124:222-36. [PMID: 24334453 PMCID: PMC3871218 DOI: 10.1172/jci66005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/10/2013] [Indexed: 12/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Binding Sites
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Combined Modality Therapy
- Cytarabine/administration & dosage
- DNA-Binding Proteins/metabolism
- Doxorubicin/administration & dosage
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/physiology
- Phosphorothioate Oligonucleotides/genetics
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription Factors/metabolism
- Transcriptome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chinavenmeni S. Velu
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aditya Chaubey
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James D. Phelan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shane R. Horman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Monica L. Guzman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anil G. Jegga
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nancy J. Zeleznik-Le
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianjun Chen
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James C. Mulloy
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jose A. Cancelas
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig T. Jordan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce J. Aronow
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Guido Marcucci
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Balkrishen Bhat
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian Gebelein
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Leighton Grimes
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Pathogenic mechanisms and clinical implications of congenital neutropenia syndromes. Curr Opin Allergy Clin Immunol 2013; 13:596-606. [DOI: 10.1097/aci.0000000000000014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Chow KT, Schulz D, McWhirter SM, Schlissel MS. Gfi1 and gfi1b repress rag transcription in plasmacytoid dendritic cells in vitro. PLoS One 2013; 8:e75891. [PMID: 24086657 PMCID: PMC3782466 DOI: 10.1371/journal.pone.0075891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Growth factor independence genes (Gfi1 and Gfi1b) repress recombination activating genes (Rag) transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs) and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs). Using microarray analysis, we observed that Gfi1 and Gfi1b do not regulate a lymphoid or pDC-specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type.
Collapse
Affiliation(s)
- Kwan T. Chow
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Danae Schulz
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Sarah M. McWhirter
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Mark S. Schlissel
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
- Office of the Provost, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
28
|
Phelan JD, Saba I, Zeng H, Kosan C, Messer MS, Olsson HA, Fraszczak J, Hildeman DA, Aronow BJ, Möröy T, Grimes HL. Growth factor independent-1 maintains Notch1-dependent transcriptional programming of lymphoid precursors. PLoS Genet 2013; 9:e1003713. [PMID: 24068942 PMCID: PMC3772063 DOI: 10.1371/journal.pgen.1003713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/25/2013] [Indexed: 11/19/2022] Open
Abstract
Growth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a gene activated in T-cell leukemias induced by Moloney-murine-leukemia virus infection. Notch1 is a transmembrane receptor that is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL). Gfi1 is an important factor in the initiation and maintenance of lymphoid leukemias and its deficiency significantly impedes Notch dependent initiation of T-ALL in animal models. Here, we show that immature hematopoietic cells require Gfi1 to competently integrate Notch-activated signaling. Notch1 activation coupled with Gfi1 deficiency early in T-lineage specification leads to a dramatic loss of T-cells, whereas activation in later stages leaves development unaffected. In Gfi1 deficient multipotent precursors, Notch activation induces lethality and is cell autonomous. Further, without Gfi1, multipotent progenitors do not maintain Notch1-activated global expression profiles typical for T-lineage precursors. In agreement with this, we find that both lymphoid-primed multipotent progenitors (LMPP) and early T lineage progenitors (ETP) do not properly form or function in Gfi1−/− mice. These defects correlate with an inability of Gfi1−/− progenitors to activate lymphoid genes, including IL7R, Rag1, Flt3 and Notch1. Our data indicate that Gfi1 is required for hematopoietic precursors to withstand Notch1 activation and to maintain Notch1 dependent transcriptional programming to determine early T-lymphoid lineage identity. Understanding the mechanisms that protect lymphoid cells from transformation is a critical first step in developing therapies against blood cancers. Recently, we demonstrated that the Growth factor independent-1 transcriptional repressor protein is required for cancer development driven by activation of Notch1 signaling. Here, we investigated the mechanisms by which Gfi1 protects lymphoid transformation. Using complex genetic mouse models to delete Gfi1 and activate Notch1, we demonstrate that Gfi1 is required to maintain both the homeostatic levels of Notch1 target genes in normal lymphoid precursors in the bone marrow, as well as to maintain the supraphysiologic levels of Notch1 signaling present in pre-malignant lymphoid progenitors. Consequently, without Gfi1 the pool of premalignant cells available for transformation is depleted. Our data provide additional insight into the multiple mechanisms by which developmental networks may have evolved to protect lymphoid cells from transformation.
Collapse
Affiliation(s)
- James D. Phelan
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ingrid Saba
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Christian Kosan
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
| | - Malynda S. Messer
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - H. Andre Olsson
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer Fraszczak
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
| | - David A. Hildeman
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (TM); (HLG)
| | - H. Leighton Grimes
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (TM); (HLG)
| |
Collapse
|
29
|
Du P, Tang F, Qiu Y, Dong F. GFI1 is repressed by p53 and inhibits DNA damage-induced apoptosis. PLoS One 2013; 8:e73542. [PMID: 24023884 PMCID: PMC3762790 DOI: 10.1371/journal.pone.0073542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/20/2013] [Indexed: 12/12/2022] Open
Abstract
GFI1 is a transcriptional repressor that plays a critical role in hematopoiesis and has also been implicated in lymphomagenesis. It is still poorly understood how GFI1 expression is regulated in the hematopoietic system. We show here that GFI1 transcription was repressed by the tumor suppressor p53 in hematopoietic cells. Knockdown of p53 resulted in increased GFI1 expression and abolished DNA damage-induced GFI1 downregulation. In contrast, GFI1 expression was reduced and its downregulation in response to DNA damage was rescued upon restoration of p53 function in p53-deficient cells. In luciferase reporter assays, wild type p53, but not a DNA binding-defective p53 mutant, repressed the GFI1 promoter. Chromatin immunoprecipitation (ChIP) assays demonstrated that p53 bound to the proximal region of the GFI1 promoter. Detailed mapping of the GFI1 promoter indicated that GFI1 core promoter region spanning from -33 to +6 bp is sufficient for p53-mediated repression. This core promoter region contains a putative p53 repressive response element, mutation of which abolished p53 binding to and repression of GFI1 promoter. Significantly, apoptosis induced by DNA damage was inhibited upon Gfi1 overexpression, but augmented following GFI1 knockdown. Our data establish for the first time that GFI1 is repressed by p53 and add to our understanding of the roles of GFI1 in normal hematopoiesis and lymphomagenesis.
Collapse
Affiliation(s)
- Pei Du
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fangqiang Tang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Yaling Qiu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia 2013; 27:1427-30. [PMID: 23411466 DOI: 10.1038/leu.2013.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Khandanpour C, Phelan JD, Vassen L, Schütte J, Chen R, Horman SR, Gaudreau MC, Krongold J, Zhu J, Paul WE, Dührsen U, Göttgens B, Grimes HL, Möröy T. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 2013; 23:200-14. [PMID: 23410974 PMCID: PMC3597385 DOI: 10.1016/j.ccr.2013.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/11/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Because oncogenic signaling activates a p53-dependent DNA damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function because Gfi1 ablation exacerbates p53 responses and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of proapoptotic p53 targets such as Bax, Noxa (Pmaip1), and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Department of Haematology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - James D. Phelan
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Lothar Vassen
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
| | - Judith Schütte
- Cambridge Institute for Medical Research & Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Riyan Chen
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
| | - Shane R. Horman
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Marie-Claude Gaudreau
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, H2W1R7 Canada
| | - Joseph Krongold
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3 Canada
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20829 USA
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20829 USA
| | - Ulrich Dührsen
- Department of Haematology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Bertie Göttgens
- Cambridge Institute for Medical Research & Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - H. Leighton Grimes
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
- Division of Experimental Hematology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
- Correspondence to TM () and HLG ()
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, H2W1R7 Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3 Canada
- Correspondence to TM () and HLG ()
| |
Collapse
|
32
|
Boztug K, Klein C. Genetics and Pathophysiology of Severe Congenital Neutropenia Syndromes Unrelated to Neutrophil Elastase. Hematol Oncol Clin North Am 2013; 27:43-60, vii. [DOI: 10.1016/j.hoc.2012.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Chowdhury AH, Ramroop JR, Upadhyay G, Sengupta A, Andrzejczyk A, Saleque S. Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS One 2013; 8:e53666. [PMID: 23308270 PMCID: PMC3538684 DOI: 10.1371/journal.pone.0053666] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/03/2012] [Indexed: 02/01/2023] Open
Abstract
Gfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional targets were identified by chromatin immunoprecipitation and expression profiling approaches. The combination of these approaches revealed the oncogene meis1, which encodes a homeobox protein, as a direct and prominent target of Gfi1b. Examination of the meis1 promoter sequence revealed multiple Gfi1/1b consensus binding motifs. Distinct regions of the promoter were occupied by Gfi1b and its cofactors LSD1 and CoREST/Rcor1, in erythroid cells but not in the closely related megakaryocyte lineage. Accordingly, Meis1 was significantly upregulated in LSD1 inhibited erythroid cells, but not in megakaryocytes. This lineage specific upregulation in Meis1 expression was accompanied by a parallel increase in di-methyl histone3 lysine4 levels in the Meis1 promoter in LSD1 inhibited, erythroid cells. Meis1 was also substantially upregulated in gfi1b−/− fetal liver cells along with its transcriptional partners Pbx1 and several Hox messages. Elevated Meis1 message levels persisted in gfi1b mutant fetal liver cells differentiated along the erythroid lineage, relative to wild type. However, cells differentiated along the megakaryocytic lineage, exhibited no difference in Meis1 levels between controls and mutants. Transfection experiments further demonstrated specific repression of meis1 promoter driven reporters by wild type Gfi1b but neither by a SNAG domain mutant nor by a DNA binding deficient one, thus confirming direct functional regulation of this promoter by the Gfi1b transcriptional complex. Overall, our results demonstrate direct yet differential regulation of meis1 transcription by Gfi1b in distinct hematopoietic lineages thus revealing it to be a common, albeit lineage specific, target of both Gfi1b and its paralog Gfi1.
Collapse
Affiliation(s)
- Asif H. Chowdhury
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Johnny R. Ramroop
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Ghanshyam Upadhyay
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Ananya Sengupta
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Anna Andrzejczyk
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Shireen Saleque
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Jing CB, Chen Y, Dong M, Peng XL, Jia XE, Gao L, Ma K, Deng M, Liu TX, Zon LI, Zhu J, Zhou Y, Zhou Y. Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol 2012; 374:24-31. [PMID: 23220656 DOI: 10.1016/j.ydbio.2012.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
The regulation of hematopoiesis is generally evolutionarily conserved from zebrafish to mammals, including hematopoietic stem cell formation and blood cell lineage differentiation. In zebrafish, primitive granulocytes originate at two distinct regions, the anterior lateral plate mesoderm (A-LPM) and the intermediate cell mass (ICM). Few studies in the zebrafish have examined genes specifically required for the granulocytic lineage. In this study, we identified the responsible gene for a zebrafish mutant that has relatively normal hematopoiesis, except decreased expression of the granulocyte-specific gene mpx. Positional cloning revealed that phospholipase C gamma-1 (plcg1) was mutated. Deficiency of plcg1 function specifically affected development of granulocytes, especially the maturation process. These results suggested that plcg1 functioned specifically in zebrafish ICM granulopoiesis for the first time. Our studies suggest that specific pathways regulate the differentiation of the hematopoietic lineages.
Collapse
Affiliation(s)
- Chang-Bin Jing
- Key Laboratory of Stem Cell Biology, Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood 2012; 120:4006-17. [PMID: 22932805 DOI: 10.1182/blood-2011-02-334722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The coding single nucleotide polymorphism GFI136N in the human gene growth factor independence 1 (GFI1) is present in 3%-7% of whites and increases the risk for acute myeloid leukemia (AML) by 60%. We show here that GFI136N, in contrast to GFI136S, lacks the ability to bind to the Gfi1 target gene that encodes the leukemia-associated transcription factor Hoxa9 and fails to initiate histone modifications that regulate HoxA9 expression. Consistent with this, AML patients heterozygous for the GFI136N variant show increased HOXA9 expression compared with normal controls. Using ChipSeq, we demonstrate that GFI136N specific epigenetic changes are also present in other genes involved in the development of AML. Moreover, granulomonocytic progenitors, a bone marrow subset from which AML can arise in humans and mice, show a proliferative expansion in the presence of the GFI136N variant. In addition, granulomonocytic progenitors carrying the GFI136N variant allele have altered gene expression patterns and differ in their ability to grow after transplantation. Finally, GFI136N can accelerate a K-RAS driven fatal myeloproliferative disease in mice. Our data suggest that the presence of a GFI136N variant allele induces a preleukemic state in myeloid precursors by deregulating the expression of Hoxa9 and other AML-related genes.
Collapse
|
36
|
Sprüssel A, Schulte JH, Weber S, Necke M, Händschke K, Thor T, Pajtler KW, Schramm A, König K, Diehl L, Mestdagh P, Vandesompele J, Speleman F, Jastrow H, Heukamp LC, Schüle R, Dührsen U, Buettner R, Eggert A, Göthert JR. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 2012; 26:2039-51. [PMID: 22699452 DOI: 10.1038/leu.2012.157] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysine (K)-specific demethylase 1A (LSD1/KDM1A) has been identified as a potential therapeutic target in solid cancers and more recently in acute myeloid leukemia. However, the potential side effects of a LSD1-inhibitory therapy remain elusive. Here, we show, with a newly established conditional in vivo knockdown model, that LSD1 represents a central regulator of hematopoietic stem and progenitor cells. LSD1 knockdown (LSD1-kd) expanded progenitor numbers by enhancing their proliferative behavior. LSD1-kd led to an extensive expansion of granulomonocytic, erythroid and megakaryocytic progenitors. In contrast, terminal granulopoiesis, erythropoiesis and platelet production were severely inhibited. The only exception was monopoiesis, which was promoted by LSD1 deficiency. Importantly, we showed that peripheral blood granulocytopenia, monocytosis, anemia and thrombocytopenia were reversible after LSD1-kd termination. Extramedullary splenic hematopoiesis contributed to the phenotypic reversion, and progenitor populations remained expanded. LSD1-kd was associated with the upregulation of key hematopoietic genes, including Gfi1b, Hoxa9 and Meis1, which are known regulators of the HSC/progenitor compartment. We also demonstrated that LSD1-kd abrogated Gfi1b-negative autoregulation by crossing LSD1-kd with Gfi1b:GFP mice. Taken together, our findings distinguish LSD1 as a critical regulator of hematopoiesis and point to severe, but reversible, side effects of a LSD1-targeted therapy.
Collapse
Affiliation(s)
- A Sprüssel
- Department of Pediatric Oncology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Soliera AR, Mariani SA, Audia A, Lidonnici MR, Addya S, Ferrari-Amorotti G, Cattelani S, Manzotti G, Fragliasso V, Peterson L, Perini G, Holyoake TL, Calabretta B. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012; 26:1555-63. [PMID: 22285998 DOI: 10.1038/leu.2012.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of the transcription repressor Gfi-1 is required for the maintenance of murine hematopoietic stem cells. In human cells, ectopic expression of Gfi-1 inhibits and RNA interference-mediated Gfi-1 downregulation enhances proliferation and colony formation of p210BCR/ABL expressing cells. To investigate the molecular mechanisms that may explain the effects of perturbing Gfi-1 expression in human cells, Gfi-1-regulated genes were identified by microarray analysis in K562 cells expressing the tamoxifen-regulated Gfi-1-ER protein. STAT 5B and Mcl-1, two genes important for the proliferation and survival of hematopoietic stem cells, were identified as direct and functionally relevant Gfi-1 targets in p210BCR/ABL-transformed cells because: (i) their expression and promoter activity was repressed by Gfi-1 and (ii) when constitutively expressed blocked the proliferation and colony formation inhibitory effects of Gfi-1. Consistent with these findings, genetic or pharmacological inhibition of STAT 5 and/or Mcl-1 markedly suppressed proliferation and colony formation of K562 and CD34+ chronic myelogenous leukemia (CML) cells. Together, these studies suggest that the Gfi-1STAT 5B/Mcl-1 regulatory pathway identified here can be modulated to suppress the proliferation and survival of p210BCR/ABL-transformed cells including CD34+ CML cells.
Collapse
Affiliation(s)
- A R Soliera
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Khandanpour C, Kosan C, Gaudreau MC, Dührsen U, Hébert J, Zeng H, Möröy T. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29:376-85. [PMID: 21732494 DOI: 10.1002/stem.575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulation of gene transcription is elementary for the function of hematopoietic stem cells (HSCs). The transcriptional repressor growth factor independence 1 (Gfi1) restricts HSC proliferation and is essential to maintain their self-renewal capacity and multipotency after transplantation. In addition, Gfi1(-/-) HSCs are severely compromised in their ability to compete with wild-type (wt) HSCs after transplantation. We now report that Gfi1 protects HSCs against stress-induced apoptosis, probably, by repressing the proapoptotic target gene Bax, since irradiated Gfi1(-/-) HSCs display higher expression of Bax and show a higher rate of apoptosis than wt HSCs. This protective function of Gfi1 appears to be functionally relevant since Gfi1(-/-) HSCs that express Bcl-2, which antagonizes the effects of Bax, regain their ability to self renew and to initiate multilineage differentiation after transplantation. Surprisingly, Gfi1(-/-) xBcl-2 transgenic mice also show a strong, systemic expansion of Mac-1(+) Gr-1(-) myeloid cells in bone marrow and peripheral lymphoid organs. These cells express high levels of the proleukemogenic transcription factor Hoxa9 and, in older mice, appear as atypical monocytoid-blastoid cells in the peripheral blood. As a result of this massive expansion of myeloid cells, all Gfi1(-/-) xBcl-2 mice eventually succumb to a myeloproliferative-like disease resembling a preleukemic state. In summary, our data demonstrate that Gfi1's ability to protect against apoptosis is essential for HSC function. In addition, our finding show that Gfi1 prevents the development of myeloproliferative diseases and provides evidence how Gfi1 deficiency could be linked to myeloid leukemia.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal (IRCM), Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 2011; 118:6871-80. [PMID: 22042697 DOI: 10.1182/blood-2011-04-346775] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti-TNF-α and anti-IL-7 antibodies. Importantly, BMSCs isolated from Gfi1(-/-) mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease.
Collapse
|
40
|
Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol 2011; 23:368-78. [PMID: 21920773 DOI: 10.1016/j.smim.2011.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
T- and B-lymphocytes are important elements in the immune defense repertoire of higher organisms. The development and function of lymphoid cells is regulated at many levels one being the control of gene expression by transcription factors. The zinc finger transcriptional repressor Gfi1 has emerged as a factor that is critically implicated in the commitment of precursor cells for the lymphoid lineage. In addition, Gfi1 controls distinct stages of early T- or B-lymphoid development and is also critical for their maturation, activation and effector function. From many years of work, a picture emerges in which Gfi1 is part of a complicated, but well orchestrated network of interdependent regulators, most of which impinge on lymphoid development and activation by transcriptional regulation. Biochemical studies show that Gfi1 is part of a large DNA binding multi-protein complex that enables histone modifications, but may also control alternative pre mRNA splicing. Many insights into the biological role of Gfi1 have been gained through the study of gene deficient mice that have defects in B- and T-cell differentiation, in T-cell selection and polarization processes and in the response of mature B- and T-cells towards antigen. Most importantly, the defects seen in Gfi1 deficient mice also point to roles of Gfi1 in diseases of the immune system that involve auto-immune responses and acute lymphoid leukemia and lymphoma.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | | |
Collapse
|
41
|
GABP transcription factor is required for myeloid differentiation, in part, through its control of Gfi-1 expression. Blood 2011; 118:2243-53. [PMID: 21705494 DOI: 10.1182/blood-2010-07-298802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GABP is an ets transcription factor that regulates genes that are required for myeloid differentiation. The tetrameric GABP complex includes GABPα, which binds DNA via its ets domain, and GABPβ, which contains the transcription activation domain. To examine the role of GABP in myeloid differentiation, we generated mice in which Gabpa can be conditionally deleted in hematopoietic tissues. Gabpa knockout mice rapidly lost myeloid cells, and residual myeloid cells were dysplastic and immunophenotypically abnormal. Bone marrow transplantation demonstrated that Gabpα null cells could not contribute to the myeloid compartment because of cell intrinsic defects. Disruption of Gabpa was associated with a marked reduction in myeloid progenitor cells, and Gabpα null myeloid cells express reduced levels of the transcriptional repressor, Gfi-1. Gabp bound and activated the Gfi1 promoter, and transduction of Gabpa knockout bone marrow with Gfi1 partially rescued defects in myeloid colony formation and myeloid differentiation. We conclude that Gabp is required for myeloid differentiation due, in part, to its regulation of the tran-scriptional repressor Gfi-1.
Collapse
|
42
|
Klein C. Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol 2011; 29:399-413. [PMID: 21219176 DOI: 10.1146/annurev-immunol-030409-101259] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of genetic defects causing congenital neutropenia has illuminated mechanisms controlling differentiation, circulation, and decay of neutrophil granulocytes. Deficiency of the mitochondrial proteins HAX1 and AK2 cause premature apoptosis of myeloid progenitor cells associated with dissipation of the mitochondrial membrane potential, whereas mutations in ELA2/ELANE and G6PC3 are associated with signs of increased endoplasmic reticulum stress. Mutations in the transcriptional repressor GFI1 and the cytoskeletal regulator WASP also lead to defective neutrophil production. This unexpected diversity of factors suggests that multiple pathways are involved in the pathogenesis of congenital neutropenia.
Collapse
Affiliation(s)
- Christoph Klein
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Germany.
| |
Collapse
|
43
|
Abstract
Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms.
Collapse
Affiliation(s)
- Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital (Rigshospitalet), University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
44
|
Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2010; 185:6572-83. [PMID: 20971928 DOI: 10.4049/jimmunol.0904203] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early B cell factor (EBF) is a transcription factor essential for specification and commitment to the B cell fate. In this study, we show downregulation of a developmentally regulated cluster of hoxa genes, notably hoxa9, coincides with induction of EBF at the Pro-B cell stage of B cell differentiation. Analysis of the hematopoietic progenitor compartment in Hoxa9(-/-) mice revealed significantly reduced frequencies and expression levels of Flt3, a cytokine receptor important for lymphoid priming and the generation of B cell precursors (BCPs). We show that Hoxa9 directly regulates the flt3 gene. Chromatin immunoprecipitation analysis revealed binding of Hoxa9 to the flt3 promoter in a lymphoid progenitor cell line. Knockdown of Hoxa9 significantly reduced Flt3 transcription and expression. Conversely, forced expression of Hoxa9 increased Flt3 transcription and expression in a Pro-B cell line that expressed low levels of Flt3. Hoxa9 inversely correlated with ebf1 in ex vivo-isolated bone marrow progenitors and BCPs, suggesting that EBF might function to silence a Hoxa9 transcriptional program. Restoration of EBF function in an EBF(-/-) cell line induced B lineage gene expression but did not directly suppress hoxa9 transcription, revealing alternate mechanisms of Hoxa9 regulation in BCPs. These data provide new insight into Hoxa9 function and regulation during lymphoid and B cell development. Furthermore, they suggest that failure to upregulate Flt3 provides a molecular basis for the lymphoid/early B cell deficiencies in Hoxa9(-/-) mice.
Collapse
Affiliation(s)
- Kimberly Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
45
|
Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T, Donato N, Zhang Y, Martinez RV, Holyoake TL, Calabretta B. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res 2010; 70:7949-59. [PMID: 20924107 DOI: 10.1158/0008-5472.can-10-1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ectopic expression of CAAT/enhancer binding protein α (C/EBPα) in p210BCR/ABL-expressing cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To dissect the molecular mechanisms underlying these biological effects, C/EBPα-regulated genes were identified by microarray analysis in 32D-p210BCR/ABL cells. One of the genes whose expression was activated by C/EBPα in a DNA binding-dependent manner in BCR/ABL-expressing cells is the transcriptional repressor Gfi-1. We show here that C/EBPα interacts with a functional C/EBP binding site in the Gfi-1 5'-flanking region and enhances the promoter activity of Gfi-1. Moreover, in K562 cells, RNA interference-mediated downregulation of Gfi-1 expression partially rescued the proliferation-inhibitory but not the differentiation-inducing effect of C/EBPα. Ectopic expression of wild-type Gfi-1, but not of a transcriptional repressor mutant (Gfi-1P2A), inhibited proliferation and markedly suppressed colony formation but did not induce granulocytic differentiation of BCR/ABL-expressing cells. By contrast, Gfi-1 short hairpin RNA-tranduced CD34(+) chronic myeloid leukemia cells were markedly more clonogenic than the scramble-transduced counterpart. Together, these studies indicate that Gfi-1 is a direct target of C/EBPα required for its proliferation and survival-inhibitory effects in BCR/ABL-expressing cells.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gfi1-cells and circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol 2010; 17:300-7. [PMID: 20571393 DOI: 10.1097/moh.0b013e32833a06f8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The review will integrate current knowledge of transcriptional circuits whose dysregulation leads to autoimmunity, neutropenia and leukemia. RECENT FINDINGS Growth factor independent-1 (Gfi1) is a transcriptional repressor with essential roles in controlling hematopoietic stem cell biology, myeloid and lymphoid differentiation and lymphocyte effector functions. Recent work has suggested that Gfi1 competes or collaborates with other transcription factors to modulate transcription programs and lineage decisions. SUMMARY Gfi1 is central to several transcriptional circuits whose dysregulation leads to abnormal or malignant hematopoiesis. These functional relationships are conserved from Drosophila development. Such conserved pathways represent central oncogenic or 'gatekeeper' pathways that are pivotal to understanding the process of cellular transformation, and illustrate key targets for clinical intervention.
Collapse
|
47
|
van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24:1834-43. [DOI: 10.1038/leu.2010.195] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Li H, Ji M, Klarmann KD, Keller JR. Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood 2010; 116:1060-9. [PMID: 20453161 PMCID: PMC2938128 DOI: 10.1182/blood-2009-11-255075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/01/2010] [Indexed: 02/06/2023] Open
Abstract
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells, T cells, neutrophils, and for the maintenance of hematopoietic stem cell function. However, the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here, we provide evidence that Id2 is a transcriptional target of Gfi-1, and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors, myeloid progenitors, T-cell progenitors, and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
Collapse
Affiliation(s)
- Huajie Li
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
49
|
Identification of E74-like factor 1 (ELF1) as a transcriptional regulator of the Hox cofactor MEIS1. Exp Hematol 2010; 38:798-8, 808.e1-2. [PMID: 20600580 DOI: 10.1016/j.exphem.2010.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Myeloid ectropic viral integration site 1 (MEIS1) is a Hox cofactor known for its role in development and is strongly linked to normal and leukemic hematopoiesis. Although previous studies have focused on identifying protein partners of MEIS1 and its transcriptionally regulated targets, little is known about the upstream transcriptional regulators of this tightly regulated gene. Understanding the regulation of MEIS1 is important to understanding normal hematopoiesis and leukemogenesis. MATERIALS AND METHODS Here we describe our studies focusing on the evolutionary conserved putative MEIS1 promoter region. Phylogenetic sequence analysis and reporter assays in MEIS1-expressing (K562) and nonexpressing (HL60) leukemic cell line models were used to identify key regulatory regions and potential transcription factor binding sites within the candidate promoter region followed by functional and expression studies of one identified regulator in both cell lines and primary human cord blood and leukemia samples. RESULTS Chromatin status of MEIS1 promoter region is associated with MEIS1 expression. Truncation and mutation studies coupled with reporter assays revealed that a conserved ETS family member binding site located 289 bp upstream of the annotated human MEIS1 transcription start site is required for promoter activity. Of the three ETS family members tested, only ELF1 was enriched on the MEIS1 promoter as assessed by both electrophoretic mobility shift assay and chromatin immunoprecipitation experiments in K562. This finding was confirmed in MEIS1-expressing primary human samples. Moreover, small interfering RNA-mediated knockdown of ELF1 in K562 cells was associated with a decreased MEIS1 expression. CONCLUSIONS We conclude that the ETS transcription factor ELF1 is an important positive regulator of MEIS1 expression.
Collapse
|
50
|
Kong KY, Owens KS, Rogers JH, Mullenix J, Velu CS, Grimes HL, Dahl R. MIR-23A microRNA cluster inhibits B-cell development. Exp Hematol 2010; 38:629-640.e1. [PMID: 20399246 DOI: 10.1016/j.exphem.2010.04.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The transcription factor PU.1 (encoded by Sfpi1) promotes myeloid differentiation, but it is unclear what downstream genes are involved. Micro RNAs (miRNAs) are a class of small RNAs that regulate many cellular pathways, including proliferation, survival, and differentiation. The objective of this study was to identify miRNAs downstream of PU.1 that regulate hematopoietic development. MATERIALS AND METHODS miRNAs that change expression in a PU.1-inducible cell line were identified with microarrays. The promoter for an miRNA cluster upregulated by PU.1 induction was analyzed for PU.1 binding by electrophoretic mobility shift and chromatin immunoprecipitation assays. Retroviral transduction of hematopoietic progenitors was performed to evaluate the effect of miRNA expression on hematopoietic development in vitro and in vivo. RESULTS We identified an miRNA cluster whose pri-transcript is regulated by PU.1. The pri-miRNA encodes three mature miRNAs: miR-23a, miR-27a, and miR-24-2. Each miRNA is more abundant in myeloid cells compared to lymphoid cells. When hematopoietic progenitors expressing the 23a cluster miRNAs were cultured in B-cell-promoting conditions, we observed a dramatic decrease in B lymphopoiesis and an increase in myelopoiesis compared to control cultures. In vivo, hematopoietic progenitors expressing the miR-23a cluster generate reduced numbers of B cells compared to control cells. CONCLUSIONS The miR-23a cluster is a downstream target of PU.1 involved in antagonizing lymphoid cell fate acquisition. Although miRNAs have been identified downstream of PU.1 in mediating development of monocytes and granulocytes, the 23a cluster is the first downstream miRNA target implicated in regulating development of myeloid vs lymphoid cells.
Collapse
Affiliation(s)
- Kimi Y Kong
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Kristin S Owens
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Jason H Rogers
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Jason Mullenix
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Chinavenmeni S Velu
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Richard Dahl
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM.,Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM
| |
Collapse
|