1
|
Hu X, Xie S, Yi X, Ouyang Y, Zhao W, Yang Z, Zhang Z, Wang L, Huang X, Peng M, Yu F. Bidirectional Mendelian Randomization of Causal Relationship between Inflammatory Cytokines and Different Pathological Types of Lung Cancer. J Cancer 2024; 15:4969-4984. [PMID: 39132165 PMCID: PMC11310887 DOI: 10.7150/jca.98301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Prior research has proposed a potential association between lung cancer and inflammatory cytokines, yet the specific causal relationship remains unclear, especially across various lung cancer pathologies. This study utilized bidirectional Mendelian randomization (MR) to explore these causal connections, unveiling novel insights. Our research revealed distinctive inflammatory cytokine profiles for each subtype of lung cancer and identified potential biomarkers that could refine diagnostic and therapeutic approaches. We applied two-sample Mendelian randomization, leveraging genetic variance data from three extensive genome-wide association studies (GWAS) focusing on different lung cancer types (lung adenocarcinoma: 1590 cases and 314,193 controls of healthy individuals of European descent; lung squamous cell carcinoma: 1510 cases and 314,193 controls of European ancestry; small cell lung cancer: 717 cases and 314,193 controls of European ancestry). A separate GWAS summary on inflammatory cytokines from 8,293 healthy participants was also included. The inverse variance weighting method was utilized to examine causal relationships, with robustness confirmed through multiple sensitivity analyses, including MR-Egger, weighted median, and MR-PRESSO. Our analysis revealed that elevated levels of IL_1RA were associated with an increased risk of lung adenocarcinoma (OR: 1.29, 95% CI: 1.02-1.64, p = 0.031), while higher MCP_1_MCAF levels correlated with a decreased risk of lung squamous cell carcinoma (OR: 0.77, 95% CI: 0.61-0.98, p = 0.031). Furthermore, IL_10, IL_13, and TRAIL levels were positively associated with lung squamous cell carcinoma risk (IL_10: OR: 1.27, 95% CI: 1.06-1.53, p = 0.012; IL_13: OR: 1.15, 95% CI: 1.06-1.53, p = 0.036; TRAIL: OR: 1.15, 95% CI: 1.06-1.53, p = 0.043). No association was found between inflammatory cytokine levels and small cell lung cancer development, whereas SDF_1A and B-NGF were linked to an increased risk of this cancer type (SDF_1A: OR: 1.13, 95% CI: 1.05-1.21, p = 0.001; B-NGF: OR: 1.13, 95% CI: 1.01-1.27, p = 0.029). No significant relationship was observed between the 41 circulating inflammatory cytokines and lung adenocarcinoma or squamous cell carcinoma development. Our findings indicate distinct associations between specific inflammatory cytokines and different types of lung cancer. Elevated IL_1RA levels are a risk marker for lung adenocarcinoma, whereas higher MCP_1_MCAF levels appear protective against lung squamous cell carcinoma. Conversely, elevated levels of IL_10, IL_13, and TRAIL are linked with an increased risk of lung squamous cell carcinoma. The relationships of SDF_1A and B-NGF with small-cell lung cancer highlight the complexity of inflammatory markers in cancer development. This study provides a nuanced understanding of the role of inflammatory cytokines in lung cancer, underscoring their potential in refining diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muyun Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
2
|
Murray J, Einhaus T, Venkataraman R, Radtke S, Zhen A, Carrillo MA, Kitchen SG, Peterson CW, Kiem HP. Efficient manufacturing and engraftment of CCR5 gene-edited HSPCs following busulfan conditioning in nonhuman primates. Mol Ther Methods Clin Dev 2023; 30:276-287. [PMID: 37575091 PMCID: PMC10415663 DOI: 10.1016/j.omtm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.
Collapse
Affiliation(s)
- Jason Murray
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Teresa Einhaus
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rasika Venkataraman
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Mayra A. Carrillo
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Stuckel AJ, Khare T, Bissonnette M, Khare S. Aberrant regulation of CXCR4 in cancer via deviant microRNA-targeted interactions. Epigenetics 2022; 17:2318-2331. [PMID: 36047714 PMCID: PMC9665135 DOI: 10.1080/15592294.2022.2118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
CXCR4 is involved in many facets of cancer, including being a major player in establishing metastasis. This is in part due to the deregulation of CXCR4, which can be attributed to many genetic and epigenetic mechanisms, including aberrant microRNA-CXCR4 interaction. MicroRNAs (miRNAs) are a type of small non-coding RNA that primarily targets the 3' UTR of mRNA transcripts, which in turn suppresses mRNA and subsequent protein expression. In this review, we reported and characterized the many aberrant miRNA-CXCR4 interactions that occur throughout human cancers. In particular, we reported known target sequences located on the 3' UTR of CXCR4 transcripts that tumour suppressor miRNAs bind and therefore regulate expression by. From these aberrant interactions, we also documented affected downstream genes/pathways and whether a particular tumour suppressor miRNA was reported as a prognostic marker in its respected cancer type. In addition, a limited number of cancer-causing miRNAs coined 'oncomirs' were reported and described in relation to CXCR4 regulation. Moreover, the mechanisms underlying both tumour suppressor and oncomir deregulations concerning CXCR4 expression were also explored. Furthermore, the miR-146a-CXCR4 axis was delineated in oncoviral infected endothelial cells in the context of virus-causing cancers. Lastly, miRNA-driven therapies and CXCR4 antagonist drugs were discussed as potential future treatment options in reported cancers pertaining to deregulated miRNA-CXCR4 interactions.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Il60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri65201, USA
| |
Collapse
|
4
|
Christopher AC, Venkatesan V, Karuppusamy KV, Srinivasan S, Babu P, Azhagiri MKK, C K, Bagchi A, Rajendiran V, Ravi NS, Kumar S, Marepally SK, Mohankumar KM, Srivastava A, Velayudhan SR, Thangavel S. Preferential expansion of human CD34+CD133+CD90+ hematopoietic stem cells enhances gene-modified cell frequency for gene therapy. Hum Gene Ther 2021; 33:188-201. [PMID: 34486377 DOI: 10.1089/hum.2021.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD34+CD133+CD90+ hematopoietic stem cells (HSCs) are responsible for long-term multi-lineage hematopoiesis and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the ex vivo culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. Here, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34+CD133+CD90+ HSCs over other subpopulations of adult HSPCs in ex vivo culture. The preferential expansion enriches the HSCs in ex vivo culture, enhances the adhesion and results in a 6-fold increase in the long-term engraftment in NSG mice. Further, the culture enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold in vivo. The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene-modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells in vivo. This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.
Collapse
Affiliation(s)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik V Karuppusamy
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | | | - Prathibha Babu
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Manoj Kumar K Azhagiri
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik C
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | - Abhirup Bagchi
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | | | - Nithin Sam Ravi
- Center for Stem Cell Research, 302927, Vellore, Tamil Nadu, India;
| | - Sanjay Kumar
- Christian Medical College and Hospital Vellore, 30025, Center for Stem Cell Research, Vellore, Tamil Nadu, India;
| | | | | | - Alok Srivastava
- Christian Medical College, Centre for Stem Cell Research, CMC Campus, Bagayam, Vellore, Tamilnadu, India, 632002.,Christian Medical College, Haematology, Ida Scudder Road, Vellore, Tamil Nadu, India, 632004;
| | | | - Saravanabhavan Thangavel
- Center for Stem Cell Research, 302927, Christian Medical College Campus Bagayam,, Vellore, Tamil nadu, India, 632002;
| |
Collapse
|
5
|
Alterations in microRNA Expression during Hematopoietic Stem Cell Mobilization. BIOLOGY 2021; 10:biology10070668. [PMID: 34356523 PMCID: PMC8301406 DOI: 10.3390/biology10070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Lymphoproliferative disorders comprise a heterogeneous group of hematological malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The key element in this process is the effective mobilization of hematopoietic cells from the marrow niche to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an important regulatory role. This study investigated the expression of selected miRNAs in patients with multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was tested at two time points before the initiation of mobilization and on the day of the first apheresis. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization. Abstract microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis, and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+ cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas) were determined during mobilization for an autologous hematopoietic stem cell transplantation. The miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p. On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels and the number of CD34+ cells in peripheral blood. A negative correlation was observed between hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers, defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than “high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization.
Collapse
|
6
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
7
|
Collection and Processing of Mobilized Mouse Peripheral Blood at Lowered Oxygen Tension Yields Enhanced Numbers of Hematopoietic Stem Cells. Stem Cell Rev Rep 2021; 16:946-953. [PMID: 32748332 DOI: 10.1007/s12015-020-10021-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mobilized peripheral blood (mPB) hematopoietic stem (HSCs) and progenitor (HPCs) cells are primary sources for hematopoietic cell transplantation (HCT). Successful HCT requires threshold numbers of high-quality HSCs to reconstitute hematopoiesis long-term. Nevertheless, considerable percentages of patients and healthy donors fail to achieve required thresholds of HSCs with current mobilization regimens. In this present study we demonstrate that similar to mouse bone marrow (BM) and human cord blood, collection and processing of mouse Granulocyte Colony Stimulating Factor (G-CSF)-, AMD3100/Plerixafor- or G-CSF plus AMD3100/Plerixafor-mobilized HSCs in 3% O2 results in enhanced numbers of rigorously-defined phenotypic and for G-CSF - and G-CSF plus AMD3100/Plerixafor - mPB enhanced functionally-engrafting HSCs. These results may be of potential clinical utility. Graphical Abstract.
Collapse
|
8
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
9
|
Samuelson C, Radtke S, Cui M, Perez A, Kiem HP, Humbert O. AMD3100 redosing fails to repeatedly mobilize hematopoietic stem cells in the nonhuman primate and humanized mouse. Exp Hematol 2020; 93:52-60.e1. [PMID: 33276046 DOI: 10.1016/j.exphem.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
AMD3100 (plerixafor) is a vital component of many clinical and preclinical transplant protocols, facilitating harvest of hematopoietic stem and progenitor cells through mobilization into the peripheral blood circulation. Repeat mobilization with AMD3100 is also necessary for many patients with suboptimal first stem cell collection or those requiring repeat transplantation. In this study we investigated the mobilization efficacy of repeated AMD3100 dosages in the nonhuman primate and humanized mouse models. In nonhuman primates, we observed effective mobilization after the first AMD3100 administration but a significantly poorer response in CD34+ and hematopoietic stem cell-enriched CD90+ cells with subsequent doses of the drug. A similar loss of efficacy with repeated administration was noted in immunodeficient mice engrafted with human CD34+ cells, in whom the total human white cell population, and particularly human hematopoietic stem and progenitor cells, mobilized significantly less effectively following a second AMD3100 administration when compared with the first dose. Together, our results are expected to inform future mobilization protocols for the purposes of peripheral blood hematopoietic stem cell extraction or for applications in which hematopoietic stem cells must be made accessible for in vivo-delivered gene targeting agents.
Collapse
Affiliation(s)
- Clare Samuelson
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margaret Cui
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Anai Perez
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
10
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
11
|
Robust erythroid differentiation system for rhesus hematopoietic progenitor cells allowing preclinical screening of genetic treatment strategies for the hemoglobinopathies. Cytotherapy 2018; 20:1278-1287. [PMID: 30249524 DOI: 10.1016/j.jcyt.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS γ-globin expression can be induced by various gene modification strategies, which could be beneficial for hemoglobin (Hb) disorders. To translate promising ideas into clinics, large animal models have proven valuable to evaluate safety and efficacy of the approaches; however, in vitro erythroid differentiation methods have not been established to determine whether they can be modeled in nonhuman primates. METHODS We optimized erythroid differentiation culture to produce high-level adult Hb from rhesus hematopoietic progenitor cells by using low (LC) or high cytokine concentration (HC) protocols with or without feeder cells. In addition, we established rhesus globin protein analysis using reverse-phase high performance liquid chromatography and mass spectrometry. RESULTS Robust adult Hb production at protein levels was observed in the LC protocol when feeder cells were used, whereas the HC protocol resulted in higher baseline fetal Hb levels (P < 0.01). We then compared lentiviral transduction of rhesus cells between serum-containing LC media and serum-free StemSpan-based differentiation media, revealing 100-fold more efficient transduction in serum-free differentiation media (P < 0.01). Finally, rhesus CD34+ cells were transduced with lentiviral vectors encoding artificial zinc finger proteins (ZF-Ldb1), which can reactivate γ-globin expression via tethering the transcriptional co-regulator Ldb1 to γ-globin promoters, and were differentiated in the optimized erythroid differentiation method. This resulted in marked increases of γ-globin levels compared with control groups (P < 0.01). DISCUSSION In conclusion, we developed an efficient rhesus erythroid differentiation protocol from hematopoietic progenitor cells with low fetal and high adult Hb production. Further studies are warranted to optimize gene modification and transplantation of rhesus hematopoietic progenitor cells.
Collapse
|
12
|
Ehrke-Schulz E, Zhang W, Gao J, Ehrhardt A. Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors. Hum Gene Ther 2018; 28:833-841. [PMID: 28854818 DOI: 10.1089/hum.2017.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.
Collapse
Affiliation(s)
- Eric Ehrke-Schulz
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Wenli Zhang
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Jian Gao
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Anja Ehrhardt
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| |
Collapse
|
13
|
MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 2018; 9:814. [PMID: 30050105 PMCID: PMC6062564 DOI: 10.1038/s41419-018-0837-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.
Collapse
|
14
|
Cecyn KZ, Kimura EYS, Lima DMSM, Yamamoto M, Bordin JO, de Oliveira JSR. Expression of adhesion molecules on CD34+ cells from steady-state bone marrow before and after mobilization and their association with the yield of CD34+ cells. Blood Res 2018; 53:61-70. [PMID: 29662864 PMCID: PMC5898996 DOI: 10.5045/br.2018.53.1.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Background Cell adhesion molecules (CAMs) expressed on hematopoietic progenitor cells (HPCs), endothelial cells, and stromal cells play a pivotal role in the mobilization of CD34+ cells. Herein, we conducted a non-randomized peripheral blood stem cell (PBSC) mobilization study aimed to compare the potential differences in the expressions of several CAMs and chemokines on CD34+ cells obtained from bone marrow aspirate before and after HPC mobilization from patients with hematologic malignancies and healthy donors. Methods Three-color cytofluorometric analysis was used to compare the expressions of CAMs and chemokines in the bone marrow before and after mobilization. Results For all studied groups, CAM expression among those with good and poor yields of CD34+ cells was significantly correlated with VCAM-1 (P=0.007), CD44 (P=0.027), and VLA-4 (P=0.014) expressions. VCAM-1 (P=0.001), FLT-3 (P=0.001), CD44 (P=0.011), VLA-4 (P=0.001), and LFA-1 (P=0.001) expressions were higher before HPC mobilization than after HPC mobilization. By contrast, the expression of CXCR4 significantly varied before and after mobilization only among those with successful PBSC mobilization (P=0.002). Conclusion We attempted to identify particular aspects of CAMs involved in CD34+ cell mobilization, which is a highly complex mechanism that involves adhesion molecules and matrix metalloproteases. The mechanism by which CD34+ cell mobilization is activated through proteolytic enzymes is not fully understood. We believe that CXCR4, VLA-4, CD44, and VCAM-1 are the most important molecules implicated in HPC mobilization, particularly because they show a correlation with the yield of CD34+ cells collected via large volume leukapheresis.
Collapse
Affiliation(s)
- Karin Zattar Cecyn
- Oncologia Clínica e Experimental, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Eliza Y S Kimura
- Oncologia Clínica e Experimental, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Dulce Marta S M Lima
- Oncologia Clínica e Experimental, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Miyoko Yamamoto
- Oncologia Clínica e Experimental, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | - José Orlando Bordin
- Oncologia Clínica e Experimental, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | | |
Collapse
|
15
|
|
16
|
Impact of Single-Dose Plerixafor as an Adjunct to Granulocyte Colony-Stimulating Factor-Based Peripheral Blood Stem Cell Mobilization on the Graft Composition and Outcome for T Cell-Replete Haploidentical Peripheral Blood Stem Cell Transplantation with Post-Transplantation Cyclophosphamide: A Comparative Study. Biol Blood Marrow Transplant 2017; 24:542-548. [PMID: 29191663 DOI: 10.1016/j.bbmt.2017.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/12/2017] [Indexed: 11/23/2022]
Abstract
We conducted a prospective study on T and natural killer (NK) cell subset composition of graft and transplant outcomes in T cell-replete haploidentical transplantation with a single dose of subcutaneous plerixafor (Px) added to granulocyte colony-stimulating factor (G-CSF)-based mobilization in allogeneic donors to collect 10 × 106/kg CD34+ hematopoietic stem cells (HSCs) at single apheresis. Twnety-six donors received G-CSF + Px and 25 G-CSF alone for mobilization. Despite significantly lower peripheral blood (PB) CD34+ HSCs on day 4 in the G-CSF + Px group (33 [range, 6-47] cells/µL versus 81 [range, 50-168] cells/µL in the G-CSF group; P = .0001), PB CD34+ HSC count (median 136 versus 139 cells/µL) on day 5 as well as that in the graft (2.7 versus 2.3 × 106/mL, P = .1) were comparable between the 2 groups. The total nucleated cell count was higher (3.4 versus 3.1 × 108/mL, P = .05), but CD4+ T cells (2.3 versus 2.7 × 107/mL, P = .09) were lower in the G-CSF group with mobilization of regulatory T cells being similar. NK cells were skewed toward the CD56+/16- subset in both groups, varying significantly from the steady-state NK subset ratio in PB. The time to engraftment, incidences of acute and chronic graft-versus-host disease, nonrelapse mortality, and overall survival were also similar. Addition of single-dose Px to G-CSF mobilization improves CD34 recovery and does not significantly alter the T and NK cell composition of the graft, including regulatory T cells, with no adverse impact on transplant outcomes.
Collapse
|
17
|
Worel N, Frank N, Frech C, Fritsch G. Influence of plerixafor on the mobilization of CD34+ cell subpopulations and lymphocyte subtypes. Transfusion 2017; 57:2206-2215. [DOI: 10.1111/trf.14182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nina Worel
- Department of Blood Group Serology and Transfusion Medicine; Medical University Vienna
| | - Nelli Frank
- Children's Cancer Research Institute; Vienna Austria
| | | | | |
Collapse
|
18
|
Baiamonte E, Barone R, Contino F, Di Stefano R, Marfia A, Filosa A, D'Angelo E, Feo S, Acuto S, Maggio A. Granulocyte–Colony Stimulating Factor plus Plerixafor in Patients with β-thalassemia Major Results in the Effective Mobilization of Primitive CD34+ Cells with Specific Gene Expression Profile. THALASSEMIA REPORTS 2017. [DOI: 10.4081/thal.2017.6392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Successful gene therapy for β-thalassemia requires optimal numbers of autologous gene-transduced hematopoietic stem and progenitor cells (HSPCs) with high repopulating capacity. Previous studies suggested superior mobilization in these patients by the combination of granulocyte–colony stimulating factor (G-CSF) plus plerixafor over single agents. We mobilized four adult patients using G-CSF+plerixafor to assess the intra-individual variation of the circulating CD34+ cells number and subtypes preand post-plerixafor administration. The procedure was well-tolerated and the target cell dose of ≥8 × 106 CD34+ cells/kg was achieved in three of them with one apheresis procedure. The addition of plerixafor unanimously increased the number of circulating CD34+ cells, and the frequency of the most primitive CD34+ subtypes: CD34+/38− and CD34+/133+/38− as well as the in vitro clonogenic potency. Microarray analyses of CD34+ cells purified from the leukapheresis of one patient mobilized twice, with G-CSF and with G-CSF+plerixafor, highlighted in G-CSF+plerixafor-mobilized CD34+ cells, higher levels of expression genes involved in HSPC motility, homing, and cell cycles. In conclusion, G-CSF+plerixafor in β-thalassemia patients mobilizes optimal numbers of HSPCs with characteristics that suggest high capacity of engraftment after transplantation.
Collapse
|
19
|
Panch SR, Szymanski J, Savani BN, Stroncek DF. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy. Biol Blood Marrow Transplant 2017; 23:1241-1249. [PMID: 28495640 DOI: 10.1016/j.bbmt.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34+ cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34+ cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization.
Collapse
Affiliation(s)
- Sandhya R Panch
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| | - James Szymanski
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Department of Hematology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Peake K, Manning J, Lewis CA, Tran K, Rossi F, Krieger C. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis. Front Neurol 2017; 8:75. [PMID: 28337172 PMCID: PMC5340765 DOI: 10.3389/fneur.2017.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived cells (BMDCs) are capable of migrating across the blood–brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60–125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism alone is not sufficient to induce BMDC accumulation within the CNS and that CNS conditioning is a crucial requirement for BMDC accumulation to occur. Moreover, it appears that proliferation of BMDCs that infiltrate the CNS is partly responsible for cell accumulation in busulfan-conditioned ALS mice.
Collapse
Affiliation(s)
- Kyle Peake
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, BC , Canada
| | - John Manning
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, BC , Canada
| | - Coral-Ann Lewis
- The Biomedical Research Centre, University of British Columbia , Vancouver, BC , Canada
| | - Kevin Tran
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, BC , Canada
| | - Fabio Rossi
- The Biomedical Research Centre, University of British Columbia , Vancouver, BC , Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Division of Neurology, Department of Medicine, Neuromuscular Disease Unit, VHHSC, Vancouver, BC, Canada
| |
Collapse
|
21
|
Nalluri JJ, Barh D, Azevedo V, Ghosh P. miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures. Sci Rep 2017; 7:39684. [PMID: 28045122 PMCID: PMC5206712 DOI: 10.1038/srep39684] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Decoding the patterns of miRNA regulation in diseases are important to properly realize its potential in diagnostic, prog- nostic, and therapeutic applications. Only a handful of studies computationally predict possible miRNA-miRNA interactions; hence, such interactions require a thorough investigation to understand their role in disease progression. In this paper, we design a novel computational pipeline to predict the common signature/core sets of miRNA-miRNA interactions for different diseases using network inference algorithms on the miRNA-disease expression profiles; the individual predictions of these algorithms were then merged using a consensus-based approach to predict miRNA-miRNA associations. We next selected the miRNA-miRNA associations across particular diseases to generate the corresponding disease-specific miRNA-interaction networks. Next, graph intersection analysis was performed on these networks for multiple diseases to identify the common signature/core sets of miRNA interactions. We applied this pipeline to identify the common signature of miRNA-miRNA inter- actions for cancers. The identified signatures when validated using a manual literature search from PubMed Central and the PhenomiR database, show strong relevance with the respective cancers, providing an indirect proof of the high accuracy of our methodology. We developed miRsig, an online tool for analysis and visualization of the disease-specific signature/core miRNA-miRNA interactions, available at: http://bnet.egr.vcu.edu/miRsig.
Collapse
Affiliation(s)
- Joseph J Nalluri
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu-600034, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| |
Collapse
|
22
|
Lidonnici MR, Aprile A, Frittoli MC, Mandelli G, Paleari Y, Spinelli A, Gentner B, Zambelli M, Parisi C, Bellio L, Cassinerio E, Zanaboni L, Cappellini MD, Ciceri F, Marktel S, Ferrari G. Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to plerixafor alone. Haematologica 2016; 102:e120-e124. [PMID: 28034992 DOI: 10.3324/haematol.2016.154740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università degli Studi di Roma "Tor Vergata", Italy
| | - Marta Claudia Frittoli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Mandelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ylenia Paleari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matilde Zambelli
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Parisi
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Bellio
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
DiGiusto DL, Cannon PM, Holmes MC, Li L, Rao A, Wang J, Lee G, Gregory PD, Kim KA, Hayward SB, Meyer K, Exline C, Lopez E, Henley J, Gonzalez N, Bedell V, Stan R, Zaia JA. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16067. [PMID: 27900346 PMCID: PMC5102145 DOI: 10.1038/mtm.2016.67] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022]
Abstract
Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5) is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC). The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical) safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov).
Collapse
Affiliation(s)
- David L DiGiusto
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Paula M Cannon
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | | | - Lijing Li
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Anitha Rao
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Jianbin Wang
- Sangamo BioSciences Inc , Richmond, California, USA
| | - Gary Lee
- Sangamo BioSciences Inc , Richmond, California, USA
| | | | | | | | | | - Colin Exline
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Evan Lopez
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Jill Henley
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Nancy Gonzalez
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Victoria Bedell
- Cytogenetics Core Laboratory, City of Hope , Duarte, California, USA
| | - Rodica Stan
- Center for Gene Therapy, Hematological Malignancies and Stem Cell Transplantation Institute, City of Hope , Duarte, California, USA
| | - John A Zaia
- Center for Gene Therapy, Hematological Malignancies and Stem Cell Transplantation Institute, City of Hope , Duarte, California, USA
| |
Collapse
|
24
|
Pantin J, Purev E, Tian X, Cook L, Donohue-Jerussi T, Cho E, Reger R, Hsieh M, Khuu H, Calandra G, Geller NL, Childs RW. Effect of high-dose plerixafor on CD34 + cell mobilization in healthy stem cell donors: results of a randomized crossover trial. Haematologica 2016; 102:600-609. [PMID: 27846612 PMCID: PMC5394957 DOI: 10.3324/haematol.2016.147132] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
Hematopoietic stem cells can be mobilized from healthy donors using single-agent plerixafor without granulocyte colony-stimulating factor and, following allogeneic transplantation, can result in sustained donor-derived hematopoiesis. However, when a single dose of plerixafor is administered at a conventional 240 μg/kg dose, approximately one-third of donors will fail to mobilize the minimally acceptable dose of CD34+ cells needed for allogeneic transplantation. We conducted an open-label, randomized trial to assess the safety and activity of high-dose (480 μg/kg) plerixafor in CD34+ cell mobilization in healthy donors. Subjects were randomly assigned to receive either a high dose or a conventional dose (240 μg/kg) of plerixafor, given as a single subcutaneous injection, in a two-sequence, two-period, crossover design. Each treatment period was separated by a 2-week minimum washout period. The primary endpoint was the peak CD34+ count in the blood, with secondary endpoints of CD34+ cell area under the curve (AUC), CD34+ count at 24 hours, and time to peak CD34+ following the administration of plerixafor. We randomized 23 subjects to the two treatment sequences and 20 subjects received both doses of plerixafor. Peak CD34+ count in the blood was significantly increased (mean 32.2 versus 27.8 cells/μL, P=0.0009) and CD34+ cell AUC over 24 hours was significantly increased (mean 553 versus 446 h cells/μL, P<0.0001) following the administration of the 480 μg/kg dose of plerixafor compared with the 240 μg/kg dose. Remarkably, of seven subjects who mobilized poorly (peak CD34+ ≤20 cells/μL) after the 240 μg/kg dose of plerixafor, six achieved higher peak CD34+ cell numbers and all achieved higher CD34+ AUC over 24 hours after the 480 μg/kg dose. No grade 3 or worse drug-related adverse events were observed. This study establishes that high-dose plerixafor can be safely administered in healthy donors and mobilizes greater numbers of CD34+ cells than conventional-dose plerixafor, which may improve CD34+ graft yields and reduce the number of apheresis procedures needed to collect sufficient stem cells for allogeneic transplantation. (ClinicalTrials.gov, identifier: NCT00322127)
Collapse
Affiliation(s)
- Jeremy Pantin
- Hematology and Oncology, Department of Medicine, Augusta University, GA, USA
| | - Enkhtsetseg Purev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Cook
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Theresa Donohue-Jerussi
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elena Cho
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Reger
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Hsieh
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Khuu
- Department of Transfusion Medicine, Clinical Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nancy L Geller
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard W Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Bunse CE, Tischer S, Lahrberg J, Oelke M, Figueiredo C, Blasczyk R, Eiz-Vesper B. Granulocyte colony-stimulating factor impairs CD8(+) T cell functionality by interfering with central activation elements. Clin Exp Immunol 2016; 185:107-18. [PMID: 26990855 DOI: 10.1111/cei.12794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Besides mobilizing stem cells into the periphery, granulocyte colony-stimulating factor (G-CSF) has been shown to influence various types of innate and adaptive immune cells. For example, it impairs the effector function of cytotoxic T lymphocytes (CTLs). It is assumed that this effect is mediated indirectly by monocytes, regulatory T cells and immunomodulatory cytokines influenced by G-CSF. In this study, isolated G-CSF-treated CD8(+) T cells were stimulated antigen-dependently with peptide-major histocompatibility complex (pMHC)-coupled artificial antigen-presenting cells (aAPCs) or stimulated antigen-independently with anti-CD3/CD28 stimulator beads. By measuring the changes in interferon (IFN)-γ and granzyme B expression at the mRNA and protein level, we showed for the first time that G-CSF has a direct effect on CD8(+) CTLs, which was confirmed based on the reduced production of IFN-γ and granzyme B by the cytotoxic T cell line TALL-104 after G-CSF treatment. By investigating further elements affected by G-CSF in CTLs from stem cell donors and untreated controls, we found a decreased phosphorylation of extracellular-regulated kinase (ERK)1/2, lymphocyte-specific protein tyrosine kinase (Lck) and CD3ζ after G-CSF treatment. Additionally, miRNA-155 and activation marker expression levels were reduced. In summary, our results show that G-CSF directly influences the effector function of cytotoxic CD8(+) T cells and affects various elements of T cell activation.
Collapse
Affiliation(s)
- C E Bunse
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - S Tischer
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | - M Oelke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - R Blasczyk
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - B Eiz-Vesper
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Sheng X, Zhong H, Wan H, Zhong J, Chen F. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line. Exp Ther Med 2016; 12:396-404. [PMID: 27347068 DOI: 10.3892/etm.2016.3268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/22/2016] [Indexed: 01/03/2023] Open
Abstract
Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of miR-146a, whereas AMD3100 appeared to be predominantly dependent on receptor internalization. Therefore, a G-CSF/miR-146a/CXCR4 pathway may explain how G-CSF inhibits CXCR4/SDF-1α signaling and overcomes stromal cell-mediated drug resistance in acute myeloid leukemia.
Collapse
Affiliation(s)
- Xianfu Sheng
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Haixia Wan
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
27
|
Yuan S, Palmer JM, Tsai NC, Dagis A, Nademanee A, Wang S. Engraftment and outcomes following autologous stem cell transplantation in Hodgkin lymphoma patients mobilized with plerixafor. Hematol Oncol 2016; 35:281-287. [DOI: 10.1002/hon.2286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Shan Yuan
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine; City of Hope National Medical Center; Duarte CA USA
| | - Joycelynne M. Palmer
- Division of Biostatistics, Department of Information Sciences; City of Hope National Medical Center; Duarte CA USA
| | - Ni-Chun Tsai
- Division of Biostatistics, Department of Information Sciences; City of Hope National Medical Center; Duarte CA USA
| | - Andrew Dagis
- Division of Biostatistics, Department of Information Sciences; City of Hope National Medical Center; Duarte CA USA
| | - Auayporn Nademanee
- Department of Hematology; City of Hope National Medical Center; Duarte CA USA
| | - Shirong Wang
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine; City of Hope National Medical Center; Duarte CA USA
| |
Collapse
|
28
|
Liu X, Cheng B, Meng T, You J, Zhu Y, Lu B, Yuan H, Huang X, Hu F. Synthesis and biological application of BKT-140 peptide modified polymer micelles for treating tumor metastasis with an enhanced cell internalization. Polym Chem 2016. [DOI: 10.1039/c5py01807b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A modification of CSOSA micelles with BKT-140 increased receptor-mediated cell uptake and anti-metastasis effect in the CXCR4 high expressing cells.
Collapse
Affiliation(s)
- Xuan Liu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Bolin Cheng
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Tingting Meng
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Jian You
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Yun Zhu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Binbin Lu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| | - Xuan Huang
- Department of Pharmacy
- School of Medicine Science
- Jiaxing University
- Zhejiang 314001
- People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- People's Republic of China
| |
Collapse
|
29
|
Yang JZ, Zhang JQ, Sun LX. Mechanisms for T cell tolerance induced with granulocyte colony-stimulating factor. Mol Immunol 2015; 70:56-62. [PMID: 26703218 DOI: 10.1016/j.molimm.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been widely accepted as a mediator of T cell tolerance. The immune modulatory effect of G-CSF on T cells is believed to be mediated exclusively through other effector cells, such as monocytes, tolerogenic dendritic cells (DC), and myeloid-derived suppressor cells. Recent advances confirmed the direct effects of G-CSF in inducing immune tolerance of T cells through the G-CSF-G-CSF receptor pathway and related molecular mechanisms. This review aims to summarize the findings associated with the direct and indirect mechanisms for T cell tolerance induced with G-CSF. The role of G-CSF in preventing graft-versus-host disease (GVHD) and in treating autoimmune diseases (ADs) is also discussed. It is conceivable that G-CSF and immune cell compositions, such as tolerogenic DC and CD4(+)CD25(+)Foxp3(+) T cells, modulated by G-CSF could become an integral part of the immunomodulatory therapies against GVHD and ADs in the future.
Collapse
Affiliation(s)
- Jian-Zhu Yang
- Department of Pathology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Qiao Zhang
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Xia Sun
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
30
|
Hosokawa K, Muranski P, Feng X, Keyvanfar K, Townsley DM, Dumitriu B, Chen J, Kajigaya S, Taylor JG, Hourigan CS, Barrett AJ, Young NS. Identification of novel microRNA signatures linked to acquired aplastic anemia. Haematologica 2015; 100:1534-45. [PMID: 26354756 DOI: 10.3324/haematol.2015.126128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence indicates that microRNA control and modulate immunity. MicroRNA have not been investigated in acquired aplastic anemia, a T-cell-mediated immune disease. Analysis of 84 microRNA expression levels in CD4(+) and CD8(+) T cells of patients with aplastic anemia revealed concurrent down-regulation of miR-126-3p, miR-145-5p, miR-223-3p, and miR-199a-5p (>3-fold change, P<0.05) in both T-cell populations, which were unique in aplastic anemia compared to other hematologic disorders. MiR-126-3p and miR-223-3p were down-regulated in CD4(+) T effector memory cells, and miR-126-3p, miR-145-5p, and miR-223-3p were down-regulated in CD8(+) T effector memory and terminal effector cells. Successful immunosuppressive therapy was associated with restoration to normal expression levels of miR-126-3p, miR-145-5p, and miR-223-3p (>2-fold change, P<0.05). In CD4(+) and CD8(+) T cells in aplastic anemia patients, MYC and PIK3R2 were up-regulated and proved to be targets of miR-145-5p and miR-126-3p, respectively. MiR-126-3p and miR-145-5p knockdown promoted proliferation and increased interferon-γ and granzyme B production in both CD4(+) and CD8(+) T cells. Our work describes previously unknown regulatory roles of microRNA in T-cell activation in aplastic anemia, which may open a new perspective for development of effective therapy. Clinicaltrials.gov identifier: NCT 01623167.
Collapse
Affiliation(s)
- Kohei Hosokawa
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Danielle M Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Bogdan Dumitriu
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - James G Taylor
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Christopher S Hourigan
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
32
|
Alfano D, Gorrasi A, Li Santi A, Ricci P, Montuori N, Selleri C, Ragno P. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med 2015; 19:2262-72. [PMID: 26082201 PMCID: PMC4568930 DOI: 10.1111/jcmm.12617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
The urokinase-type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR-bound uPA and VN induce proteolysis-independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross-talks with CXCR4, the receptor for the stroma-derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)-mediated co-regulation of uPAR and CXCR4 expression, which could allow their cross-talk at the cell surface. We identified three miRs, miR-146a, miR-335 and miR-622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3'untranslated region of both uPAR- and CXCR4-mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR-146a and miR-335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo.
Collapse
Affiliation(s)
- Daniela Alfano
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Gorrasi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| |
Collapse
|
33
|
Zhang H, Goudeva L, Immenschuh S, Schambach A, Skokowa J, Eiz-Vesper B, Blasczyk R, Figueiredo C. miR-155 is associated with the leukemogenic potential of the class IV granulocyte colony-stimulating factor receptor in CD34⁺ progenitor cells. Mol Med 2015; 20:736-46. [PMID: 25730818 DOI: 10.2119/molmed.2014.00146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a major regulator of granulopoiesis on engagement with the G-CSF receptor (G-CSFR). The truncated, alternatively spliced, class IV G-CSFR (G-CSFRIV) has been associated with defective differentiation and relapse risk in pediatric acute myeloid leukemia (AML) patients. However, the detailed biological properties of G-CSFRIV in human CD34(+) hematopoietic stem and progenitor cells (HSPCs) and the potential leukemogenic mechanism of this receptor remain poorly understood. In the present study, we observed that G-CSFRIV-overexpressing (G-CSFRIV(+)) HSPCs demonstrated an enhanced proliferative and survival capacity on G-CSF stimulation. Cell cycle analyses showed a higher frequency of G-CSFRIV(+) cells in the S and G2/M phase. Also, apoptosis rates were significantly lower in G-CSFRIV(+) HSPCs. These findings were shown to be associated with a sustained Stat5 activation and elevated miR-155 expression. In addition, G-CSF showed to further induce G-CSFRIV and miR-155 expression of peripheral blood mononuclear cells isolated from AML patients. A Stat5 pharmacological inhibitor or ribonucleic acid (RNA) interference-mediated silencing of the expression of miR-155 abrogated the aberrant proliferative capacity of the G-CSFRIV(+) HSPCs. Hence, the dysregulation of Stat5/miR-155 pathway in the G-CSFRIV(+) HSPCs supports their leukemogenic potential. Specific miRNA silencing or the inhibition of Stat5-associated pathways might contribute to preventing the risk of leukemogenesis in G-CSFRIV(+) HSPCs. This study may promote the development of a personalized effective antileukemia therapy, in particular for the patients exhibiting higher expression levels of G-CSFRIV, and further highlights the necessity of pre-screening the patients for G-CSFR isoforms expression patterns before G-CSF administration.
Collapse
Affiliation(s)
- HaiJiao Zhang
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Lilia Goudeva
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Mangialardi G, Spinetti G, Reni C, Madeddu P. Reactive oxygen species adversely impacts bone marrow microenvironment in diabetes. Antioxid Redox Signal 2014; 21:1620-33. [PMID: 25089632 PMCID: PMC4175424 DOI: 10.1089/ars.2014.5944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Significance: Patients with diabetes mellitus suffer an excess of cardiovascular complications and recover worse from them as compared with their nondiabetic peers. It is well known that microangiopathy is the cause of renal damage, blindness, and heart attacks in patients with diabetes. This review highlights molecular deficits in stem cells and a supporting microenvironment, which can be traced back to oxidative stress and ultimately reduce stem cells therapeutic potential in diabetic patients. RECENT ADVANCES New research has shown that increased oxidative stress contributes to inducing microangiopathy in bone marrow (BM), the tissue contained inside the bones and the main source of stem cells. These precious cells not only replace old blood cells but also exert an important reparative function after acute injuries and heart attacks. CRITICAL ISSUES The starvation of BM as a consequence of microangiopathy can lead to a less efficient healing in diabetic patients with ischemic complications. Furthermore, stem cells from a patient's BM are the most used in regenerative medicine trials to mend hearts damaged by heart attacks. FUTURE DIRECTIONS A deeper understanding of redox signaling in BM stem cells will lead to new modalities for preserving local and systemic homeostasis and to more effective treatments of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- 1 Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol, United Kingdom
| | | | | | | |
Collapse
|
35
|
Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J 2014; 32:103-15. [PMID: 25324981 PMCID: PMC4194292 DOI: 10.3857/roj.2014.32.3.103] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Kenneth A. Jenrow
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
36
|
Panch SR, Yau YY, Kang EM, De Ravin SS, Malech HL, Leitman SF. Mobilization characteristics and strategies to improve hematopoietic progenitor cell mobilization and collection in patients with chronic granulomatous disease and severe combined immunodeficiency. Transfusion 2014; 55:265-74. [PMID: 25143186 DOI: 10.1111/trf.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/22/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Granulocyte-colony-stimulating factor (G-CSF)-mobilized autologous hematopoietic progenitor cells (HPCs) may be collected by apheresis of patients with chronic granulomatous disease (CGD) and severe combined immunodeficiency (SCID) for use in gene therapy trials. CD34+ cell mobilization has not been well characterized in such patients. STUDY DESIGN AND METHODS We retrospectively evaluated CD34+ cell mobilization and collection in 73 consecutive CGD and SCID patients and in 99 age-, weight-, and G-CSF dose-matched healthy allogeneic controls. RESULTS In subjects aged not more than 20 years, Day 5 preapheresis circulating CD34+ counts were significantly lower in CGD and SCID patients than in controls; mean peak CD34+ cell counts were 58 × 10(6) , 64 × 10(6) , and 87 × 10(6) /L, respectively (p = 0.01). The SCIDs had lower CD34+ collection efficiency than CGDs and controls; mean efficiencies were 40, 63, and 57%, respectively (p = 0.003). In subjects aged more than 20 years, the CGDs had significantly lower CD34+ cell mobilization than controls; mean peak CD34+ cell counts were 41 × 10(6) and 113 × 10(6) /L, respectively (p < 0.0001). In a multivariate analysis, lower erythrocyte sedimentation rate (ESR) at mobilization was significantly correlated with better CD34+ cell mobilization (p = 0.007). In SCIDs, CD34 collection efficiency was positively correlated with higher red blood cell (RBC) indices (mean RBC volume, R(2) = 0.77; mean corpuscular hemoglobin [Hb], R(2) = 0.94; mean corpuscular Hb concentration, R(2) = 0.7; p < 0.007) but not Hb. CONCLUSIONS CGD and SCID populations are characterized by significantly less robust CD34+ HPC mobilization than healthy controls. The presence of active inflammation or infection as suggested by an elevated ESR may negatively impact mobilization. Among SCIDs, markedly reduced CD34 collection efficiencies were related to iron deficiency, wherein decreased RBC size and density may impair apheresis cell separation mechanics.
Collapse
Affiliation(s)
- Sandhya R Panch
- Hematology/Transfusion Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
37
|
Angelopoulou MK, Tsirkinidis P, Boutsikas G, Vassilakopoulos TP, Tsirigotis P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:835138. [PMID: 25197663 PMCID: PMC4150414 DOI: 10.1155/2014/835138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/12/2014] [Indexed: 12/11/2022]
Abstract
Following chemotherapy and/or the administration of growth factors, such as granulocyte-colony stimulated factor (G-CSF), hematopoietic stem cells (HSC) mobilize from bone marrow to peripheral blood. This review aims to systematically present the structure of the HSC "niche" and elucidate the mechanisms of their mobilization. However, this field is constantly evolving and new pathways and molecules have been shown to contribute to the mobilization process. Understanding the importance and the possible primary pathophysiologic role of each pathway is rather difficult, since they share various overlapping components. The primary initiating event for the mobilization of HSC is chemotherapy-induced endogenous G-CSF production or exogenous G-CSF administration. G-CSF induces proliferation and expansion of the myelomonocytic series, which leads to proteolytic enzyme activation. These enzymes result in disruption of various receptor-ligand bonds, which leads to the disanchorage of HSC from the bone marrow stroma. In everyday clinical practice, CXC chemokine receptor-4 (CXCR4) antagonists are now being used as mobilization agents in order to improve HSC collection. Furthermore, based on the proposed mechanisms of HSC mobilization, novel mobilizing agents have been developed and are currently evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria K. Angelopoulou
- Department of Hematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, 17 AgiouThoma, Goudi, 11527 Athens, Greece
| | - Pantelis Tsirkinidis
- Department of Hematology, 401 Army Forces Hospital, 138 Mesogeion Avenue, 11525 Athens, Greece
| | - Georgios Boutsikas
- Department of Hematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, 17 AgiouThoma, Goudi, 11527 Athens, Greece
| | - Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, 17 AgiouThoma, Goudi, 11527 Athens, Greece
| | - Panayiotis Tsirigotis
- 2nd Propedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, 12462 Athens, Greece
| |
Collapse
|
38
|
Unraveling stem cell and progenitor subsets in autologous grafts according to methods of mobilization: implications for prediction of hematopoietic recovery. Cytotherapy 2014; 16:392-401. [PMID: 24424268 DOI: 10.1016/j.jcyt.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AIMS In the autologous setting, granulocyte colony-stimulating factor (G-CSF) (G), or, when failing, G plus plerixafor (G+P), are common regimens for mobilization of stem cells into peripheral blood. To delineate mobilization effects on graft composition and hematopoietic recovery, we compared contents of stem cells and progenitor cells in products of G+P- and G patients. Paired samples of G+P patients and prior insufficient G mobilization were available for analyses. METHODS Subset analyses of grafts were performed by flow cytometry and myeloid colony-forming assay. In search of new markers to ascertain graft quality, we determined the fractions of aldehyde dehydrogenase bright (ALDH(br)) cells. RESULTS G grafts contained higher percentages of CD34+ cells, CD34+CD38- cells, and committed progenitors (CD34+CD38+) compared with G+P grafts. A detailed characterization of the mobilized CD34+ cell subset showed higher percentages of CD38- among the CD34+ cells of the G+P group (P = 0.032). In contrast, the CD34+ cell subset in G grafts was characterized by a higher percentage of ALDH(br) cells (P < 0.0001). Studying engraftment and day +100 graft function the G and G+P transplanted patients were comparable with respect to neutrophils, whereas in platelets they differed. In the prediction of engraftment and hematopoietic recovery, the dose of infused ALDH(br) cells correlated best to both platelet (r = 0.565, P = 0.002) and neutrophil reconstitution (r = 0.366, P = 0.06). CONCLUSIONS Besides showing dissimilar distributions of CD34+CD38- cells and progenitors in G and G+P grafts, this study further designated ALDH(br) as a promising marker in determination and prediction of graft quality and hematopoietic recovery.
Collapse
|
39
|
Omer A, Yadav NK, Singh P, Singh RK. Hematological malignancies: role of miRNAs and theirin silicoaspects. Expert Rev Anticancer Ther 2014; 13:1121-33. [DOI: 10.1586/14737140.2013.833683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Yang K, Wu M, Li M, Li D, Peng A, Nie X, Sun M, Wang J, Wu Y, Deng Q, Zhu M, Chen K, Yuan J, Huang X. miR-155 Suppresses Bacterial Clearance in Pseudomonas aeruginosa–Induced Keratitis by Targeting Rheb. J Infect Dis 2014; 210:89-98. [DOI: 10.1093/infdis/jiu002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Kun Yang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Minhao Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Meiyu Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Dandan Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Anping Peng
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Xinxin Nie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Mingxia Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinli Wang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Yongjian Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Qiuchan Deng
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Min Zhu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Kang Chen
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Gaugler B, Arbez J, Legouill S, Tiberghien P, Moreau P, Derenne S, Saas P, Mohty M. Characterization of peripheral blood stem cell grafts mobilized by granulocyte colony-stimulating factor and plerixafor compared with granulocyte colony-stimulating factor alone. Cytotherapy 2013; 15:861-8. [PMID: 23731764 DOI: 10.1016/j.jcyt.2013.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/10/2013] [Accepted: 03/31/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AIMS This study aimed to characterize the immune effectors contained in apheresis samples obtained from patients with grafts mobilized with plerixafor and granulocyte colony-stimulating factor (G-CSF) (P+G) compared with grafts mobilized with G-CSF alone (G). METHODS Aliquots of apheresis samples were obtained from 36 patients with malignant diseases after mobilization with G (n = 18) or P+G (n = 18). The phenotype and cytokine secretion profile of T cell and dendritic cell subsets were characterized by multicolor cytometry including intracellular cytokine staining. RESULTS In grafts collected after mobilization with P+G, there was a significantly higher percentage of CD3(+) T cells compared with samples collected after mobilization with G alone. On a functional level, a significant increase of interferon-γ and tumor necrosis factor-α secreting CD8(+) T cells was observed in the P+G group compared with the G group. CD4(+)Foxp3(+) regulatory T cells were similar in both groups but exhibited a lower expression of inducible costimulatory molecule and a significantly higher expression of CD127 in the P+G group. Myeloid dendritic cells (MDCs) and BDCA3(+) dendritic cells were similar in both groups. In contrast, plasmacytoid dendritic cells (PDCs) (CD123(+)BDCA2(+)HLA-DR(+)) were significantly increased in the P+G grafts, leading to a higher PDC-to-MDC ratio. PDCs mobilized by P+G displayed different functional markers--a higher percentage of ILT7(+) PDCs and decreased expression of CD86--suggesting a potential regulatory capacity of PDCs mobilized by P+G. CONCLUSIONS Grafts mobilized with P+G exhibited major different functional features compared with grafts mobilized with G alone, suggesting that such grafts may have an impact on patient outcome after autologous stem cell transplantation.
Collapse
|
42
|
Eyre TA, King AJ, Peniket A, Rocha V, Collins GP, Pawson R. Partial engraftment following plerixafor rescue after failed sibling donor peripheral blood stem cell harvest. Transfusion 2013; 54:1231-4. [DOI: 10.1111/trf.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Toby A. Eyre
- Department of Haematology; Oxford University Hospitals NHS Trust, Churchill Hospital; Headington Oxford UK
| | - Andrew J. King
- Department of Haematology; Oxford University Hospitals NHS Trust, Churchill Hospital; Headington Oxford UK
| | - Andrew Peniket
- Department of Haematology; Oxford University Hospitals NHS Trust, Churchill Hospital; Headington Oxford UK
| | - Vanderson Rocha
- Department of Haematology; Oxford University Hospitals NHS Trust, Churchill Hospital; Headington Oxford UK
| | - Graham P. Collins
- Department of Haematology; Oxford University Hospitals NHS Trust, Churchill Hospital; Headington Oxford UK
| | - Rachel Pawson
- John Radcliffe Hospital, NHS Blood and Transplant; Headington Oxford UK
| |
Collapse
|
43
|
Báez A, Martín-Antonio B, Piruat JI, Prats C, Álvarez-Laderas I, Barbado MV, Carmona M, Urbano-Ispizua Á, Pérez-Simón JA. Granulocyte colony-stimulating factor produces long-term changes in gene and microRNA expression profiles in CD34+ cells from healthy donors. Haematologica 2013; 99:243-51. [PMID: 24056818 DOI: 10.3324/haematol.2013.086959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported.
Collapse
|
44
|
Fricker SP. Physiology and pharmacology of plerixafor. ACTA ACUST UNITED AC 2013; 40:237-45. [PMID: 24179472 DOI: 10.1159/000354132] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
Autologous hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with non-Hodgkin's lymphoma and multiple myeloma. The primary source of HSC is from the peripheral blood which requires mobilization from the bone marrow. Current mobilization regimens include cytokines such as G-CSF and/or chemotherapy. However not all patients mobilize enough HSC to proceed to transplant. The chemokine receptor CXCR4 and its ligand CXCL12 are an integral part of the mechanism of HSC retention in the bone marrow niche. The discovery of plerixafor, a selective inhibitor of CXCR4, has provided a new additional means of mobilizing HSC for autologous transplantation. Plerixafor consists of two cyclam rings with a phenylenebis(methylene) linker. It inhibits CXCL12 binding to CXCR4 and subsequent downstream events including chemotaxis. The molecular interactions of plerixafor have been defined indicating a unique binding mode to CXCR4. Plerixafor rapidly mobilizes HSC within hours compared with the multi-day treatment required by G-CSF in mouse, dog and non-human primate. The mobilized cells once transplanted are capable of timely and endurable engraftment. Additionally CXCR4 has been implicated in the pathology of HIV, inflammatory disease and cancer and the pharmacology of plerixafor in various disease models is described.
Collapse
|
45
|
Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. Curr Opin Hematol 2013; 20:281-8. [DOI: 10.1097/moh.0b013e3283606090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Kim JH, Kolozsvary AJJ, Jenrow KA, Brown SL. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int J Radiat Biol 2013; 89:311-8. [DOI: 10.3109/09553002.2013.765055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Tanhehco YC, Vogl DT, Stadtmauer EA, O'Doherty U. The evolving role of plerixafor in hematopoietic progenitor cell mobilization. Transfusion 2013; 53:2314-26. [PMID: 23362980 DOI: 10.1111/trf.12102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/09/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
The introduction of plerixafor as a peripheral blood stem cell mobilization agent has allowed more patients with multiple myeloma, non-Hodgkin's lymphoma, and Hodgkin's disease to mobilize sufficient hematopoietic progenitor cells (HPCs) to proceed to autologous transplantation. Because of the high cost of plerixafor, it is not routinely used in all patients undergoing HPC mobilization. If cost were not an issue, an argument could be made that plerixafor could be added to every mobilization regimen, but cost is an issue so in an attempt to be more cost-effective, many centers have limited plerixafor use to patients who have failed or who are predicted to fail collection of adequate numbers of cells by other methods. Additionally, plerixafor is now under investigation both for HPC collection of healthy donors for allogeneic stem cell transplantation and as an adjunct therapy (i.e., chemosensitizing agent) for acute leukemias. This article briefly reviews the role of plerixafor in autologous and allogeneic transplantation as well as its emerging role in the treatment of acute leukemias. Emphasis is placed on the choice of appropriate patients for plerixafor use to assure an adequate stem cell yield while maximizing the cost effectiveness of using plerixafor. The role of prophylactic collections and future areas of research are also presented.
Collapse
Affiliation(s)
- Yvette C Tanhehco
- Department of Pathology and Cell Biology, Columbia University, New York, New York; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
48
|
Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, Carnelli F, Rosa F, Riboldi S, Sessa F, Avolio E, Beltrami AP, Emanueli C, Madeddu P. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 2012; 112:510-22. [PMID: 23250986 DOI: 10.1161/circresaha.112.300598] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The impact of diabetes mellitus on bone marrow (BM) structure is incompletely understood. OBJECTIVE Investigate the effect of type-2 diabetes mellitus (T2DM) on BM microvascular and hematopoietic cell composition in patients without vascular complications. METHODS AND RESULTS Bone samples were obtained from T2DM patients and nondiabetic controls (C) during hip replacement surgery and from T2DM patients undergoing amputation for critical limb ischemia. BM composition was assessed by histomorphometry, immunostaining, and flow cytometry. Expressional studies were performed on CD34(pos) immunosorted BM progenitor cells (PCs). Diabetes mellitus causes a reduction of hematopoietic tissue, fat deposition, and microvascular rarefaction, especially when associated with critical limb ischemia. Immunohistochemistry documented increased apoptosis and reduced abundance of CD34(pos)-PCs in diabetic groups. Likewise, flow cytometry showed scarcity of BM PCs in T2DM and T2DM+critical limb ischemia compared with C, but similar levels of mature hematopoietic cells. Activation of apoptosis in CD34(pos)-PCs was associated with upregulation and nuclear localization of the proapoptotic factor FOXO3a and induction of FOXO3a targets, p21 and p27(kip1). Moreover, microRNA-155, which regulates cell survival through inhibition of FOXO3a, was downregulated in diabetic CD34(pos)-PCs and inversely correlated with FOXO3a levels. The effect of diabetes mellitus on anatomic and molecular end points was confirmed when considering background covariates. Furthermore, exposure of healthy CD34(pos)-PCs to high glucose reproduced the transcriptional changes induced by diabetes mellitus, with this effect being reversed by forced expression of microRNA-155. CONCLUSIONS We provide new anatomic and molecular evidence for the damaging effect of diabetes mellitus on human BM, comprising microvascular rarefaction and shortage of PCs attributable to activation of proapoptotic pathway.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratories of Experimental Cardiovascular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Halter JP, van Walraven SM, Worel N, Bengtsson M, Hägglund H, Nicoloso de Faveri G, Shaw BE, Schmidt AH, Fechter M, Madrigal A, Szer J, Aljurf MD, Weisdorf D, Horowitz MM, Greinix H, Niederwieser D, Gratwohl A, Kodera Y, Confer D. Allogeneic hematopoietic stem cell donation-standardized assessment of donor outcome data: a consensus statement from the Worldwide Network for Blood and Marrow Transplantation (WBMT). Bone Marrow Transplant 2012; 48:220-5. [PMID: 22773129 DOI: 10.1038/bmt.2012.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of allogeneic hematopoietic SCTs performed globally each year continues to increase, paralleled by an increased demand for donors of therapeutic cells. Donor characteristics and collection procedures have undergone major changes during recent decades, and further changes are foreseen. Information on short- and long-term donor outcomes is of crucial importance to ensure maximal donor safety and availability. Current data, predominantly from unrelated donors, give reliable information on the frequent early events associated with donation-most of them of mild-to-moderate intensity. Information on the type and relative risk of serious adverse reactions is more limited. Moreover, only few data exist on long-term donor outcome. On the basis of this need, recommendations for a minimum data set for prospective donor follow-up were developed in a workshop with the participation of an international group of investigators actively involved in allogeneic stem cell donation under the auspices of and approved by the Worldwide Network for Blood and Marrow Transplantation. Establishment of a standardized global follow-up for both, related and unrelated, donors will enable monitoring of the short- and long-term safety profiles of hematopoietic cell donation and form a solid basis for future donor selection and counseling.
Collapse
Affiliation(s)
- J P Halter
- Department of Hematology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sturgeon CM, Chicha L, Ditadi A, Zhou Q, McGrath KE, Palis J, Hammond SM, Wang S, Olson EN, Keller G. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell 2012; 23:45-57. [PMID: 22749417 DOI: 10.1016/j.devcel.2012.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/27/2012] [Accepted: 05/29/2012] [Indexed: 02/06/2023]
Abstract
Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis.
Collapse
|