1
|
Morino-Koga S, Yokomizo T. Deciphering hematopoietic stem cell development: key signaling pathways and mechanisms. Front Cell Dev Biol 2024; 12:1510198. [PMID: 39717844 PMCID: PMC11663937 DOI: 10.3389/fcell.2024.1510198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs. Reports indicate transcription factors and external signals are involved in these processes. In this review, we discuss the timing and role of these transcription factors and summarize the external signals that have demonstrated efficacy in an in vitro culture. A precise understanding of the signals at each step is expected to advance the development of methods for inducing HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
3
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
4
|
He M, Jia Y, Wang Y, Cai X. Dysregulated MAPK signaling pathway in acute myeloid leukemia with RUNX1 mutations. Expert Rev Hematol 2022; 15:769-779. [PMID: 35902358 DOI: 10.1080/17474086.2022.2108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND : Acute myeloid leukemia (AML) is a hematologic malignancy with genetic alterations. RUNX1, which is an essential transcription factor for hematopoiesis, is frequently mutated in AML. Loss of function mutation of RUNX1 is correlated to poor prognosis of AML patients. It is urgent to reveal the underlying mechanism. RESEARCH DESIGN AND METHODS TCGA AML, GSE106291, GSE142700 and GSE67609 datasets were used. R package was used for define the differential expressed miRNAs, miRNA target genes, RUNX1 related gene, RUNX directly regulating genes, and so on. The relationship of gene expression with overall survival was analyzed by cox regression. KEGG and GO analysis were applied to the above mentioned genesets and overlapped genes. Alteration and importance of MAPK pathway was validated in K562 cells by Western blotting and apoptosis assay in vitro. RESULTS RUNX1 regulated MAPK pathway indirectly and directly. MAPK pathway was altered in K562 cells induced mutated RUNX1, and these cells were more sensitive to AraC after p38 was inhibited. CONCLUSIONS RUNX1 could modulate MAPK pathway, which may provide a potential therapeutic target for AML patients with RUNX1 mutations.
Collapse
Affiliation(s)
- Mingmin He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Lemma RB, Fleischer T, Martinsen E, Ledsaak M, Kristensen V, Eskeland R, Gabrielsen OS, Mathelier A. Pioneer transcription factors are associated with the modulation of DNA methylation patterns across cancers. Epigenetics Chromatin 2022; 15:13. [PMID: 35440061 PMCID: PMC9016969 DOI: 10.1186/s13072-022-00444-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesised that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer types. We performed emQTL (expression-methylation quantitative trait loci) analyses independently in each cancer type and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding sites in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumor-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 both in an in vitro setup and in vivo at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer cells.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Emily Martinsen
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Ledsaak
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
6
|
Lin A, Elbezanti WO, Schirling A, Ahmed A, Van Duyne R, Cocklin S, Klase Z. Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Front Neurol 2021; 12:663793. [PMID: 34367046 PMCID: PMC8339301 DOI: 10.3389/fneur.2021.663793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 pandemic is a significant challenge to the field of medicine. Despite advancements in antiretroviral (ART) development, 38 million people worldwide still live with this disease without a cure. A significant barrier to the eradication of HIV-1 lies in the persistently latent pool that establishes early in the infection. The “shock and kill” strategy relies on the discovery of a latency-reversing agent (LRA) that can robustly reactivate the latent pool and not limit immune clearance. We have found that a benzodiazepine (BDZ), that is commonly prescribed for panic and anxiety disorder, to be an ideal candidate for latency reversal. The BDZ Alprazolam functions as an inhibitor of the transcription factor RUNX1, which negatively regulates HIV-1 transcription. In addition to the displacement of RUNX1 from the HIV-1 5′LTR, Alprazolam potentiates the activation of STAT5 and its recruitment to the viral promoter. The activation of STAT5 in cytotoxic T cells may enable immune activation which is independent of the IL-2 receptor. These findings have significance for the potential use of Alprazolam in a curative strategy and to addressing the neuroinflammation associated with neuroHIV-1.
Collapse
Affiliation(s)
- Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Weam Othman Elbezanti
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Schirling
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,HIV-1 Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proc Natl Acad Sci U S A 2021; 118:2019655118. [PMID: 33479171 DOI: 10.1073/pnas.2019655118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.
Collapse
|
8
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
9
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
10
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
11
|
Ha SD, Cho W, DeKoter RP, Kim SO. The transcription factor PU.1 mediates enhancer-promoter looping that is required for IL-1β eRNA and mRNA transcription in mouse melanoma and macrophage cell lines. J Biol Chem 2019; 294:17487-17500. [PMID: 31586032 DOI: 10.1074/jbc.ra119.010149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1β mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1β transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1β mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1β transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Woohyun Cho
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
12
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
13
|
Gilmour J, O'Connor L, Middleton CP, Keane P, Gillemans N, Cazier JB, Philipsen S, Bonifer C. Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics Chromatin 2019; 12:33. [PMID: 31164147 PMCID: PMC6547542 DOI: 10.1186/s13072-019-0282-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background Both tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members, are required for correct development. However, the molecular details of how ubiquitous factors are involved in programming tissue-specific chromatin and thus participate in developmental processes are still unclear. We previously showed that embryonic stem cells lacking Sp1 DNA-binding activity (Sp1ΔDBD/ΔDBD cells) are able to differentiate into early blood progenitors despite the inability of Sp1 to bind chromatin without its DNA-binding domain. However, gene expression during differentiation becomes progressively deregulated, and terminal differentiation is severely compromised. Results Here, we studied the cooperation of Sp1 with its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. The complete absence of either Sp1 or Sp3 or the presence of the Sp1 DNA-binding mutant has only a minor effect on the pattern of distal accessible chromatin sites and their transcription factor binding motif content, suggesting that these mutations do not affect tissue-specific chromatin programming. Sp3 cooperates with Sp1ΔDBD/ΔDBD to enable hematopoiesis, but is unable to do so in the complete absence of Sp1. Using single-cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Conclusions Our findings highlight the essential contribution of ubiquitous factors such as Sp1 to blood cell development. In contrast to tissue-specific transcription factors which are required to direct specific cell fates, loss of Sp1 leads to a widespread deregulation in timing and coordination of differentiation trajectories during hematopoietic specification. Electronic supplementary material The online version of this article (10.1186/s13072-019-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Leigh O'Connor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Christopher P Middleton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Rothenberg EV. Encounters across networks: Windows into principles of genomic regulation. Mar Genomics 2019; 44:3-12. [PMID: 30661741 DOI: 10.1016/j.margen.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Gene regulatory networks account for the ability of the genome to program development in complex multi-cellular organisms. Such networks are based on principles of gene regulation by combinations of transcription factors that bind to specific cis-regulatory DNA sites to activate transcription. These cis-regulatory regions mediate logic processing at each network node, enabling progressive increases in organismal complexity with development. Gene regulatory network explanations of development have been shown to account for patterning and cell type diversification in fly and sea urchin embryonic systems, where networks are characterized by fast coupling between transcriptional inputs and changes in target gene transcription rates, and crucial cis-regulatory elements are concentrated relatively close to the protein coding sequences of the target genes, thus facilitating their identification. Stem cell-based development in post-embryonic mammalian systems also depends on gene networks, but differs from the fly and sea urchin systems. First, the number of regulatory elements per gene and the distances between regulatory elements and the genes they control are considerably larger, forcing searches via genome-wide transcription factor binding surveys rather than functional assays. Second, the intrinsic timing of network state transitions can be slowed considerably by the need to undo stem-cell chromatin configurations, which presumably add stability to stem-cell states but retard responses to transcription factor changes during differentiation. The dispersed, partially redundant cis-regulatory systems controlling gene expression and the slow state transition kinetics in these systems already reveal new insights and opportunities to extend understanding of the repertoire of gene networks and regulatory system logic.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
16
|
van der Kouwe E, Staber PB. RUNX1-ETO: Attacking the Epigenome for Genomic Instable Leukemia. Int J Mol Sci 2019; 20:E350. [PMID: 30654457 PMCID: PMC6358732 DOI: 10.3390/ijms20020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Oncogenic fusion protein RUNX1-ETO is the product of the t(8;21) translocation, responsible for the most common cytogenetic subtype of acute myeloid leukemia. RUNX1, a critical transcription factor in hematopoietic development, is fused with almost the entire ETO sequence with the ability to recruit a wide range of repressors. Past efforts in providing a comprehensive picture of the genome-wide localization and the target genes of RUNX1-ETO have been inconclusive in understanding the underlying mechanism by which it deregulates native RUNX1. In this review; we dissect the current data on the epigenetic impact of RUNX1 and RUNX1-ETO. Both share similarities however, in recent years, research focused on epigenetic factors to explain their differences. RUNX1-ETO impairs DNA repair mechanisms which compromises genomic stability and favors a mutator phenotype. Among an increasing pool of mutated factors, regulators of DNA methylation are frequently found in t(8;21) AML. Together with the alteration of both, histone markers and distal enhancer regulation, RUNX1-ETO might specifically disrupt normal chromatin structure. Epigenetic studies on the fusion protein uncovered new mechanisms contributing to leukemogenesis and hopefully will translate into clinical applications.
Collapse
Affiliation(s)
- Emiel van der Kouwe
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Bernhard Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38:e00175-18. [PMID: 29866654 PMCID: PMC6066754 DOI: 10.1128/mcb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.
Collapse
Affiliation(s)
- Louis R Ghanem
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Kromer
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nhu Nguyen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Aguilar
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Massimo Martinelli
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
RUNX1 promotes cell growth in human T-cell acute lymphoblastic leukemia by transcriptional regulation of key target genes. Exp Hematol 2018; 64:84-96. [DOI: 10.1016/j.exphem.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
|
19
|
Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, O'Hagan K, Ou J, Muller-Tidow C, Wolfe SA, Zhu LJ, Dekker J, Bushweller JH, Castilla LH. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell 2018; 174:172-186.e21. [PMID: 29958106 PMCID: PMC6211564 DOI: 10.1016/j.cell.2018.05.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
The fusion oncoprotein CBFβ-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFβ-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFβ-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFβ-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Azepines/pharmacology
- Azepines/therapeutic use
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Inversion/drug effects
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA/chemistry
- DNA/metabolism
- DNA Helicases/metabolism
- Disease Models, Animal
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Polycomb Repressive Complex 1/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- John Anto Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hafiz Mohd Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Houda Belaghzal
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kelsey O'Hagan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Hackett Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lucio Hernán Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
20
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
21
|
Oo ZM, Illendula A, Grembecka J, Schmidt C, Zhou Y, Esain V, Kwan W, Frost I, North TE, Rajewski RA, Speck NA, Bushweller JH. A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells. Leuk Lymphoma 2017; 59:2188-2200. [PMID: 29249175 DOI: 10.1080/10428194.2017.1410882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The core binding factor (CBF) gene RUNX1 is a target of chromosomal translocations in leukemia, including t(8;21) in acute myeloid leukemia (AML). Normal CBF function is essential for activity of AML1-ETO, product of the t(8;21), and for survival of several leukemias lacking RUNX1 mutations. Using virtual screening and optimization, we developed Runt domain inhibitors which bind to the Runt domain and disrupt its interaction with CBFβ. On-target activity was demonstrated by the Runt domain inhibitors' ability to depress hematopoietic cell formation in zebrafish embryos, reduce growth and induce apoptosis of t(8;21) AML cell lines, and reduce progenitor activity of mouse and human leukemia cells harboring the t(8;21), but not normal bone marrow cells. Runt domain inhibitors had similar effects on murine and human T cell acute lymphocytic leukemia (T-ALL) cell lines. Our results confirmed that Runt domain inhibitors might prove efficacious in various AMLs and in T-ALL.
Collapse
Affiliation(s)
- Zaw Min Oo
- a Abramson Family Cancer Research Institute , Philadelphia , PA , USA.,b Department of Cell and Molecular Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - Anuradha Illendula
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Jolanta Grembecka
- d Department of Pathology , University of Michigan , Ann Arbor , MI , USA
| | - Charles Schmidt
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Yunpeng Zhou
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Virginie Esain
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Wanda Kwan
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Isaura Frost
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Trista E North
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Roger A Rajewski
- f Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , KS , USA
| | - Nancy A Speck
- a Abramson Family Cancer Research Institute , Philadelphia , PA , USA.,b Department of Cell and Molecular Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - John H Bushweller
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
22
|
Stanulovic VS, Cauchy P, Assi SA, Hoogenkamp M. LMO2 is required for TAL1 DNA binding activity and initiation of definitive haematopoiesis at the haemangioblast stage. Nucleic Acids Res 2017; 45:9874-9888. [PMID: 28973433 PMCID: PMC5622341 DOI: 10.1093/nar/gkx573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
LMO2 is a bridging factor within a DNA binding complex and is required for definitive haematopoiesis to occur. The developmental stage of the block in haematopoietic specification is not known. We show that Lmo2−/− mouse embryonic stem cells differentiated to Flk-1+ haemangioblasts, but less efficiently to haemogenic endothelium, which only produced primitive haematopoietic progenitors. Genome-wide approaches indicated that LMO2 is required at the haemangioblast stage to position the TAL1/LMO2/LDB1 complex to regulatory elements that are important for the establishment of the haematopoietic developmental program. In the absence of LMO2, the target site recognition of TAL1 is impaired. The lack of LMO2 resulted in altered gene expression levels already at the haemangioblast stage, with transcription factor genes accounting for ∼15% of affected genes. Comparison of Lmo2−/− with Tal1−/− Flk-1+ cells further showed that TAL1 was required to initiate or sustain Lmo2 expression.
Collapse
Affiliation(s)
- Vesna S Stanulovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
23
|
Lin S, Mulloy JC, Goyama S. RUNX1-ETO Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:151-173. [PMID: 28299657 DOI: 10.1007/978-981-10-3233-2_11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.
Collapse
Affiliation(s)
- Shan Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond) 2017; 131:2161-2182. [DOI: 10.1042/cs20170238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022]
Abstract
The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.
Collapse
|
25
|
Goyal S, Suzuki T, Li JR, Maeda S, Kishima M, Nishimura H, Shimizu Y, Suzuki H. RUNX1 induces DNA replication independent active DNA demethylation at SPI1 regulatory regions. BMC Mol Biol 2017; 18:9. [PMID: 28376714 PMCID: PMC5381148 DOI: 10.1186/s12867-017-0087-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a −17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown. Results We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the −17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region. This DNA demethylation occurred in mitomycin-C-treated nonproliferating cells at both regulatory regions, suggesting active DNA demethylation. Furthermore, ectopic RUNX1 expression induced significant endogenous SPI1 expression, although its expression level was much lower than that of natively SPI1-expressing monocyte cells. Conclusions These results suggest the novel role of RUNX1 as an inducer of DNA demethylation at the SPI1 regulatory regions, although the mechanism of RUNX1-induced DNA demethylation remains to be explored.
Collapse
Affiliation(s)
- Shubham Goyal
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jing-Ru Li
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shiori Maeda
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuri Shimizu
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
26
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
27
|
Bonifer C, Cockerill PN. Chromatin priming of genes in development: Concepts, mechanisms and consequences. Exp Hematol 2017; 49:1-8. [PMID: 28185904 DOI: 10.1016/j.exphem.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
Abstract
During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review, we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We show that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, and at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
VanOudenhove JJ, Medina R, Ghule PN, Lian JB, Stein JL, Zaidi SK, Stein GS. Precocious Phenotypic Transcription-Factor Expression During Early Development. J Cell Biochem 2017; 118:953-958. [PMID: 27591551 DOI: 10.1002/jcb.25723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
A novel role for phenotypic transcription factors in very early differentiation was recently observed and merits further study to elucidate what role this precocious expression may have in development. The RUNX1 transcription factor exhibits selective and transient upregulation during early mesenchymal differentiation. In contrast to phenotype-associated transcriptional control of gene expression to establish and sustain hematopoietic/myeloid lineage identity, precocious expression of RUNX1 is functionally linked to control of an epithelial to mesenchymal transition that is obligatory for development. This early RUNX1 expression spike provides a paradigm for precocious expression of a phenotypic transcription factor that invites detailed mechanistic study to fully understand its biological importance. J. Cell. Biochem. 118: 953-958, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer J VanOudenhove
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Ricardo Medina
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| |
Collapse
|
29
|
Yzaguirre AD, de Bruijn MFTR, Speck NA. The Role of Runx1 in Embryonic Blood Cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:47-64. [DOI: 10.1007/978-981-10-3233-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Cico A, Andrieu-Soler C, Soler E. Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Lett 2016; 590:4084-4104. [DOI: 10.1002/1873-3468.12424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alba Cico
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
- CNRS; Institute of Molecular Genetics (IGMM); Montpellier France
| | - Eric Soler
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
- CNRS; Institute of Molecular Genetics (IGMM); Montpellier France
- Laboratory of Excellence GR-Ex; Paris France
| |
Collapse
|
32
|
Obier N, Bonifer C. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Lett 2016; 590:4105-4115. [PMID: 27497427 DOI: 10.1002/1873-3468.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|
33
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
34
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
35
|
Zhou H, Zhang J, Eyers F, Xiang Y, Herbert C, Tay HL, Foster PS, Yang M. Identification of the microRNA networks contributing to macrophage differentiation and function. Oncotarget 2016; 7:28806-20. [PMID: 27119502 PMCID: PMC5045358 DOI: 10.18632/oncotarget.8933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/13/2016] [Indexed: 01/23/2023] Open
Abstract
Limited evidence is available about the specific miRNA networks that regulate differentiation of specific immune cells. In this study, we characterized miRNA expression and associated alterations in expression with putative mRNA targets that are critical during differentiation of macrophages. In an effort to map the dynamic changes in the bone marrow (BM), we profiled whole BM cultures during differentiation into macrophages. We identified 112 miRNAs with expression patterns that were differentially regulated 5-fold or more during BMDM development. With TargetScan and MeSH databases, we identified 1267 transcripts involved in 30 canonical pathways linked to macrophage biology as potentially regulated by these specific 112 miRNAs. Furthermore, by employing miRanda and Ingenuity Pathways Analysis (IPA) analysis systems, we identified 18 miRNAs that are temporally linked to the expression of CSF1R, CD36, MSR1 and SCARB1; 7 miRNAs linked to the regulation of the transcription factors RUNX1 and PU.1, and 14 miRNAs target the nuclear receptor PPARα and PPARγ. This novel information provides an important reference resource for further study of the functional links between miRNAs and their target mRNAs for the regulation of differentiation and function of macrophages.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, Jilin, People's Republic of China
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, Jilin, People's Republic of China
| | - Fiona Eyers
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Cristan Herbert
- Inflammation and Infection Research Centre, School of Medical Sciences, UNSW Australia, Sydney, Australia
| | - Hock L. Tay
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Paul S. Foster
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| |
Collapse
|
36
|
Extravascular endothelial and hematopoietic islands form through multiple pathways in midgestation mouse embryos. Dev Biol 2016; 415:111-121. [PMID: 27105579 DOI: 10.1016/j.ydbio.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
The de novo generation of hematopoietic cells occurs during midgestation when a population of endothelial cells called hemogenic endothelium transitions into hematopoietic progenitors and stem cells. In mammalian embryos, the newly formed hematopoietic cells form clusters in the lumens of the major arteries in the embryo proper and in the vascular plexus of the yolk sac. Small clusters of hematopoietic cells that are independent of the vasculature (referred to here as extravascular islands) were shown to form in the mesentery during vascular remodeling of the vitelline artery. Using three-dimensional imaging of whole mouse embryos we demonstrate that extravascular budding of hematopoietic clusters is a more widespread phenomenon that occurs from the vitelline and the umbilical arteries both proximal to the embryo proper and distal in the extraembryonic yolk sac and placenta. Furthermore, we show that there are several mechanisms by which hematopoietic clusters leave the arteries, including vascular remodeling and extrusion. Lastly, we provide static images suggesting that extravascular islands contribute to the formation of new blood vessels. Thus, extravascular islands may represent a novel mechanism of vasculogenesis whereby established vessels contribute endothelial and hematopoietic cells to developing vascular beds.
Collapse
|
37
|
Goode DK, Obier N, Vijayabaskar MS, Lie-A-Ling M, Lilly AJ, Hannah R, Lichtinger M, Batta K, Florkowska M, Patel R, Challinor M, Wallace K, Gilmour J, Assi SA, Cauchy P, Hoogenkamp M, Westhead DR, Lacaud G, Kouskoff V, Göttgens B, Bonifer C. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Dev Cell 2016; 36:572-87. [PMID: 26923725 PMCID: PMC4780867 DOI: 10.1016/j.devcel.2016.01.024] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/04/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022]
Abstract
Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.
Collapse
Affiliation(s)
- Debbie K Goode
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Nadine Obier
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - M S Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Lie-A-Ling
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Andrew J Lilly
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Rebecca Hannah
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Monika Lichtinger
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Kiran Batta
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | | | - Rahima Patel
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Mairi Challinor
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Kirstie Wallace
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Jane Gilmour
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Salam A Assi
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Pierre Cauchy
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - David R Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Georges Lacaud
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Constanze Bonifer
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK.
| |
Collapse
|
38
|
C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis. Stem Cell Reports 2015; 5:232-47. [PMID: 26235892 PMCID: PMC4618662 DOI: 10.1016/j.stemcr.2015.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells. C/EBPα activates two classes of prospective myeloid enhancers in B cells Pre-existing enhancers are bound by PU.1 and become hyper-activated by C/EBPα C/EBPα acts as a pioneer factor with delayed kinetics on de novo enhancers The two types of enhancers direct myeloid cell fate in B cells and hematopoiesis
Collapse
|
39
|
Haldar M, Murphy KM. Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev 2015; 262:25-35. [PMID: 25319325 PMCID: PMC4203404 DOI: 10.1111/imr.12215] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages are versatile cells of the hematopoietic system that display remarkable functional diversity encompassing innate immune responses, tissue development, and tissue homeostasis. Macrophages are present in almost all tissues of the body and display distinct location-specific phenotypes and gene expression profiles. Recent studies also demonstrate distinct origins of tissue-resident macrophages. This emerging picture of ontological, functional, and phenotypic heterogeneity within tissue macrophages has altered our understanding of these cells, which play important roles in many human diseases. In this review, we discuss the different origins of tissue macrophages, the transcription factors regulating their development, and the mechanisms underlying their homeostasis at steady state.
Collapse
Affiliation(s)
- Malay Haldar
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
40
|
Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72:2361-75. [PMID: 25715743 PMCID: PMC11114076 DOI: 10.1007/s00018-015-1871-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
Abstract
Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Yegor Vassetzky
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
| |
Collapse
|
41
|
Regha K, Assi SA, Tsoulaki O, Gilmour J, Lacaud G, Bonifer C. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nat Commun 2015; 6:7203. [PMID: 26018585 PMCID: PMC4458875 DOI: 10.1038/ncomms8203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit.
Collapse
Affiliation(s)
- Kakkad Regha
- School of Cancer Sciences, Institute for Biomedical Research, University of Birmingham at Edgbaston, Birmingham B15 2TT, UK
| | - Salam A. Assi
- School of Cancer Sciences, Institute for Biomedical Research, University of Birmingham at Edgbaston, Birmingham B15 2TT, UK
| | - Olga Tsoulaki
- CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Jane Gilmour
- School of Cancer Sciences, Institute for Biomedical Research, University of Birmingham at Edgbaston, Birmingham B15 2TT, UK
| | - Georges Lacaud
- CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Constanze Bonifer
- School of Cancer Sciences, Institute for Biomedical Research, University of Birmingham at Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
42
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
43
|
Wilkinson AC, Kawata VKS, Schütte J, Gao X, Antoniou S, Baumann C, Woodhouse S, Hannah R, Tanaka Y, Swiers G, Moignard V, Fisher J, Hidetoshi S, Tijssen MR, de Bruijn MFTR, Liu P, Göttgens B. Single-cell analyses of regulatory network perturbations using enhancer-targeting TALEs suggest novel roles for PU.1 during haematopoietic specification. Development 2014; 141:4018-30. [PMID: 25252941 PMCID: PMC4197694 DOI: 10.1242/dev.115709] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Viviane K S Kawata
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Judith Schütte
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Xuefei Gao
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Stella Antoniou
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Claudia Baumann
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Steven Woodhouse
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Rebecca Hannah
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yosuke Tanaka
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Gemma Swiers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Victoria Moignard
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Jasmin Fisher
- Microsoft Research Cambridge, 21 Station Road, Cambridge CB1 2FB, UK Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Shimauchi Hidetoshi
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Marloes R Tijssen
- Department of Haematology, University of Cambridge and National Health Service Blood and Transplant, Cambridge CB2 0PT, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
44
|
Lie-A-Ling M, Marinopoulou E, Li Y, Patel R, Stefanska M, Bonifer C, Miller C, Kouskoff V, Lacaud G. RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence. Blood 2014; 124:e11-20. [PMID: 25082880 DOI: 10.1182/blood-2014-04-572958] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During ontogeny, the transcription factor RUNX1 governs the emergence of definitive hematopoietic cells from specialized endothelial cells called hemogenic endothelium (HE). The ultimate consequence of this endothelial-to-hematopoietic transition is the concomitant activation of the hematopoietic program and downregulation of the endothelial program. However, due to the rare and transient nature of the HE, little is known about the initial role of RUNX1 within this population. We, therefore, developed and implemented a highly sensitive DNA adenine methyltransferase identification-based methodology, including a novel data analysis pipeline, to map early RUNX1 transcriptional targets in HE cells. This novel transcription factor binding site identification protocol should be widely applicable to other low abundance cell types and factors. Integration of the RUNX1 binding profile with gene expression data revealed an unexpected early role for RUNX1 as a positive regulator of cell adhesion- and migration-associated genes within the HE. This suggests that RUNX1 orchestrates HE cell positioning and integration prior to the release of hematopoietic cells. Overall, our genome-wide analysis of the RUNX1 binding and transcriptional profile in the HE provides a novel comprehensive resource of target genes that will facilitate the precise dissection of the role of RUNX1 in early blood development.
Collapse
Affiliation(s)
| | - Elli Marinopoulou
- Cancer Research UK Stem Cell Biology Group, and Cancer Research UK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Yaoyong Li
- Cancer Research UK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | | | - Monika Stefanska
- Faculty of Biochemistry, Biophysics and Biotechnology Department, Jagiellonian University, Kraków, Poland
| | - Constanze Bonifer
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Crispin Miller
- Cancer Research UK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
45
|
Abstract
Runx transcription factors contribute to hematopoiesis and are frequently implicated in hematologic malignancies. All three Runx isoforms are expressed at the earliest stages of hematopoiesis; however, their function in hematopoietic stem cells (HSCs) is not fully elucidated. Here, we show that Runx factors are essential in HSCs by driving the expression of the hematopoietic transcription factor PU.1. Mechanistically, by using a knockin mouse model in which all three Runx binding sites in the -14kb enhancer of PU.1 are disrupted, we observed failure to form chromosomal interactions between the PU.1 enhancer and its proximal promoter. Consequently, decreased PU.1 levels resulted in diminished long-term HSC function through HSC exhaustion, which could be rescued by reintroducing a PU.1 transgene. Similarly, in a mouse model of AML/ETO9a leukemia, disrupting the Runx binding sites resulted in decreased PU.1 levels. Leukemia onset was delayed, and limiting dilution transplantation experiments demonstrated functional loss of leukemia-initiating cells. This is surprising, because low PU.1 levels have been considered a hallmark of AML/ETO leukemia, as indicated in mouse models and as shown here in samples from leukemic patients. Our data demonstrate that Runx-dependent PU.1 chromatin interaction and transcription of PU.1 are essential for both normal and leukemia stem cells.
Collapse
|
46
|
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev 2014; 261:102-15. [PMID: 25123279 PMCID: PMC4312928 DOI: 10.1111/imr.12206] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| |
Collapse
|
47
|
Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, Juszczyński P, Borg K, Florek I, Jakóbczyk M, Baranowska A, Siedlecki JA. Comparison of promoter DNA methylation and expression levels of genes encoding CCAAT/enhancer binding proteins in AML patients. Leuk Res 2014; 38:850-6. [DOI: 10.1016/j.leukres.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 11/28/2022]
|
48
|
Tanaka Y, Sanchez V, Takata N, Yokomizo T, Yamanaka Y, Kataoka H, Hoppe P, Schroeder T, Nishikawa SI. Circulation-Independent Differentiation Pathway from Extraembryonic Mesoderm toward Hematopoietic Stem Cells via Hemogenic Angioblasts. Cell Rep 2014; 8:31-9. [DOI: 10.1016/j.celrep.2014.05.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022] Open
|
49
|
Rothenberg EV. The chromatin landscape and transcription factors in T cell programming. Trends Immunol 2014; 35:195-204. [PMID: 24703587 PMCID: PMC4039984 DOI: 10.1016/j.it.2014.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
T cell development from multipotent progenitors to specialized effector subsets of mature T cells is guided by the iterative action of transcription factors. At each stage, transcription factors interact not only with an existing landscape of histone modifications and nucleosome packing, but also with other bound factors, while they modify the landscape for later-arriving factors in ways that fundamentally affect the control of gene expression. This review covers insights from genome-wide analyses of transcription factor binding and resulting chromatin conformation changes that reveal roles of cytokine signaling in effector T cell programming, the ways in which one factor can completely transform the impacts of previously bound factors, and the ways in which the baseline chromatin landscape is established during early T cell lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125 USA.
| |
Collapse
|
50
|
Choukrallah MA, Matthias P. The Interplay between Chromatin and Transcription Factor Networks during B Cell Development: Who Pulls the Trigger First? Front Immunol 2014; 5:156. [PMID: 24782862 PMCID: PMC3990105 DOI: 10.3389/fimmu.2014.00156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
All mature blood cells derive from hematopoietic stem cells through gradual restriction of their cell fate potential and acquisition of specialized functions. Lineage specification and cell commitment require the establishment of specific transcriptional programs involving the activation of lineage-specific genes and the repression of lineage-inappropriate genes. This process requires the concerted action of transcription factors (TFs) and epigenetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of the most-studied differentiation programs. Loss of function studies allowed the identification of many TFs and epigenetic modifiers required for B cell development. The usage of systematic analytical techniques such as transcriptome determination, genome-wide mapping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed to gain a systemic description of the intricate networks that guide B cell development. However, the precise mechanisms governing the interaction between TFs and chromatin are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads to the crucial questions of who is on first, when, and how. We review here the current knowledge about TF networks and epigenetic regulation during hematopoiesis, with an emphasis on B cell development, and discuss in particular the current models about the interplay between chromatin and TFs.
Collapse
Affiliation(s)
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland ; Faculty of Sciences, University of Basel , Basel , Switzerland
| |
Collapse
|