1
|
Niibori-Nambu A, Wang CQ, Chin DWL, Chooi JY, Hosoi H, Sonoki T, Tham CY, Nah GSS, Cirovic B, Tan DQ, Takizawa H, Sashida G, Goh Y, Tng J, Fam WN, Fullwood MJ, Suda T, Yang H, Tergaonkar V, Taniuchi I, Li S, Chng WJ, Osato M. Integrin-α9 overexpression underlies the niche-independent maintenance of leukemia stem cells in acute myeloid leukemia. Gene 2024; 928:148761. [PMID: 39002785 DOI: 10.1016/j.gene.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Branko Cirovic
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jiaqi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; National University Cancer Institute, Singapore; National University Health System, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan.
| |
Collapse
|
2
|
Şeker ME, Erol ÖD, Pervin B, Wagemaker G, van Til NP, Aerts-Kaya F. Assessment of non-myelotoxic agents as a preparatory regimen for hematopoietic stem cell gene therapy. Hum Cell 2024; 38:9. [PMID: 39460845 DOI: 10.1007/s13577-024-01130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
RAG2 deficiency is characterized by a lack of B and T lymphocytes, causing severe lethal infections. Currently, RAG2 deficiency is treated with a Hematopoietic Stem Cell transplantation (HSCT). Most conditioning regimens used before HSCT consist of alkylating myelotoxic agents with or without irradiation and affect growth and development of pediatric patients. Here, we developed a non-myelotoxic regimen using G-CSF, VLA-4I or AMD3100. These agents are known HSC mobilizers or affect bone marrow (BM) permeability and may support the homing of HSCs to the BM, without inducing major side effects. Female Rag2-/- mice were pre-treated with Busulfan (BU), G-CSF, VLA-4I or AMD3100 and transplanted with male BM cells transduced with a lentiviral vector carrying codon optimized human RAG2 (RAG2co). Peripheral blood cell counts increased significantly after G-CSF, VLA-4I and AMD3100 treatment, but not after BU. Reconstitution of PB lymphocytes was comparable for all groups with full immune reconstitution at 6 months post transplantation, despite different methods of conditioning. Survival of mice pre-treated with non-myelotoxic agents was significantly higher than after BU treatment. Here, we show that the non-myelotoxic agents G-CSF, VLA-4I, and AMD3100 are highly effective as conditioning regimen before HSC gene therapy and can be used as an alternative to BU.
Collapse
Affiliation(s)
- Mehmet Emin Şeker
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Özgür Doğuş Erol
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
- Department of Hematology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
- Hacettepe University Experimental Animals Application and Research Center (HÜDHAM), Hacettepe University, Ankara, Turkey.
- Hacettepe University Advanced Techologies Application and Research Center (HÜNİTEK), Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Wang HC, Chen R, Yang W, Li Y, Muthukumar R, Patel RM, Casey EB, Denby E, Magee JA. Kmt2c restricts G-CSF-driven HSC mobilization and granulocyte production in a methyltransferase-independent manner. Cell Rep 2024; 43:114542. [PMID: 39046877 PMCID: PMC11423277 DOI: 10.1016/j.celrep.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.
Collapse
Affiliation(s)
- Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Muthukumar
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Elisabeth Denby
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Ruminski PG, Rettig MP, DiPersio JF. Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells. Biomolecules 2024; 14:1003. [PMID: 39199390 PMCID: PMC11353233 DOI: 10.3390/biom14081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA
| |
Collapse
|
5
|
Chen H, Yin W, Yao K, Liang J, Cai J, Sui X, Zhao X, Zhang J, Xiao J, Li R, Liu Q, Yao J, You G, Liu Y, Jiang C, Qiu X, Wang T, You Q, Zhang Y, Yang M, Zheng J, Dai Z, Yang Y. Mesenchymal Stem Cell Membrane-Camouflaged Liposomes for Biomimetic Delivery of Cyclosporine A for Hepatic Ischemia-Reperfusion Injury Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404171. [PMID: 39031840 PMCID: PMC11348201 DOI: 10.1002/advs.202404171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Indexed: 07/22/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a prevalent issue during liver resection and transplantation, with currently no cure or FDA-approved therapy. A promising drug, Cyclosporin A (CsA), ameliorates HIRI by maintaining mitochondrial homeostasis but has systemic side effects due to its low bioavailability and high dosage requirements. This study introduces a biomimetic CsA delivery system that directly targets hepatic lesions using mesenchymal stem cell (MSC) membrane-camouflaged liposomes. These hybrid nanovesicles (NVs), leveraging MSC-derived proteins, demonstrate efficient inflammatory chemotaxis, transendothelial migration, and drug-loading capacity. In a HIRI mouse model, the biomimetic NVs accumulated at liver injury sites entered hepatocytes, and significantly reduced liver damage and restore function using only one-tenth of the CsA dose typically required. Proteomic analysis verifies the protection mechanism, which includes reactive oxygen species inhibition, preservation of mitochondrial integrity, and reduced cellular apoptosis, suggesting potential for this biomimetic strategy in HIRI intervention.
Collapse
Affiliation(s)
- Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Wen Yin
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Kang Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xin Sui
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Xuegang Zhao
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Qiuli Liu
- The Biotherapy Centerthe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Guohua You
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xiaotong Qiu
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Tingting Wang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Qiang You
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatobiliary SurgeryPeople's Hospital of Xinjiang Uyghur Autonomous RegionUrumqi830001China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Zong Dai
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
6
|
Leonard A, Weiss MJ. Hematopoietic stem cell collection for sickle cell disease gene therapy. Curr Opin Hematol 2024; 31:104-114. [PMID: 38359264 PMCID: PMC11414477 DOI: 10.1097/moh.0000000000000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Gene therapy for sickle cell disease (SCD) is advancing rapidly, with two transformative products recently approved by the US Food and Drug Administration and numerous others under study. All current gene therapy protocols require ex vivo modification of autologous hematopoietic stem cells (HSCs). However, several SCD-related problems impair HSC collection, including a stressed and damaged bone marrow, potential cytotoxicity by the major therapeutic drug hydroxyurea, and inability to use granulocyte colony stimulating factor, which can precipitate severe vaso-occlusive events. RECENT FINDINGS Peripheral blood mobilization of HSCs using the CXCR4 antagonist plerixafor followed by apheresis collection was recently shown to be safe and effective for most SCD patients and is the current strategy for mobilizing HSCs. However, exceptionally large numbers of HSCs are required to manufacture an adequate cellular product, responses to plerixafor are variable, and most patients require multiple mobilization cycles, increasing the risk for adverse events. For some, gene therapy is prohibited by the failure to obtain adequate numbers of HSCs. SUMMARY Here we review the current knowledge on HSC collection from individuals with SCD and potential improvements that may enhance the safety, efficacy, and availability of gene therapy for this disorder.
Collapse
Affiliation(s)
- Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
7
|
Cancilla D, Rettig MP, Karpova D, Thakellapalli H, Singh M, Meyers MJ, Ruminski PG, Christ S, Chendamarai E, Gao F, Gehrs L, Ritchey JK, Prinsen M, DiPersio JF. Targeting CXCR4, VLA-4, and CXCR2 for hematopoietic stem cell mobilization. Blood Adv 2024; 8:1379-1383. [PMID: 38190608 PMCID: PMC10945136 DOI: 10.1182/bloodadvances.2023011653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Daniel Cancilla
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Darja Karpova
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Haresh Thakellapalli
- Department of Chemistry, Saint Louis University School of Science and Engineering, St. Louis, MO
| | - Megh Singh
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Marvin J. Meyers
- Saint Louis University School of Medicine, St. Louis, MO
- Department of Chemistry, Saint Louis University School of Science and Engineering, St. Louis, MO
| | - Peter G. Ruminski
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Saint Louis University School of Medicine, St. Louis, MO
| | - Stephanie Christ
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ezhilarasi Chendamarai
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Feng Gao
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Leah Gehrs
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Julie K. Ritchey
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - John F. DiPersio
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Soukup AA, Bresnick EH. Gata2 noncoding genetic variation as a determinant of hematopoietic stem/progenitor cell mobilization efficiency. Blood Adv 2023; 7:7564-7575. [PMID: 37871305 PMCID: PMC10761364 DOI: 10.1182/bloodadvances.2023011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
9
|
Canarutto D, Omer Javed A, Pedrazzani G, Ferrari S, Naldini L. Mobilization-based engraftment of haematopoietic stem cells: a new perspective for chemotherapy-free gene therapy and transplantation. Br Med Bull 2023; 147:108-120. [PMID: 37460391 PMCID: PMC10502445 DOI: 10.1093/bmb/ldad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION In haematopoietic stem cell transplantation (HSCT), haematopoietic stem cells (HSCs) from a healthy donor replace the patient's ones. Ex vivo HSC gene therapy (HSC-GT) is a form of HSCT in which HSCs, usually from an autologous source, are genetically modified before infusion, to generate a progeny of gene-modified cells. In HSCT and HSC-GT, chemotherapy is administered before infusion to free space in the bone marrow (BM) niche, which is required for the engraftment of infused cells. Here, we review alternative chemotherapy-free approaches to niche voidance that could replace conventional regimens and alleviate the morbidity of the procedure. SOURCES OF DATA Literature was reviewed from PubMed-listed peer-reviewed articles. No new data are presented in this article. AREAS OF AGREEMENT Chemotherapy exerts short and long-term toxicity to haematopoietic and non-haematopoietic organs. Whenever chemotherapy is solely used to allow engraftment of donor HSCs, rather than eliminating malignant cells, as in the case of HSC-GT for inborn genetic diseases, non-genotoxic approaches sparing off-target tissues are highly desirable. AREAS OF CONTROVERSY In principle, HSCs can be temporarily moved from the BM niches using mobilizing drugs or selectively cleared with targeted antibodies or immunotoxins to make space for the infused cells. However, translation of these principles into clinically relevant settings is only at the beginning, and whether therapeutically meaningful levels of chimerism can be safely established with these approaches remains to be determined. GROWING POINTS In pre-clinical models, mobilization of HSCs from the niche can be tailored to accommodate the exchange and engraftment of infused cells. Infused cells can be further endowed with a transient engraftment advantage. AREAS TIMELY FOR DEVELOPING RESEARCH Inter-individual efficiency and kinetics of HSC mobilization need to be carefully assessed. Investigations in large animal models of emerging non-genotoxic approaches will further strengthen the rationale and encourage application to the treatment of selected diseases.
Collapse
Affiliation(s)
- Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| |
Collapse
|
10
|
Roy IM, Anu P, Zaunz S, Reddi S, Giri AM, Sankar RS, Schouteden S, Huelsken J, Verfaillie CM, Khurana S. Inhibition of SRC-mediated integrin signaling in bone marrow niche enhances hematopoietic stem cell function. iScience 2022; 25:105171. [PMID: 36204266 PMCID: PMC9530850 DOI: 10.1016/j.isci.2022.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Interaction with microenvironmental factors is crucial for the regulation of hematopoietic stem cell (HSC) function. Stroma derived factor (SDF)-1α supports HSCs in the quiescent state and is central to the homing of transplanted HSCs. Here, we show that integrin signaling regulates Sdf-1α expression transcriptionally. Systemic deletion of Periostin, an Integrin-αv ligand, showed increased expression of Sdf-1α in bone marrow (BM) niche. Pharmacological inhibition or CRISPR-Cas9-mediated deletion of SRC, resulted in a similar increase in the chemokine expression in vitro. Importantly, systemic SRC-inhibition led to increase in SDF-1α levels in BM plasma. This resulted in a robust increase (14.05 ± 1.22% to 29.11 ± 0.69%) in the homing efficiency of transplanted HSCs. In addition, we observed enhancement in the recovery of blood cell counts following radiation injury, indicating an enhanced hematopoietic function. These results establish a role of SRC-mediated integrin signaling in the transcriptional regulation of Sdf-1α. This mechanism could be harnessed further to improve the hematopoietic function.
Collapse
Affiliation(s)
- Irene Mariam Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - P.V. Anu
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | | | - Srinu Reddi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Aravind M. Giri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Rithika Saroj Sankar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | | | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
11
|
Omer-Javed A, Pedrazzani G, Albano L, Ghaus S, Latroche C, Manzi M, Ferrari S, Fiumara M, Jacob A, Vavassori V, Nonis A, Canarutto D, Naldini L. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 2022; 185:2248-2264.e21. [PMID: 35617958 PMCID: PMC9240327 DOI: 10.1016/j.cell.2022.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT. HSPC mobilizers create an opportunity to engraft exogenous cells in depleted niches Ex vivo culture endows HSPCs with migration advantage by rescuing CXCR4 expression Cultured HSPCs outcompete mobilized HSPCs for engraftment in depleted BM niches Transient engraftment enhancers coupled with gene editing confer a competitive advantage
Collapse
Affiliation(s)
- Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sherash Ghaus
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maura Manzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Nonis
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
12
|
Tao X, Zhang R, Du R, Yu T, Yang H, Li J, Wang Y, Liu Q, Zuo S, Wang X, Lazarus M, Zhou L, Wang B, Yu Y, Shen Y. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model. J Exp Med 2022; 219:213141. [PMID: 35420633 DOI: 10.1084/jem.20212414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells exhibit antifibrotic properties in liver fibrosis (LF) by suppressing activated hepatic stellate cell (HSC) populations. Prostaglandin E2 (PGE2) plays a dual role in innate and adaptive immunity. Here, we found that E-prostanoid 3 receptor (EP3) was markedly downregulated in NK cells from liver fibrosis mice and patients with liver cirrhosis. NK cell-specific deletion of EP3 aggravated hepatic fibrogenesis in mouse models of LF. Loss of EP3 selectively reduced the cytotoxicity of the CD27+CD11b+ double positive (DP) NK subset against activated HSCs. Mechanistically, deletion of EP3 impaired the adhesion and cytotoxicity of DP NK cells toward HSCs through modulation of Itga4-VCAM1 binding. EP3 upregulated Itga4 expression in NK cells through promoting Spic nuclear translocation via PKC-mediated phosphorylation of Spic at T191. Activation of EP3 by sulprostone alleviated CCL4-induced liver fibrosis in mice. Thus, EP3 is required for adhesion and cytotoxicity of NK cells toward HSCs and may serve as a therapeutic target for the management of LF.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Hathi D, Chanswangphuwana C, Cho N, Fontana F, Maji D, Ritchey J, O'Neal J, Ghai A, Duncan K, Akers WJ, Fiala M, Vij R, DiPersio JF, Rettig M, Shokeen M. Ablation of VLA4 in multiple myeloma cells redirects tumor spread and prolongs survival. Sci Rep 2022; 12:30. [PMID: 34996933 PMCID: PMC8741970 DOI: 10.1038/s41598-021-03748-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a cancer of bone marrow (BM) plasma cells, which is increasingly treatable but still incurable. In 90% of MM patients, severe osteolysis results from pathological interactions between MM cells and the bone microenvironment. Delineating specific molecules and pathways for their role in cancer supportive interactions in the BM is vital for developing new therapies. Very Late Antigen 4 (VLA4, integrin α4β1) is a key player in cell–cell adhesion and signaling between MM and BM cells. We evaluated a VLA4 selective near infrared fluorescent probe, LLP2A-Cy5, for in vitro and in vivo optical imaging of VLA4. Furthermore, two VLA4-null murine 5TGM1 MM cell (KO) clones were generated by CRISPR/Cas9 knockout of the Itga4 (α4) subunit, which induced significant alterations in the transcriptome. In contrast to the VLA4+ 5TGM1 parental cells, C57Bl/KaLwRij immunocompetent syngeneic mice inoculated with the VLA4-null clones showed prolonged survival, reduced medullary disease, and increased extramedullary disease burden. The KO tumor foci showed significantly reduced uptake of LLP2A-Cy5, confirming in vivo specificity of this imaging agent. This work provides new insights into the pathogenic role of VLA4 in MM, and evaluates an optical tool to measure its expression in preclinical models.
Collapse
Affiliation(s)
- Deep Hathi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Chantiya Chanswangphuwana
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Medicine, Division of Hematology, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nicholas Cho
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Francesca Fontana
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolonchampa Maji
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie Ritchey
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie O'Neal
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anchal Ghai
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Walter J Akers
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark Fiala
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravi Vij
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Rettig
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA. .,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand-Lions M. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia. Front Immunol 2021; 12:756231. [PMID: 34867994 PMCID: PMC8636127 DOI: 10.3389/fimmu.2021.756231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC's homeostasis regulation. Since the 90's, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.
Collapse
Affiliation(s)
- Julien M P Grenier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Céline Testut
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Stéphane J C Mancini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| |
Collapse
|
15
|
Porfyriou E, Letsa S, Kosmas C. Hematopoietic stem cell mobilization strategies to support high-dose chemotherapy: A focus on relapsed/refractory germ cell tumors. World J Clin Oncol 2021; 12:746-766. [PMID: 34631440 PMCID: PMC8479351 DOI: 10.5306/wjco.v12.i9.746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
High-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation has been explored and has played an important role in the management of patients with high-risk germ cell tumors (GCTs) who failed to be cured by conventional chemotherapy. Hematopoietic stem cells (HSCs) collected from the peripheral blood, after appropriate pharmacologic mobilization, have largely replaced bone marrow as the principal source of HSCs in transplants. As it is currently common practice to perform tandem or multiple sequential cycles of HDCT, it is anticipated that collection of large numbers of HSCs from the peripheral blood is a prerequisite for the success of the procedure. Moreover, the CD34+ cell dose/kg of body weight infused after HDCT has proven to be a major determinant of hematopoietic engraftment, with patients who receive > 2 × 106 CD34+ cells/kg having consistent, rapid, and sustained hematopoietic recovery. However, many patients with relapsed/refractory GCTs have been exposed to multiple cycles of myelosuppressive chemotherapy, which compromises the efficacy of HSC mobilization with granulocyte colony-stimulating factor with or without chemotherapy. Therefore, alternative strategies that use novel agents in combination with traditional mobilizing regimens are required. Herein, after an overview of the mechanisms of HSCs mobilization, we review the existing literature regarding studies reporting various HSC mobilization approaches in patients with relapsed/refractory GCTs, and finally report newer experimental mobilization strategies employing novel agents that have been applied in other hematologic or solid malignancies.
Collapse
Affiliation(s)
- Eleni Porfyriou
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Sylvia Letsa
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Christos Kosmas
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
16
|
Patel SA, Dalela D, Fan AC, Lloyd MR, Zhang TY. Niche-directed therapy in acute myeloid leukemia: optimization of stem cell competition for niche occupancy. Leuk Lymphoma 2021; 63:10-18. [PMID: 34407733 DOI: 10.1080/10428194.2021.1966779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of stem cell origin that contributes to significant morbidity and mortality. The long-term prognosis remains dismal given the high likelihood for primary refractory or relapsed disease. An essential component of relapse is resurgence from the bone marrow. To date, the murine hematopoietic stem cell (HSC) niche has been clearly defined, but the human HSC niche is less well understood. The design of niche-based targeted therapies for AML must account for which cellular subsets compete for stem cell occupancy within respective bone marrow microenvironments. In this review, we highlight the principles of stem cell niche biology and discuss translational insights into the AML microenvironment as of 2021. Optimization of competition for niche occupancy is important for the elimination of measurable residual disease (MRD). Some of these novel therapeutics are in the pharmacologic pipeline for AML and may be especially useful in the setting of MRD.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Disha Dalela
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy C Fan
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxwell R Lloyd
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tian Y Zhang
- Department of Medicine, Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2021; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for
hematological malignancies and some nonhematologic diseases. Hematopoietic stem
and progenitor cells (HSPCs) collected from peripheral blood after mobilization
are the primary source to provide HSC transplantation. In most of the cases,
mobilization by the cytokine granulocyte colony-stimulating factor with
chemotherapy, and in some settings, with the CXC chemokine receptor type 4
antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells
(HPCs). However, adequate mobilization is not always successful in a significant
portion of donors. Research is going on to find new agents or strategies to
increase HSC mobilization. Here, we briefly review the history of HSC
transplantation, current mobilization regimens, some of the novel agents that
are under investigation for clinical practice, and our recent findings from
animal studies regarding Notch and ligand interaction as potential targets for
HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center, PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
19
|
Mehatre SH, Roy IM, Biswas A, Prit D, Schouteden S, Huelsken J, Verfaillie CM, Khurana S. Niche-Mediated Integrin Signaling Supports Steady-State Hematopoiesis in the Spleen. THE JOURNAL OF IMMUNOLOGY 2021; 206:1549-1560. [PMID: 33637617 DOI: 10.4049/jimmunol.2001066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Outside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of periostin (POSTN) and integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage-dependent functional effects. In this study, we examined the role of POSTN-ITGAV axis in lymphohematopoietic activity in spleen that hosts a rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre-mediated deletion of Itgav in the hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in the adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav-/- mice. Histological examination of Postn-deficient spleen also showed an increase in the spleen trabecular areas. Importantly, these are the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn-deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays an important role in spleen lymphohematopoiesis.
Collapse
Affiliation(s)
- Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Irene Mariam Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Devila Prit
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Sarah Schouteden
- Interdepartmental Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Catherine M Verfaillie
- Interdepartmental Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India;
| |
Collapse
|
20
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex’s actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Mahmood A, Seetharaman R, Kshatriya P, Patel D, Srivastava AS. Stem Cell Transplant for Advanced Stage Liver Disorders: Current Scenario and Future Prospects. Curr Med Chem 2021; 27:6276-6293. [PMID: 31584360 DOI: 10.2174/0929867326666191004161802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach. OBJECTIVE This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined. METHOD The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as "liver disorder and Mesenchymal Stem Cells (MSCs)", "liver cirrhosis and MSCs" and "liver disorder and SCs". Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses. RESULTS The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis. CONCLUSION The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.
Collapse
Affiliation(s)
| | | | | | | | - Anand S Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
22
|
Chen J, Lazarus HM, Dahi PB, Avecilla S, Giralt SA. Getting blood out of a stone: Identification and management of patients with poor hematopoietic cell mobilization. Blood Rev 2020; 47:100771. [PMID: 33213986 DOI: 10.1016/j.blre.2020.100771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic cell transplantation (HCT) has become a primary treatment for many cancers. Nowadays, the primary source of hematopoietic cells is by leukapheresis collection of these cells from peripheral blood, after a forced egress of hematopoietic cells from marrow into blood circulation, a process known as "mobilization". In this process, mobilizing agents disrupt binding interactions between hematopoietic cells and marrow microenvironment to facilitate collection. As the first essential step of HCT, poor mobilization, i.e. failure to obtain a desired or required number of hematopoietic cell, is one of the major factors affecting engraftment or even precluding transplantation. This review summarizes the available mobilization regimens using granulocyte-colony stimulating factor (G-CSF) and plerixafor, as well as the current understanding of the factors that are associated with poor mobilization. Strategies to mobilize patients or healthy donors who failed previous mobilization are discussed. Multiple novel agents are under investigation and some of them have shown the potential to enhance the mobilization response to G-CSF and/or plerixafor. Further investigation of the risk factors including genetic factors will offer an opportunity to better understand the molecular mechanism of mobilization and help develop new therapeutic strategies for successful mobilizations.
Collapse
Affiliation(s)
- Jian Chen
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Parastoo B Dahi
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
23
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
24
|
Floren M, Restrepo Cruz S, Termini CM, Marjon KD, Lidke KA, Gillette JM. Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene 2020; 39:3910-3925. [PMID: 32203165 PMCID: PMC7210072 DOI: 10.1038/s41388-020-1261-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
A principal challenge in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. As such, there remains a critical need to identify key regulators of chemotherapy resistance in AML. In this study, we demonstrate that the membrane scaffold, CD82, contributes to the chemoresistant phenotype of AML. Using an RNA-seq approach, we identified the increased expression of the tetraspanin family member, CD82, in response to the chemotherapeutic, daunorubicin. Analysis of the TARGET and BEAT AML databases identifies a correlation between CD82 expression and overall survival of AML patients. Moreover, using a combination of cell lines and patient samples, we find that CD82 overexpression results in significantly reduced cell death in response to chemotherapy. Investigation of the mechanism by which CD82 promotes AML survival in response to chemotherapy identified a crucial role for enhanced protein kinase c alpha (PKCα) signaling and downstream activation of the β1 integrin. In addition, analysis of β1 integrin clustering by super-resolution imaging demonstrates that CD82 expression promotes the formation of dense β1 integrin membrane clusters. Lastly, evaluation of survival signaling following daunorubicin treatment identified robust activation of p38 mitogen-activated protein kinase (MAPK) downstream of PKCα and β1 integrin signaling when CD82 is overexpressed. Together, these data propose a mechanism where CD82 promotes chemoresistance by increasing PKCα activation and downstream activation/clustering of β1 integrin, leading to AML cell survival via activation of p38 MAPK. These observations suggest that the CD82-PKCα signaling axis may be a potential therapeutic target for attenuating chemoresistance signaling in AML.
Collapse
Affiliation(s)
- Muskan Floren
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sebastian Restrepo Cruz
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
25
|
Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells Int 2019; 2019:6789823. [PMID: 32082386 PMCID: PMC7012201 DOI: 10.1155/2019/6789823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Skin regeneration is a vexing problem in the field of regenerative medicine. A bioactive molecule-based strategy has been frequently used in skin wound healing in recent years. Bioactive molecules are practical tools for regulating cellular processes and have been applied to control cellular differentiation, dedifferentiation, and reprogramming. In this review, we focus on recent progress in the use of bioactive molecules in skin regenerative medicine, by which desired cell types can be generated in vitro for cell therapy and conventional therapeutics can be developed to repair and regenerate skin in vivo through activation of the endogenous repairing potential. We further prospect that the bioactive molecule-base method might be one of the promising strategies to achieve in situ skin regeneration in the future.
Collapse
|
26
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
27
|
Smith-Berdan S, Bercasio A, Rajendiran S, Forsberg EC. Viagra Enables Efficient, Single-Day Hematopoietic Stem Cell Mobilization. Stem Cell Reports 2019; 13:787-792. [PMID: 31607567 PMCID: PMC6895718 DOI: 10.1016/j.stemcr.2019.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is a curative treatment for a variety of blood and immune disorders. Currently available methods to obtain donor HSCs are suboptimal, and the limited supply of donor HSCs hampers the success and availability of HSC transplantation therapies. We recently showed that manipulation of vascular integrity can be employed to induce HSC mobilization from the bone marrow to the blood stream, facilitating non-invasive collection of HSCs. Here, we tested whether FDA-approved vasodilators are capable of mobilizing HSCs. We found that a rapid, 2-h regimen of a single oral dose of Viagra (sildenafil citrate) combined with a single injection of the CXCR4 antagonist AMD3100 leads to efficient HSC mobilization at levels rivaling the standard-of-care 5-day regimen of granulocyte-colony stimulating factor (G-CSF/Filgrastim/Neupogen). Our findings solidify vascular integrity as an essential regulator of HSC trafficking and provide an attractive, single-day regimen for HSC mobilization using already FDA-approved drugs. Viagra enhances AMD3100-mediated HSC mobilization Extremely rapid and efficient HSC mobilization with two FDA-approved drugs Vascular integrity regulates HSC trafficking
Collapse
Affiliation(s)
- Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Alyssa Bercasio
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Smrithi Rajendiran
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
28
|
Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells 2019; 8:cells8090985. [PMID: 31461896 PMCID: PMC6770910 DOI: 10.3390/cells8090985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4β1 and α9β1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4β1 and α9β1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4β1 and α9β1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.
Collapse
|
29
|
Phc2 controls hematopoietic stem and progenitor cell mobilization from bone marrow by repressing Vcam1 expression. Nat Commun 2019; 10:3496. [PMID: 31375680 PMCID: PMC6677815 DOI: 10.1038/s41467-019-11386-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2019] [Indexed: 01/04/2023] Open
Abstract
The timely mobilization of hematopoietic stem and progenitor cells (HSPCs) is essential for maintaining hematopoietic and tissue leukocyte homeostasis. Understanding how HSPCs migrate between bone marrow (BM) and peripheral tissues is of great significance in the clinical setting, where therapeutic strategies for modulating their migration capacity determine the clinical outcome. Here, we identify an epigenetic regulator, Phc2, as a critical modulator of HSPC trafficking. The genetic ablation of Phc2 in mice causes a severe defect in HSPC mobilization through the derepression of Vcam1 in bone marrow stromal cells (BMSCs), ultimately leading to a systemic immunodeficiency. Moreover, the pharmacological inhibition of VCAM-1 in Phc2-deficient mice reverses the symptoms. We further determine that Phc2-dependent Vcam1 repression in BMSCs is mediated by the epigenetic regulation of H3K27me3 and H2AK119ub. Together, our data demonstrate a cell-extrinsic role for Phc2 in controlling the mobilization of HSPCs by finely tuning their bone marrow niche. Mobilization of hematopoietic stem and progenitor cells (HSPCs) into the circulation is essential for maintaining homeostasis. Here, the authors show that Phc2 in bone marrow stromal cells represses the cell adhesion molecule Vcam1 and facilitates mobilization of HSPCs through regulation of epigenetic marks.
Collapse
|
30
|
Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel Ligands Targeting α 4β 1 Integrin: Therapeutic Applications and Perspectives. Front Chem 2019; 7:489. [PMID: 31338363 PMCID: PMC6629825 DOI: 10.3389/fchem.2019.00489] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among the other members of the adhesion molecules' family, α4β1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4β1 functions in human pathologies, we report an overview of synthetic α4β1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4β1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,” University of Bologna, Bologna, Italy
| | | |
Collapse
|
31
|
Long-Acting IL-33 Mobilizes High-Quality Hematopoietic Stem and Progenitor Cells More Efficiently Than Granulocyte Colony-Stimulating Factor or AMD3100. Biol Blood Marrow Transplant 2019; 25:1475-1485. [PMID: 31163266 DOI: 10.1016/j.bbmt.2019.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
Mobilization of hematopoietic stem and progenitor cells (HSPCs) has become increasingly important for hematopoietic cell transplantation. Current mobilization approaches are insufficient because they fail to mobilize sufficient numbers of cells in a significant fraction of patients and are biased toward myeloid immune reconstitution. A novel, single drug mobilization agent that allows a more balanced (myeloid and lymphoid) reconstitution would therefore be highly favorable to improve transplantation outcome. In this present study, we tested commercially available IL-33 molecules and engineered novel variants of IL-33. These molecules were tested in cell-based assays in vitro and in mobilization models in vivo. We observed for the first time that IL-33 treatment in mice mobilized HSPCs and common myeloid progenitors more efficiently than clinical mobilizing agents granulocyte colony-stimulating factor (G-CSF) or AMD3100. We engineered several oxidation-resistant IL-33 variants with equal or better in vitro activity. In vivo, these variants mobilized HSPCs and, interestingly, also hematopoietic stem cells, common lymphoid progenitor cells, and endothelial progenitor cells more efficiently than wild-type IL-33 or G-CSF. We then engineered an IL-33-Fc fusion molecule, a single dose of which was sufficient to significantly increase the mobilization of HSPCs after 4 days. In conclusion, our findings suggest that long-acting, oxidation-resistant IL-33 may be a novel approach for HSPC transplantation. IL-33-mobilized HSPCs differ from cells mobilized with G-CSF and AMD3100, and it is possible that these differences may result in better transplantation outcomes.
Collapse
|
32
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Role of stem cell mobilization in the treatment of ischemic diseases. Arch Pharm Res 2019; 42:224-231. [PMID: 30680545 DOI: 10.1007/s12272-019-01123-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
Abstract
Stem cell mobilization plays important roles in the treatment of severe ischemic diseases, including myocardial infarction, limb ischemia, ischemic stroke, and acute kidney injury. Stem cell mobilization refers to the egress of heterogeneous stem cells residing in the bone marrow into the peripheral blood. In the clinic, granulocyte colony-stimulating factor (G-CSF) is the drug most commonly used to induce stem cell mobilization. Plerixafor, a direct antagonist of CXCR4, is also frequently used alone or in combination with G-CSF to mobilize stem cells. The molecular mechanisms by which G-CSF induces stem cell mobilization are well characterized. Briefly, G-CSF activates neutrophils in the bone marrow, which then release proteolytic enzymes, such as neutrophil elastase, cathepsin G, and matrix metalloproteinase 9, which cleave a variety of molecules responsible for stem cell retention in the bone marrow, including CXCL12, VCAM-1, and SCF. Subsequently, stem cells are released from the bone marrow into the peripheral blood. The released stem cells can be collected and used in autologous or allogeneic transplantation. To identify better conditions for stem cell mobilization in the treatment of acute and chronic ischemic diseases, several preclinical and clinical studies have been conducted over the past decade on various mobilizing agents. In this paper, we are going to review methods that induce mobilization of stem cells from the bone marrow and introduce the application of stem cell mobilization to therapy of ischemic diseases.
Collapse
|
34
|
Abstract
THE PURPOSE OF REVIEW Mobilized peripheral blood is the predominant source of stem and progenitor cells for hematologic transplantation. Successful transplant requires sufficient stem cells of high enough quality to recapitulate lifelong hematopoiesis, but in some patients and normal donors, reaching critical threshold stem cell numbers are difficult to achieve. Novel strategies, particularly those offering rapid mobilization and reduced costs, remains an area of interest.This review summarizes critical scientific underpinnings in understanding the process of stem cell mobilization, with a focus on new or improved strategies for their efficient collection and engraftment. RECENT FINDINGS Studies are described that provide new insights into the complexity of stem cell mobilization. Agents that target new pathways such HSC egress, identify strategies to collect more potent competing HSC and new methods to optimize stem cell collection and engraftment are being evaluated. SUMMARY Agents and more effective strategies that directly address the current shortcomings of hematopoietic stem cell mobilization and transplantation and offer the potential to facilitate collection and expand use of mobilized stem cells have been identified.
Collapse
Affiliation(s)
- Louis M. Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| | - Hal E Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| |
Collapse
|
35
|
Pharmacological Regulation of Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4081890. [PMID: 30363995 PMCID: PMC6186346 DOI: 10.1155/2018/4081890] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. The regulation of stem cell self-renewal and differentiation is crucial for early development and tissue homeostasis. Recent reports have suggested that the balance between self-renewal and differentiation is regulated by the cellular oxidation-reduction (redox) state; therefore, the study of ROS regulation in regenerative medicine has emerged to develop protocols for regulating appropriate stem cell differentiation and maintenance for clinical applications. In this review, we introduce the defined roles of oxidative stress in pluripotent stem cells (PSCs) and hematopoietic stem cells (HSCs) and discuss the potential applications of pharmacological approaches for regulating oxidative stress in regenerative medicine.
Collapse
|
36
|
Abstract
Mobilization failure is a major concern in patients undergoing hematopoietic cell transplantation, especially in an autologous setting, as almost all donor harvests can be accomplished with granulocyte-colony stimulating factor (G-CSF) alone. Poor mobilizers, defined as those with a peripheral blood CD34+ cell count ≤20 cells/μl after mobilization preceding apheresis is a significant risk factor for mobilization failure. We recommend preemptive plerixafor plus G-CSF (filgrastim, 10 μg/kg daily) as a first mobilization strategy, which yields sufficient peripheral blood progenitor cells (PBPCs) in almost all patients and avoids otherwise unnecessary remobilization. Preemptive plerixafor is administered in patients with a day-4 peripheral blood CD34+ count <15, depending on the disease and the target PBPC amount. Cyclophosphamide is reserved for patients who fail the first PBPC collection. We recommend second mobilization for patients who could not achieve a sufficient PBPC amount with the first mobilization. In these patients, a second attempt with plerixafor plus G-CSF or mobilization with plerixafor in combination with cyclophosphamide and G-CSF is recommended. Increased dose and/or twice daily administration of G-CSF can be considered.
Collapse
Affiliation(s)
- Kanji Miyazaki
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan.
| |
Collapse
|
37
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
38
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
39
|
Um J, Lee JH, Jung DW, Williams DR. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells. Expert Opin Drug Discov 2018; 13:307-326. [PMID: 29421943 DOI: 10.1080/17460441.2018.1437140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Collapse
Affiliation(s)
- JungIn Um
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Ji-Hyung Lee
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Da-Woon Jung
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Darren R Williams
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| |
Collapse
|
40
|
Abstract
In contemporary clinical practice, almost all allogeneic transplantations and autologous transplantations now capitalize on peripheral blood stem cells (PBSCs) as opposed to bone marrow (BM) for the source of stem cells. In this context, granulocyte colony-stimulating factor (G-CSF) plays a pivotal role as the most frequently applied frontline agent for stem cell mobilization. For patients classified as high-risk, chemotherapy based mobilization regimens can be preferred as a first choice and it is notable that this also used for remobilization. Mobilization failure occurs at a rate of 10%-40% with traditional strategies and it typically leads to low-efficiency practices, resource wastage, and delayed in treatment intervention. Notably, however, several factors can impact the effectiveness of CD34+ progenitor cell mobilization, including patient age and medical history (prior chemotherapy or radiotherapy, disease and marrow infiltration at the time of mobilization). In recent years, main (yet largely ineffective) approach was to increase G-CSF dose and add SCF, but novel and promising pathways have been opened up by the synergistic impact of a reversible inhibitor of CXCR4, plerixafor, with G-CSF. The literature shows to its favorable results in upfront and failed mobilizers, and it is necessary to use plerixafor (or equivalent agents) to optimize HSC harvest in poor mobilizers. Different CXCR4 inhibitors, growth hormone, VLA4 inhibitors, and parathormone, have been cited as new agents for mobilization failure in recent years. In view of the above considerations, the purpose of this paper is to examine the mobilization of PBSC while focusing specifically on poor mobilizers.
Collapse
Affiliation(s)
- Sinem Namdaroglu
- Izmir Bozyaka Training and Research Hospital, Department of Hematology, Izmir, Turkey.
| | - Serdal Korkmaz
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology, BMT Unit, Ankara, Turkey
| | - Fevzi Altuntas
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology, BMT Unit, Ankara, Turkey; Yıldırım Beyazıt University, Medical Faculty, Department of Hematology, Ankara, Turkey
| |
Collapse
|
41
|
Duchartre Y, Bachl S, Kim HN, Gang EJ, Lee S, Liu HC, Shung K, Xu R, Kruse A, Tachas G, Bonig H, Kim YM. Effects of CD49d-targeted antisense-oligonucleotide on α4 integrin expression and function of acute lymphoblastic leukemia cells: Results of in vitro and in vivo studies. PLoS One 2017; 12:e0187684. [PMID: 29117236 PMCID: PMC5678723 DOI: 10.1371/journal.pone.0187684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into “clinical” benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.
Collapse
Affiliation(s)
- Yann Duchartre
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Stefanie Bachl
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Solah Lee
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Hsiao-chuan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Ruth Xu
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Aaron Kruse
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Department of Pathology, University of Southern California, Los Angeles, United States of America
| | - George Tachas
- Antisense Therapeutics Limited, Toorak, Victoria, Australia
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, United States of America
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- * E-mail:
| |
Collapse
|
42
|
Richter M, Stone D, Miao C, Humbert O, Kiem HP, Papayannopoulou T, Lieber A. In Vivo Hematopoietic Stem Cell Transduction. Hematol Oncol Clin North Am 2017; 31:771-785. [PMID: 28895846 DOI: 10.1016/j.hoc.2017.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current protocols for hematopoietic stem cell (HSC) gene therapy, involving the transplantation of ex vivo lentivirus vector-transduced HSCs into myeloablated recipients, are complex and not without risk for the patient. In vivo HSC gene therapy can be achieved by the direct modification of HSCs in the bone marrow after intraosseous injection of gene delivery vectors. A recently developed approach involves the mobilization of HSCs from the bone marrow into peripheral the blood circulation, intravenous vector injection, and re-engraftment of genetically modified HSCs in the bone marrow. We provide examples for in vivo HSC gene therapy and discuss advantages and disadvantages.
Collapse
Affiliation(s)
- Maximilian Richter
- Division of Medical Genetics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Carol Miao
- Department of Pediatrics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA; Center for Immunity and Immunotherapy, Research Institute, Seattle Children's Hospital, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Olivier Humbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Aveune N, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Aveune N, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Thalia Papayannopoulou
- Division of Hematology, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA; Department of Pathology, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Sahin U, Demirer T. Current strategies for the management of autologous peripheral blood stem cell mobilization failures in patients with multiple myeloma. J Clin Apher 2017; 33:357-370. [DOI: 10.1002/jca.21591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Ugur Sahin
- Department of Hematology; Ankara University Medical School; Ankara Turkey
| | - Taner Demirer
- Department of Hematology; Ankara University Medical School; Ankara Turkey
| |
Collapse
|
44
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells. Blood 2017; 129:2939-2949. [PMID: 28400375 DOI: 10.1182/blood-2016-10-746909] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/24/2017] [Indexed: 01/24/2023] Open
Abstract
Interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 plays a critical role in the retention and migration of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) microenvironment. In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of the CXCR4/CXCL12 axis on the HSPC compartment were investigated by using 3 structurally unrelated small molecule CXCR4 antagonists. A >10-fold increase in mobilization efficiency was achieved by administering the antagonists as a subcutaneous continuous infusion for 2 weeks compared to a single bolus injection. A concurrent increase in self-renewing proliferation leading to a twofold to fourfold expansion of the HSPC pool in the BM was observed. The expanded BM showed a distinct repopulating advantage when tested in serial competitive transplantation experiments. Furthermore, major changes within the HSPC niche associated with previously described HSPC expansion strategies were not detected in bones treated with a CXCR4 antagonist infusion. Our data suggest that prolonged but reversible pharmacologic blockade of the CXCR4/CXCL12 axis represents an approach that releases HSPC with efficiency superior to any other known mobilization strategy and may also serve as an effective method to expand the BM HSPC pool.
Collapse
|
46
|
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 2017; 127:843-856. [PMID: 28134626 PMCID: PMC5330728 DOI: 10.1172/jci88720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region-specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS.
Collapse
Affiliation(s)
- Brian P. Daniels
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Harsha Jujjavarapu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard R. Green
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - James P. White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen M. Lazear
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael S. Diamond
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S. Klein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
47
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Astuti Y, Kramer AC, Blake AL, Blazar BR, Tolar J, Taisto ME, Lund TC. A Functional Bioluminescent Zebrafish Screen for Enhancing Hematopoietic Cell Homing. Stem Cell Reports 2016; 8:177-190. [PMID: 28041876 PMCID: PMC5233450 DOI: 10.1016/j.stemcr.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/01/2022] Open
Abstract
To discover small molecules that modulate hematopoietic cell homing after adoptive transfer, we created a transgenic zebrafish expressing firefly luciferase downstream of the ubiquitin promoter (ubi:luc) to serve as a hematopoietic donor. Bioluminescence imaging (BLI) was used to detect and follow ubi:luc hematopoietic cells that homed to the marrow as early as 1 day post-transplant. BLI was able to detect the biological effect of prostaglandin E2 on early homing/engraftment of donor hematopoietic cells. This system was utilized in a functional screen of small molecules to enhance homing/engraftment. We discovered a phytosterol, ergosterol, that could increase hematopoietic cell homing in zebrafish and mice. In addition, ergosterol increased CXCR4 expression and promoted expansion of Lin−SCA-1+KIT+ cells in vitro. We have demonstrated the utility of in vivo BLI to non-invasively monitor donor hematopoietic cell activity in adult zebrafish as a functional screen for mediators of cellular homing. Bioluminescent imaging (BLI) can track engrafting hematopoietic cells BLI can be used for screening of enhancers of hematopoietic cell homing Using BLI, ergosterol was found to increase hematopoietic cell homing Ergosterol affects hematopoietic progenitor migration, growth, and viability in vitro
Collapse
Affiliation(s)
- Yuliana Astuti
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ashley C Kramer
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Amanda L Blake
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Mandy E Taisto
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Troy C Lund
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Ataca Atilla P, Bakanay Ozturk SM, Demirer T. How to manage poor mobilizers for high dose chemotherapy and autologous stem cell transplantation? Transfus Apher Sci 2016; 56:190-198. [PMID: 28034547 DOI: 10.1016/j.transci.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022]
Abstract
Today, peripheral blood stem cells are the preferred source of stem cells over bone marrow. Therefore, mobilization plays a crutial role in successful autologous stem cell transplantation. Poor mobilization is generally defined as failure to achieve the target level of at least 2×106 CD34+ cells/kg body weight. There are several strategies to overcome poor mobilization: 1) Larger volume Leukapheresis (LVL) 2) Re-mobilization 3) Plerixafor 4) CM+Plerixafor (P)+G-CSF and 5) Bone Marrow Harvest. In this review, the definitions of successful and poor mobilization are discussed. Management strategies for poor mobilization are defined. The recent research on new agents are included.
Collapse
Affiliation(s)
- Pinar Ataca Atilla
- Department of Hematology, Ankara University Medical School, Cebeci, 06590 Ankara, Turkey.
| | | | - Taner Demirer
- Department of Hematology, Ankara University Medical School, Cebeci, 06590 Ankara, Turkey.
| |
Collapse
|
50
|
Le Texier L, Lineburg KE, MacDonald KPA. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. Int J Hematol 2016; 105:153-161. [PMID: 27943115 DOI: 10.1007/s12185-016-2161-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.
Collapse
Affiliation(s)
- Laetitia Le Texier
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Katie E Lineburg
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kelli P A MacDonald
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|