1
|
Schaffenrath J, Huang SF, Wyss T, Delorenzi M, Keller A. Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS 2021; 18:34. [PMID: 34321020 PMCID: PMC8317333 DOI: 10.1186/s12987-021-00269-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Genetic variation in a population has an influence on the manifestation of monogenic as well as multifactorial disorders, with the underlying genetic contribution dependent on several interacting variants. Common laboratory mouse strains used for modelling human disease lack the genetic variability of the human population. Therefore, outcomes of rodent studies show limited relevance to human disease. The functionality of brain vasculature is an important modifier of brain diseases. Importantly, the restrictive interface between blood and brain—the blood–brain barrier (BBB) serves as a major obstacle for the drug delivery into the central nervous system (CNS). Using genetically diverse mouse strains, we aimed to investigate the phenotypic and transcriptomic variation of the healthy BBB in different inbred mouse strains. Methods We investigated the heterogeneity of brain vasculature in recently wild-derived mouse strains (CAST/EiJ, WSB/EiJ, PWK/PhJ) and long-inbred mouse strains (129S1/SvImJ, A/J, C57BL/6J, DBA/2J, NOD/ShiLtJ) using different phenotypic arms. We used immunohistochemistry and confocal laser microscopy followed by quantitative image analysis to determine vascular density and pericyte coverage in two brain regions—cortex and hippocampus. Using a low molecular weight fluorescence tracer, sodium fluorescein and spectrophotometry analysis, we assessed BBB permeability in young and aged mice of selected strains. For further phenotypic characterization of endothelial cells in inbred mouse strains, we performed bulk RNA sequencing of sorted endothelial cells isolated from cortex and hippocampus. Results Cortical vessel density and pericyte coverage did not differ among the investigated strains, except in the cortex, where PWK/PhJ showed lower vessel density compared to NOD/ShiLtJ, and a higher pericyte coverage than DBA/2J. The vascular density in the hippocampus differed among analyzed strains but not the pericyte coverage. The staining patterns of endothelial arteriovenous zonation markers were similar in different strains. BBB permeability to a small fluorescent tracer, sodium fluorescein, was also similar in different strains, except in the hippocampus where the CAST/EiJ showed higher permeability than NOD/ShiLtJ. Transcriptomic analysis of endothelial cells revealed that sex of the animal was a major determinant of gene expression differences. In addition, the expression level of several genes implicated in endothelial function and BBB biology differed between wild-derived and long-inbred mouse strains. In aged mice of three investigated strains (DBA/2J, A/J, C57BL/6J) vascular density and pericyte coverage did not change—expect for DBA/2J, whereas vascular permeability to sodium fluorescein increased in all three strains. Conclusions Our analysis shows that although there were no major differences in parenchymal vascular morphology and paracellular BBB permeability for small molecular weight tracer between investigated mouse strains or sexes, transcriptomic differences of brain endothelial cells point to variation in gene expression of the intact BBB. These baseline variances might be confounding factors in pathological conditions that may lead to a differential functional outcome dependent on the sex or genetic polymorphism. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00269-w.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Tania Wyss
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland. .,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Abstract
This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its disruption, and possibilities for its repair have never been more important as we search for new therapies.
Collapse
Affiliation(s)
- Edward R B McCabe
- March of Dimes Foundation, United States; Department of Pediatrics, David Geffen School of Medicine at UCLA, United States.
| |
Collapse
|
3
|
Gangadharan B, Ing M, Delignat S, Peyron I, Teyssandier M, Kaveri SV, Lacroix-Desmazes S. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells. Haematologica 2016; 102:271-281. [PMID: 27758819 DOI: 10.3324/haematol.2016.148502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
The development of inhibitory antibodies to therapeutic factor VIII is the major complication of replacement therapy in patients with hemophilia A. The first step in the initiation of the anti-factor VIII immune response is factor VIII interaction with receptor(s) on antigen-presenting cells, followed by endocytosis and presentation to naïve CD4+ T cells. Recent studies indicate a role for the C1 domain in factor VIII uptake. We investigated whether charged residues in the C2 domain participate in immunogenic factor VIII uptake. Co-incubation of factor VIII with BO2C11, a monoclonal C2-specific immunoglobulin G, reduced factor VIII endocytosis by dendritic cells and presentation to CD4+ T cells, and diminished factor VIII immunogenicity in factor VIII-deficient mice. The mutation of basic residues within the BO2C11 epitope of C2 replicated reduced in vitro immunogenic uptake, but failed to prevent factor VIII immunogenicity in mice. BO2C11 prevents factor VIII binding to von Willebrand factor, thus potentially biasing factor VIII immunogenicity by perturbing its half-life. Interestingly, a factor VIIIY1680C mutant, that does not bind von Willebrand factor, demonstrated unaltered endocytosis by dendritic cells as well as immunogenicity in factor VIII-deficient mice. Co-incubation of factor VIIIY1680C with BO2C11, however, resulted in decreased factor VIII immunogenicity in vivo In addition, a previously described triple C1 mutant showed decreased uptake in vitro, and reduced immunogenicity in vivo, but only in the absence of endogenous von Willebrand factor. Taken together, the results indicate that residues in the C1 and/or C2 domains of factor VIII are implicated in immunogenic factor VIII uptake, at least in vitro Conversely, in vivo, the binding to endogenous von Willebrand factor masks the reducing effect of mutations in the C domains on factor VIII immunogenicity.
Collapse
Affiliation(s)
- Bagirath Gangadharan
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Mathieu Ing
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Sandrine Delignat
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Ivan Peyron
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Maud Teyssandier
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Srinivas V Kaveri
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France .,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| |
Collapse
|
4
|
A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood 2015; 127:1192-201. [PMID: 26511133 DOI: 10.1182/blood-2015-07-654921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023] Open
Abstract
Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.
Collapse
|
5
|
Batlle J, Pérez-Rodríguez A, Corrales I, López-Fernández MF, Rodríguez-Trillo Á, Lourés E, Cid AR, Bonanad S, Cabrera N, Moret A, Parra R, Mingot-Castellano ME, Balda I, Altisent C, Pérez-Montes R, Fisac RM, Iruín G, Herrero S, Soto I, de Rueda B, Jiménez-Yuste V, Alonso N, Vilariño D, Arija O, Campos R, Paloma MJ, Bermejo N, Toll T, Mateo J, Arribalzaga K, Marco P, Palomo Á, Sarmiento L, Iñigo B, Nieto MDM, Vidal R, Martínez MP, Aguinaco R, César JM, Ferreiro M, García-Frade J, Rodríguez-Huerta AM, Cuesta J, Rodríguez-González R, García-Candel F, Cornudella R, Aguilar C, Borràs N, Vidal F. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): Proposal for a new diagnostic paradigm. Thromb Haemost 2015; 115:40-50. [PMID: 26245874 DOI: 10.1160/th15-04-0282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/26/2015] [Indexed: 12/15/2022]
Abstract
The diagnosis of von Willebrand disease (VWD) remains difficult in a significant proportion of patients. A Spanish multicentre study investigated a cohort of 556 patients from 330 families who were analysed centrally. VWD was confirmed in 480. Next generation sequencing (NGS) of the whole coding VWF was carried out in all recruited patients, compared with the phenotype, and a final diagnosis established. A total of 238 different VWF mutations were found, 154 were not included in the Leiden Open Variation Database (LOVD). Of the patients, 463 were found to have VWF mutation/s. A good phenotypic/genotypic association was estimated in 96.5% of the patients. One hundred seventy-four patients had two or more mutations. Occasionally a predominant phenotype masked the presence of a second abnormality. One hundred sixteen patients presented with mutations that had previously been associated with increased von Willebrand factor (VWF) clearance. RIPA unavailability, central phenotypic results disagreement and difficult distinction between severe type 1 and type 3 VWD prevented a clear diagnosis in 70 patients. The NGS study facilitated an appropriate classification in 63 of them. The remaining seven patients presented with a VWF novel mutation pending further investigation. In five patients with a type 3 and two with a type 2A or 2B phenotype with no mutation, an acquired von Willebrand syndrome (AVWS) was suspected/confirmed. These data seem to support NGS as a first line efficient and faster paradigm in VWD diagnosis.
Collapse
Affiliation(s)
- Javier Batlle
- Francisco Javier Batlle Fonrodona, M. D., Servicio de Hematología y Hemoterapia. INIBIC., Complexo Hospitalario Universitario A Coruña, Edificio Hospital Materno Infantil, Carretera del Pasaje s/n, 15006 - A Coruña, Spain, Tel.: +34 981 178000 Ext. 292113, Fax: +34 981 178392, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Variable content of von Willebrand factor mutant monomer drives the phenotypic variability in a family with von Willebrand disease. Blood 2015; 126:262-9. [PMID: 26019279 DOI: 10.1182/blood-2014-11-613935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/17/2015] [Indexed: 12/27/2022] Open
Abstract
Von Willebrand disease (VWD) is an inherited bleeding disorder characterized by incomplete penetrance and variable expressivity. We evaluated a 24-member pedigree with VWD type 2 caused by a T>G mutation at position 3911 that predicts a methionine to arginine (M1304R) change in the platelet-binding A1 domain of von Willebrand factor (VWF). This mutation manifests as an autosomal-dominant trait, with clinical and biochemical phenotypic variability among affected individuals, including differences in bleeding tendency and VWF quantity, activity, and multimer pattern. Sequencing of all VWF coding regions in 3 affected individuals did not identify additional mutations. When expressed in heterologous cells, M1304R was secreted in lower quantities, failed to drive formation of storage granules, and was defective in multimerization and platelet binding. When cotransfected in equal quantities with the wild-type complementary DNA, the mutant complementary DNA depressed VWF secretion, although multimerization was only mildly affected. A llama nanobody (AU/VWFa-11) that detects the mutant A1 domain demonstrated highly variable binding to VWF from different affected members, indicating that the VWF contained different percentages of mutant monomers in different individuals. Thus, the observed variability in VWD phenotypes could in part be determined by the extent of mutant monomer incorporation in the final multimer structure of plasma VWF.
Collapse
|
7
|
Abstract
Hemostasis, the process of blood clot formation and resolution in response to vascular injury, and thrombosis, the dysregulation of hemostasis leading to pathological clot formation, are widely studied. However, the genetic variability in hemostatic and thrombotic disorders is incompletely understood, suggesting that novel mediators have yet to be uncovered. The zebrafish is developing into a powerful in vivo model to study hemostasis, and its features as a model organism are well suited to (a) develop high-throughput screens to identify novel mediators of hemostasis and thrombosis, (b) validate candidate genes identified in human populations, and (c) characterize the structure/function relationship of gene products. In this review, we discuss conservation of the zebrafish hemostatic system, highlight areas for future study, and outline the utility of this model to study blood coagulation and its dysregulation.
Collapse
|
8
|
A von Willebrand factor fragment containing the D'D3 domains is sufficient to stabilize coagulation factor VIII in mice. Blood 2014; 124:445-52. [PMID: 24850761 DOI: 10.1182/blood-2013-11-540534] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma factor VIII (FVIII) and von Willebrand factor (VWF) circulate together as a complex. We identify VWF fragments sufficient for FVIII stabilization in vivo and show that hepatic expression of the VWF D'D3 domains (S764-P1247), either as a monomer or a dimer, is sufficient to raise FVIII levels in Vwf(-/-) mice from a baseline of ∼5% to 10%, to ∼50% to 100%. These results demonstrate that a fragment containing only ∼20% of the VWF sequence is sufficient to support FVIII stability in vivo. Expression of the VWF D'D3 fragment fused at its C terminus to the Fc segment of immunoglobulin G1 results in markedly enhanced survival in the circulation (t1/2 > 7 days), concomitant with elevated plasma FVIII levels (>25% at 7 days) in Vwf(-/-) mice. Although the VWF D'D3-Fc chimera also exhibits markedly prolonged survival when transfused into FVIII-deficient mice, the cotransfused FVIII is rapidly cleared. Kinetic binding studies show that VWF propeptide processing of VWF D'D3 fragments is required for optimal FVIII affinity. The reduced affinity of VWF D'D3 and VWF D'D3-Fc for FVIII suggests that the shortened FVIII survival in FVIII-deficient mice transfused with FVIII and VWF D'D3/D'D3-Fc is due to ineffective competition of these fragments with endogenous VWF for FVIII binding.
Collapse
|
9
|
Vo AH, Swaroop A, Liu Y, Norris ZG, Shavit JA. Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS One 2013; 8:e74682. [PMID: 24098662 PMCID: PMC3787019 DOI: 10.1371/journal.pone.0074682] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022] Open
Abstract
Cessation of bleeding after trauma is a necessary evolutionary vertebrate adaption for survival. One of the major pathways regulating response to hemorrhage is the coagulation cascade, which ends with the cleavage of fibrinogen to form a stable clot. Patients with low or absent fibrinogen are at risk for bleeding. While much detailed information is known about fibrinogen regulation and function through studies of humans and mammalian models, bleeding risk in patients cannot always be accurately predicted purely based on fibrinogen levels, suggesting an influence of modifying factors and a need for additional genetic models. The zebrafish has orthologs to the three components of fibrinogen (fga, fgb, and fgg), but it hasn’t yet been shown that zebrafish fibrinogen functions to prevent bleeding in vivo. Here we show that zebrafish fibrinogen is incorporated into an induced thrombus, and deficiency results in hemorrhage. An Fgb-eGFP fusion protein is incorporated into a developing thrombus induced by laser injury, but causes bleeding in adult transgenic fish. Antisense morpholino knockdown results in intracranial and intramuscular hemorrhage at 3 days post fertilization. The observed phenotypes are consistent with symptoms exhibited by patients with hypo- and afibrinogenemia. These data demonstrate that zebrafish possess highly conserved orthologs of the fibrinogen chains, which function similarly to mammals through the formation of a fibrin clot.
Collapse
Affiliation(s)
- Andy H. Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alok Swaroop
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zachary G. Norris
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jordan A. Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Von Willebrand Factor Abnormalities Studied in the Mouse Model: What We Learned about VWF Functions. Mediterr J Hematol Infect Dis 2013; 5:e2013047. [PMID: 23936618 PMCID: PMC3736878 DOI: 10.4084/mjhid.2013.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022] Open
Abstract
Up until recently, von Willebrand Factor (VWF) structure-function relationships have only been studied through in vitro approaches. A powerful technique known as hydrodynamic gene transfer, which allows transient expression of a transgene by mouse hepatocytes, has led to an important shift in VWF research. Indeed this approach has now enabled us to transiently express a number of VWF mutants in VWF-deficient mice in order to test the relative importance of specific residues in different aspects of VWF biology and functions in an in vivo setting. As a result, mice reproducing various types of von Willebrand disease have been generated, models that will be useful to test new therapies. This approach also allowed a more precise identification of the importance of VWF interaction with subendothelial collagens and with platelets receptors in hemostasis and thrombosis. The recent advances gathered from these studies as well as the pros and cons of the technique will be reviewed here.
Collapse
|
11
|
Berntorp E, Fuchs B, Makris M, Montgomery R, Flood V, O'Donnell JS, Federici AB, Lillicrap D, James P, Budde U, Morfini M, Petrini P, Austin S, Kannicht C, Jiménez-Yuste V, Lee C. Third Åland islands conference on von Willebrand disease, 26-28 September 2012: meeting report. Haemophilia 2013; 19 Suppl 3:1-18. [PMID: 23383607 DOI: 10.1111/hae.12078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 01/03/2023]
Abstract
The first meeting of international specialists in the field of von Willebrand disease (VWD) was held in the Åland islands in 1998 where Erik von Willebrand had first observed a bleeding disorder in some members of a family from Föglö and a summary of the meeting was published in 1999. The second meeting was held in 2010 and a report of the meeting was published in 2012. Topics covered included progress in understanding of VWD over the last 50 years; multimers; classification of VWD; pharmacokinetics and laboratory assays; genetics; treating the paediatric patient; prophylaxis; geriatrics; gene therapy and treatment guidelines. This third meeting held over 3 days covered the structure and function of von Willebrand factor (VWF); type 1 VWD, the most common form of the disease; a lifespan of pharmacokinetics in VWD; detecting inhibitors in VWD patients; and special challenges in understanding and treating the female VWD patient.
Collapse
Affiliation(s)
- E Berntorp
- Department of Hematology and Coagulation Disorders, Lund University, Skåne University Hospital, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Petruzziello-Pellegrini TN, Yuen DA, Page AV, Patel S, Soltyk AM, Matouk CC, Wong DK, Turgeon PJ, Fish JE, Ho JJD, Steer BM, Khajoee V, Tigdi J, Lee WL, Motto DG, Advani A, Gilbert RE, Karumanchi SA, Robinson LA, Tarr PI, Liles WC, Brunton JL, Marsden PA. The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome in humans and mice. J Clin Invest 2012. [PMID: 22232208 DOI: 10.1172/jci57313)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is a potentially life-threatening condition. It often occurs after gastrointestinal infection with E. coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury. Stx-mediated changes in endothelial phenotype have been linked to the pathogenesis of HUS. Here we report our studies investigating Stx-induced changes in gene expression and their contribution to the pathogenesis of HUS. Stx function by inactivating host ribosomes but can also alter gene expression at concentrations that minimally affect global protein synthesis. Gene expression profiling of human microvascular endothelium treated with Stx implicated a role for activation of CXCR4 and CXCR7 by their shared cognate chemokine ligand (stromal cell-derived factor-1 [SDF-1]) in Stx-mediated pathophysiology. The changes in gene expression required a catalytically active Stx A subunit and were mediated by enhanced transcription and mRNA stability. Stx also enhanced the association of CXCR4, CXCR7, and SDF1 mRNAs with ribosomes. In a mouse model of Stx-mediated pathology, we noted changes in plasma and tissue content of CXCR4, CXCR7, and SDF-1 after Stx exposure. Furthermore, inhibition of the CXCR4/SDF-1 interaction decreased endothelial activation and organ injury and improved animal survival. Finally, in children infected with E. coli O157:H7, plasma SDF-1 levels were elevated in individuals who progressed to HUS. Collectively, these data implicate the CXCR4/CXCR7/SDF-1 pathway in Stx-mediated pathogenesis and suggest novel therapeutic strategies for prevention and/or treatment of complications associated with E. coli O157:H7 infection.
Collapse
|
13
|
Petruzziello-Pellegrini TN, Yuen DA, Page AV, Patel S, Soltyk AM, Matouk CC, Wong DK, Turgeon PJ, Fish JE, Ho JJD, Steer BM, Khajoee V, Tigdi J, Lee WL, Motto DG, Advani A, Gilbert RE, Karumanchi SA, Robinson LA, Tarr PI, Liles WC, Brunton JL, Marsden PA. The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome in humans and mice. J Clin Invest 2012; 122:759-76. [PMID: 22232208 DOI: 10.1172/jci57313] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 11/17/2011] [Indexed: 01/18/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a potentially life-threatening condition. It often occurs after gastrointestinal infection with E. coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury. Stx-mediated changes in endothelial phenotype have been linked to the pathogenesis of HUS. Here we report our studies investigating Stx-induced changes in gene expression and their contribution to the pathogenesis of HUS. Stx function by inactivating host ribosomes but can also alter gene expression at concentrations that minimally affect global protein synthesis. Gene expression profiling of human microvascular endothelium treated with Stx implicated a role for activation of CXCR4 and CXCR7 by their shared cognate chemokine ligand (stromal cell-derived factor-1 [SDF-1]) in Stx-mediated pathophysiology. The changes in gene expression required a catalytically active Stx A subunit and were mediated by enhanced transcription and mRNA stability. Stx also enhanced the association of CXCR4, CXCR7, and SDF1 mRNAs with ribosomes. In a mouse model of Stx-mediated pathology, we noted changes in plasma and tissue content of CXCR4, CXCR7, and SDF-1 after Stx exposure. Furthermore, inhibition of the CXCR4/SDF-1 interaction decreased endothelial activation and organ injury and improved animal survival. Finally, in children infected with E. coli O157:H7, plasma SDF-1 levels were elevated in individuals who progressed to HUS. Collectively, these data implicate the CXCR4/CXCR7/SDF-1 pathway in Stx-mediated pathogenesis and suggest novel therapeutic strategies for prevention and/or treatment of complications associated with E. coli O157:H7 infection.
Collapse
|
14
|
Daidone V, Gallinaro L, Grazia Cattini M, Pontara E, Bertomoro A, Pagnan A, Casonato A. An apparently silent nucleotide substitution (c.7056C>T) in the von Willebrand factor gene is responsible for type 1 von Willebrand disease. Haematologica 2011; 96:881-7. [PMID: 21393328 DOI: 10.3324/haematol.2010.036848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Nucleotide variations not changing protein sequences are considered silent mutations; accumulating data suggest that they can, however, be important in human diseases. DESIGN AND METHODS We report an altered splicing process induced by a silent substitution (c.7056C>T) in the von Willebrand factor gene in a case of type 1 von Willebrand disease originally classified as lacking von Willebrand factor mutations. RESULTS The c.7056C>T synonymous substitution introduces a new donor splice site within exon 41, leading to messenger RNA lacking nucleotides 7055-7081 (c.7055_7081del). The encoded von Willebrand factor protein is predicted to lack amino acids 2352-2360 in the B2 domain. The patient's von Willebrand disease phenotype was characterized by reduced plasma and platelet von Willebrand factor, which was normal in function and multimer structure. In vitro expression studies demonstrated that co-transfection of equimolar c.7055_7081del and wild-type von Willebrand factor (mimicking the patient's heterozygous state) induced a 50% lower von Willebrand factor secretion than the wild type, while almost no von Willebrand factor secretion was seen with the mutated von Willebrand factor alone. The secreted von Willebrand factor was structurally and functionally normal, suggesting that the c.7056C>T substitution behaves like a loss-of-function allele. CONCLUSIONS This is the first report of a synonymous von Willebrand factor substitution being responsible for von Willebrand disease. Our findings suggest the need to reconsider the role of von Willebrand factor polymorphisms in von Willebrand disease.
Collapse
Affiliation(s)
- Viviana Daidone
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padua Medical School, via Ospedale Civile 105, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Michaux G, Dyer CEF, Nightingale TD, Gallaud E, Nurrish S, Cutler DF. A role for Rab10 in von Willebrand factor release discovered by an AP-1 interactor screen in C. elegans. J Thromb Haemost 2011; 9:392-401. [PMID: 21070595 DOI: 10.1111/j.1538-7836.2010.04138.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial von Willebrand factor (VWF) mediates platelet adhesion and acts as a protective chaperone to clotting factor VIII. Rapid release of highly multimerized VWF is particularly effective in promoting hemostasis. To produce this protein, an elaborate biogenesis is required, culminating at the trans-Golgi network (TGN) in storage within secretory granules called Weibel-Palade bodies (WPB). Failure to correctly form these organelles can lead to uncontrolled secretion of low-molecular-weight multimers of VWF. The TGN-associated adaptor AP-1 and its interactors clathrin, aftiphilin and γ-synergin are essential to initial WPB formation at the Golgi apparatus, and thus to VWF storage and secretion. OBJECTIVES To identify new proteins implicated in VWF storage and/or secretion. METHODS A genomewide RNA interference (RNAi) screen was performed in the Nematode C. elegans to identify new AP-1 genetic interactors. RESULTS The small GTPase Rab10 was found to genetically interact with a partial loss of function of AP-1 in C. elegans. We investigated Rab10 in human primary umbilical vein endothelial cells (HUVECs). We report that Rab10 is enriched at the Golgi apparatus, where WPB are formed, and that in cells where Rab10 expression has been suppressed by siRNA, VWF secretion is altered: the amount of rapidly released VWF was significantly reduced. We also found that Rab8A has a similar function. CONCLUSION Rab10 and Rab8A are new cytoplasmic factors implicated in WPB biogenesis that play a role in generating granules that can rapidly respond to secretagogue.
Collapse
Affiliation(s)
- G Michaux
- INSERM Avenir team Trafic intracellulaire et polarité chez C. elegans, Rennes, France.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci analyses to identify chromosome regions harboring genes influencing red cell hemoglobin concentration using the cell hemoglobin concentration mean (CHCM), a directly measured parameter analogous to the mean cell hemoglobin concentration. Fourteen significant loci (gene symbols Chcmq1-Chcmq14) were detected. Seven of these influenced CHCM in a sex-specific fashion, and 2 showed significant interactive effects (epistasis). For quantitative trait locus/loci detected in multiple crosses, confidence intervals were narrowed using statistical and bioinformatic approaches. Two strong candidate genes emerged and were further analyzed: adult β-globin (Hbb) for Chcmq3 on Chr 7, and transferrin (Trf) for Chcmq2 on Chr 9. High and low allele parental strains in crosses detecting Chcmq3 segregate 100% with the known ancestral haplotype blocks, hemoglobin (Hb) diffuse (Hbb(d)) and Hb single (Hbb(s)), respectively. Hbb(d) consists of nonidentical major and minor polypeptides and exhibits an increased positive charge relative to Hbb(s) due to the net loss of 2 negative residues in the Hbb(dminor) polypeptide, resulting in a pI of 7.85 versus 7.13. Thus, as shown in human erythrocytes, positively charged Hbs are associated with cell dehydration and increased CHCM in mouse erythrocytes.
Collapse
|
17
|
Mouse chromosome 17 candidate modifier genes for thrombosis. Mamm Genome 2010; 21:337-49. [PMID: 20700597 PMCID: PMC2923722 DOI: 10.1007/s00335-010-9274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/14/2010] [Indexed: 12/14/2022]
Abstract
Two overlapping quantitative trait loci (QTLs) for clot stability, Hmtb8 and Hmtb9, were identified on mouse chromosome 17 in an F2 intercross derived from C57BL/6J (B6) and B6-Chr17(A/J) (B6-Chr17) mouse strains. The intervals were in synteny with a QTL for thrombotic susceptibility on chromosome 18 in a human study, and there were 23 homologs between mouse and human. The objective of this study was to determine whether any of these genes in the syntenic region are likely candidates as modifiers for clot stability. Seven genes, Twsg1, Zfp161, Dlgap1, Ralbp1, Myom1, Rab31, and Emilin2, of the 23 genes with single nucleotide polymorphisms (SNPs) in the mRNA-UTR had differential expression in B6 and A/J mice. Dlgap1, Ralbp1, Myom1, and Emilin2 also had nonsynonymous SNPs. In addition, two other genes had nonsynonymous SNPs, Lama1 and Ndc80. Of these nine candidate genes, Emilin2 was selected for further analysis since other EMILIN (Elastin Microfibril Interface Located Protein) proteins have known functions in vascular structure and coagulation. Differences were found between B6 and A/J mice in vessel wall architecture and EMILIN2 protein in plasma, carotid vessel wall, and thrombi formed after ferric chloride injury. In B6-Chr17(A/J) mice both clot stability and Emilin2 mRNA expression were higher compared to those in B6 and A/J mice, suggesting the exposure of epistatic interactions. Although other homologous genes in the QTL region cannot be ruled out as causative genes, further investigation of Emilin2 as a candidate gene for thrombosis susceptibility is warranted.
Collapse
|
18
|
A mischief of mice. Blood 2009; 114:5249-50. [PMID: 20018924 DOI: 10.1182/blood-2009-10-247544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|