1
|
Ratajczak W, Walczakiewicz K, Laszczyńska M, Chmielowiec K, Palma J, Drozd A, Lubkowska A, Sipak O. The profile of oxidative stress markers (arachidonic and linoleic acid derivatives) in patients with benign prostatic hyperplasia in relation to metabolic syndrome. Aging (Albany NY) 2025; 17:116-130. [PMID: 39773533 PMCID: PMC11810064 DOI: 10.18632/aging.206187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
So far, it has been proven that benign prostatic hyperplasia (BPH) is strongly associated with inflammation resulting from, i.a. the presence of infectious agent, autoimmune disease, aging process and lipid disorders associated with metabolic syndrome (MetS). We analyzed the association between serum eicosanoides (HETE, HODE, lipoxins, prostaglandin, and leucotrien) in aging man with benign prostatic hyperplasia (BPH) and healthy controls. The study involved 219 men (with BPH, n = 144; healthy controls, n = 75). We assessed the content arachidonic and linoleic acid derivatives in the serum samples of the study participants using liquid chromatography (HPLC). The levels of: RvE1 (p < 0.001); LXA4 5S,6R,15R (p = 0.001); 10S,17R-DiDHA (p < 0.001); MaR1 (p = 0.002); 9S-HODE (p < 0.05); 15S-HETE (p < 0.05); 12S-HETE (p < 0.001); 5-oxoETE (p < 0.05) and 5-HETE (p < 0.001) were significantly higher in patients with BPH than in the control group. PGE2 (p = 0.007), LTB4 (p < 0.001), and 18RS-HEPE (p < 0.001) were significantly higher in control group. We also analyzed the relationship between LXA4 5S,6R,15R serum levels of oxidative stress markers and concomitance of MetS. We noticed a relationship between levels and MetS (F1216 = 6.114965, p = 0.01). Our research results suggest that pro-inflammatory mediators and suppressors of inflammation are involved in the development of BPH, but their exact contribution has yet to be investigated.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | | | - Maria Laszczyńska
- Department of Nursing, State University of Applied Sciences, Leśna, Koszalin 75-582, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty St., Zielona Góra 65-046, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, Broniewskiego, Szczecin 71-460, Poland
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego, Szczecin 71-460, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| |
Collapse
|
2
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
3
|
Zhao S, Zhou J, Chen R, Zhou W, Geng H, Huang Y, Shi S, Yuan L, Wang Z, Wang D. Decreased FGF23 inhibits placental angiogenesis via the ERK1/2-EGR-1 signaling pathway in preeclampsia. Cytokine 2024; 176:156508. [PMID: 38266461 DOI: 10.1016/j.cyto.2024.156508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aimed to investigate the expression of fibroblast growth factor 23 (FGF23) in pregnant women with preeclampsia and elucidate its role in promoting placental angiogenesis through the ERK1/2-EGR-1 signaling pathway. METHODS Serum FGF23 levels were measured by ELISA in healthy pregnant women and patients with preeclampsia during the first, second, and third trimesters of pregnancy. Wound healing, Transwell, and tube formation assays were performed to investigate the effects of FGF23 on cell migration, invasion and tube formation. The expression of vascular endothelial growth factor A (VEGF-A) and its upstream signaling molecules, p-ERK, and EGR-1, in placental tissues was detected by RT-qPCR and western blotting. Additionally, the effect of FGF23 on VEGF-A, p-ERK, and EGR-1 expression was further explored in vitro. RESULTS Serum FGF23 levels increased with gestational age. During the third trimester, the control group exhibited a more pronounced increase in FGF23 levels than the preeclampsia group. Administering exogenous FGF23 promoted trophoblast cell migration, invasion and enhanced tube formation in vascular endothelial cells. The expression levels of VEGF-A, p-ERK, and EGR-1 in the placental tissues were significantly lower in the preeclampsia group than in the control group. In vitro experiments confirmed that FGF23 up-regulated VEGF-A expression through the p-ERK/EGR-1 signaling pathway. CONCLUSION The serum level of FGF23 decreased in pregnant women with preeclampsia, inhibiting the ERK1/2-EGR-1 pathway and resulting in decreased expression of VEGF-A, thereby inhibiting placental angiogenesis. This could be a potential mechanism involved in the progression of preeclampsia.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Junling Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Run Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Huizhen Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Yihong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Shaole Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Lemin Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| |
Collapse
|
4
|
Sanchez-Aguilera A, Masmudi-Martín M, Navas-Olive A, Baena P, Hernández-Oliver C, Priego N, Cordón-Barris L, Alvaro-Espinosa L, García S, Martínez S, Lafarga M, Lin MZ, Al-Shahrour F, Menendez de la Prida L, Valiente M. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits. Cancer Cell 2023; 41:1637-1649.e11. [PMID: 37652007 PMCID: PMC10507426 DOI: 10.1016/j.ccell.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sonia Martínez
- Experimental Therapeutics Programme, CNIO, 28029 Madrid, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and CIBERNED, University of Cantabria- IDIVAL, 39011 Santander, Spain
| | - Michael Z Lin
- Departments of Neurobiology and Bioengineering, Stanford University, Stanford, CA 94305-5090, USA
| | | | | | | |
Collapse
|
5
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
6
|
Govatati S, Pichavaram P, Mani AM, Kumar R, Sharma D, Dienel A, Meena S, Puchowicz MA, Park EA, Rao GN. Novel role of xanthine oxidase-dependent H 2O 2 production in 12/15-lipoxygenase-mediated de novo lipogenesis, triglyceride biosynthesis and weight gain. Redox Biol 2021; 47:102163. [PMID: 34655995 PMCID: PMC8577505 DOI: 10.1016/j.redox.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
12/15-lipoxygenase (12/15-LOX) plays an essential role in oxidative conversion of polyunsaturated fatty acids into various bioactive lipid molecules. Although 12/15-LOX's role in the pathophysiology of various human diseases has been well studied, its role in weight gain is controversial and poorly clarified. Here, we demonstrated the role of 12/15-LOX in high-fat diet (HFD)-induced weight gain in a mouse model. We found that 12/15-LOX mediates HFD-induced de novo lipogenesis (DNL), triglyceride (TG) biosynthesis and the transport of TGs from the liver to adipose tissue leading to white adipose tissue (WAT) expansion and weight gain via xanthine oxidase (XO)-dependent production of H2O2. 12/15-LOX deficiency leads to cullin2-mediated ubiquitination and degradation of XO, thereby suppressing H2O2 production, DNL and TG biosynthesis resulting in reduced WAT expansion and weight gain. These findings infer that manipulation of 12/15-LOX metabolism may manifest a potential therapeutic target for weight gain and obesity. 12/15-LOX-12(S)-HETE axis via activation of CREB-Egr1 enhances TG biosynthesis. 12/15-LOX-12(S)-HETE axis via activation of SREBP1c triggers DNL. H2O2 mediates 12/15-LOX-12(S)-HETE axis-induced DNL and TG biosynthesis. 12/15-LOX via TG biosynthesis leads to WAT expansion and body weight gain. Downstream to 12/15-LOX, H2O2-mediates WAT expansion and body weight gain.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deepti Sharma
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ari Dienel
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunita Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The Role of the Transcription Factor EGR1 in Cancer. Front Oncol 2021; 11:642547. [PMID: 33842351 PMCID: PMC8024650 DOI: 10.3389/fonc.2021.642547] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Early growth response factor 1 (EGR1) is a transcription factor that is mainly involved in the processes of tissue injury, immune responses, and fibrosis. Recent studies have shown that EGR1 is closely related to the initiation and progression of cancer and may participate in tumor cell proliferation, invasion, and metastasis and in tumor angiogenesis. Nonetheless, the specific mechanism whereby EGR1 modulates these processes remains to be elucidated. This review article summarizes possible mechanisms of action of EGR1 in tumorigenesis and tumor progression and may serve as a reference for clinical efficacy predictions and for the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102160. [PMID: 32717531 DOI: 10.1016/j.plefa.2020.102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Oxylipins, which are circulating bioactive lipids generated from polyunsaturated fatty acids (PUFAs) by cyclooxygenase, lipooxygenase and cytochrome P450 enzymes, have diverse effects on endothelial cells. Although studies of the effects of oxylipins on endothelial cell function are accumulating, a review that provides a comprehensive compilation of current knowledge and recent advances in the context of vascular homeostasis is lacking. This is the first compilation of the various in vitro, ex vivo and in vivo reports to examine the effects and potential mechanisms of action of oxylipins on endothelial cells. The aggregate data indicate docosahexaenoic acid-derived oxylipins consistently show beneficial effects related to key endothelial cell functions, whereas oxylipins derived from other PUFAs exhibit both positive and negative effects. Furthermore, information is lacking for certain oxylipin classes, such as those derived from α-linolenic acid, which suggests additional studies are required to achieve a full understanding of how oxylipins affect endothelial cells.
Collapse
Affiliation(s)
- Youjia Du
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada.
| |
Collapse
|
9
|
EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 2019; 38:6241-6255. [PMID: 31312026 PMCID: PMC6715537 DOI: 10.1038/s41388-019-0873-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022]
Abstract
Early growth response-1 (EGR1) is a transcription factor correlated with prostate cancer (PC) progression in a variety of contexts. For example, EGR1 levels increase in response to suppressed androgen receptor signaling or loss of the tumor suppressor, PTEN. EGR1 has been shown to regulate genes influencing proliferation, apoptosis, immune cell activation, and matrix degradation, among others. Despite this, the impact of EGR1 on PC metastatic colonization is unclear. We demonstrate using a PC model (DU145/RasB1) of bone and brain metastasis that EGR1 expression regulates angiogenic and osteoclastogenic properties of metastases. We have shown previously that FN14 (TNFRSF12A) and downstream NF-κB signaling is required for metastasis in this model. Here we demonstrate that FN14 ligation also leads to NF-κB-independent, MEK-dependent EGR1 expression. EGR1-depletion in DU145/RasB1 cells reduced both the number and size of metastases but did not affect primary tumor growth. Decreased EGR1 expression led to reduced blood vessel density in brain and bone metastases as well as decreased osteolytic bone lesion area and reduced numbers of osteoclasts at the bone-tumor interface. TWEAK (TNFSF12) induced several EGR1-dependent angiogenic and osteoclastogenic factors (e.g. PDGFA, TGFB1, SPP1, IL6, IL8, and TGFA, among others). Consistent with this, in clinical samples of PC, the level of several genes encoding angiogenic/osteoclastogenic pathway effectors correlated with EGR1 levels. Thus, we show here that EGR1 has a direct effect on prostate cancer metastases. EGR1 regulates angiogenic and osteoclastogenic factors, informing the underlying signaling networks that impact autonomous and microenvironmental mechanisms of cancer metastases.
Collapse
|
10
|
Starlinger P, Hackl H, Pereyra D, Skalicky S, Geiger E, Finsterbusch M, Tamandl D, Brostjan C, Grünberger T, Hackl M, Assinger A. Predicting Postoperative Liver Dysfunction Based on Blood-Derived MicroRNA Signatures. Hepatology 2019; 69:2636-2651. [PMID: 30779441 PMCID: PMC6593830 DOI: 10.1002/hep.30572] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/10/2019] [Indexed: 12/17/2022]
Abstract
There is an urgent need for an easily assessable preoperative test to predict postoperative liver function recovery and thereby determine the optimal time point of liver resection, specifically as current markers are often expensive, time consuming, and invasive. Emerging evidence suggests that microRNA (miRNA) signatures represent potent diagnostic, prognostic, and treatment-response biomarkers for several diseases. Using next-generation sequencing as an unbiased systematic approach, 554 miRNAs were detected in preoperative plasma of 21 patients suffering from postoperative liver dysfunction (LD) after liver resection and 27 matched controls. Subsequently, we identified a miRNA signature-consisting of miRNAs 151a-5p, 192-5p, and 122-5p-that highly correlated with patients developing postoperative LD after liver resection. The predictive potential for postoperative LD was subsequently confirmed using real-time PCR in an independent validation cohort of 98 patients. Ultimately, a regression model of the two miRNA ratios 151a-5p to 192-5p and 122-5p to 151a-5p was found to reliably predict postoperative LD, severe morbidity, prolonged intensive care unit and hospital stays, and even mortality before an operation with a remarkable accuracy, thereby outperforming established markers of postoperative LD. Ultimately, we documented that miRNA ratios closely followed liver function recovery after partial hepatectomy. Conclusion: Our data demonstrate the clinical utility of an miRNA-based biomarker to support the selection of patients undergoing partial hepatectomy. The dynamical changes during liver function recovery indicate a possible role in individualized patient treatment. Thereby, our data might help to tailor surgical strategies to the specific risk profile of patients.
Collapse
Affiliation(s)
- Patrick Starlinger
- Department of SurgeryMedical University of Vienna, General HospitalViennaAustria
| | - Hubert Hackl
- Division of Bioinformatics, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - David Pereyra
- Department of SurgeryMedical University of Vienna, General HospitalViennaAustria
| | | | | | | | - Dietmar Tamandl
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Christine Brostjan
- Department of SurgeryMedical University of Vienna, General HospitalViennaAustria
| | | | | | - Alice Assinger
- Department of Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
12
|
Hypoxic cardiac fibroblasts from failing human hearts decrease cardiomyocyte beating frequency in an ALOX15 dependent manner. PLoS One 2018; 13:e0202693. [PMID: 30138423 PMCID: PMC6107211 DOI: 10.1371/journal.pone.0202693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
A common denominator for patients with heart failure is the correlation between elevated serum levels of proinflammatory cytokines and adverse clinical outcomes. Furthermore, lipoxygenase-induced inflammation is reportedly involved in the pathology of heart failure. Cardiac fibroblasts, which are abundant in cardiac tissue, are known to be activated by inflammation. We previously showed high expression of the lipoxygenase arachidonate 15 lipoxygenase (ALOX15), which catalyzes the conversion of arachidonic acid to 15-hydroxy eicosatetraenoic acid (15-HETE), in ischemic cardiac tissue. The exact roles of ALOX15 and 15-HETE in the pathogenesis of heart failure are however unknown. Biopsies were collected from all chambers of explanted failing human hearts from heart transplantation patients, as well as from the left ventricles from organ donors not suffering from chronic heart failure. Biopsies from the left ventricles underwent quantitative immunohistochemical analysis for ALOX15/B. Gene expression of ALOX enzymes, as well as 15-HETE levels, were examined in cardiac fibroblasts which had been cultured in either hypoxic or normoxic conditions after isolation from failing hearts. After the addition of fibroblast supernatants to human induced pluripotent stem cell-derived cardiomyocytes, intracellular calcium concentrations were measured to examine the effect of paracrine signaling on cardiomyocyte beating frequency. While ALOX15 and ALOX15B were expressed throughout failing hearts as well as in hearts from organ donors, ALOX15 was expressed at significantly higher levels in donor hearts. Hypoxia resulted in a significant increase in gene and protein expression of ALOX15 and ALOX15B in fibroblasts isolated from the different chambers of failing hearts. Finally, preconditioned medium from hypoxic fibroblasts decreased the beating frequency of human cardiomyocytes derived from induced pluripotent stem cells in an ALOX15-dependent manner. In summary, our results demonstrate that ALOX15/B signaling by hypoxic cardiac fibroblasts may play an important role in ischemic cardiomyopathy, by decreasing cardiomyocyte beating frequency.
Collapse
|
13
|
Rauzi F, Kirkby NS, Edin ML, Whiteford J, Zeldin DC, Mitchell JA, Warner TD. Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1. FASEB J 2016; 30:4256-4266. [PMID: 27633788 PMCID: PMC5102123 DOI: 10.1096/fj.201600530r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
Abstract
Regular consumption of low-dose aspirin reduces the occurrence of colorectal, esophageal, stomach, and gastrointestinal cancers. The underlying mechanism is unknown but may be linked to inhibition of angiogenesis. Because the effective doses of aspirin are consistent with the inhibition of cyclooxygenase-1 in platelets, we used liquid chromatography with tandem mass spectrometry analyses and immunoassays of human platelet releasates coupled with angiogenesis assays to search for the mediators of these effects. Blood or platelet-rich plasma from healthy volunteers stimulated with platelet activators produced a broad range of eicosanoids. Notably, preincubation of platelets with aspirin, but not with a P2Y12 receptor antagonist, caused a marked reduction in the production of 11-hydroxyeicosatetraenoic acid (HETE) and 15(S)-HETE, in addition to prostanoids such as thromboxane A2. Releasates from activated platelets caused cell migration and tube formation in cultured human endothelial cells and stimulated the sprouting of rat aortic rings in culture. These proangiogenic effects were absent when platelets were treated with aspirin but returned by coincubation with exogenous 15(S)-HETE. These results reveal 15(S)-HETE as a major platelet cyclooxygenase-1 product with strong proangiogenic effects. Thus, 15(S)-HETE represents a potential target for the development of novel antiangiogenic therapeutics, and blockade of its production may provide a mechanism for the anticancer effects of aspirin.—Rauzi, F., Kirkby, N. S., Edin, M. L., Whiteford, J. Zeldin, D. C., Mitchell, J. A., Warner, T. D. Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1.
Collapse
Affiliation(s)
- Francesca Rauzi
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas S Kirkby
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Matthew L Edin
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - James Whiteford
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Darryl C Zeldin
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Timothy D Warner
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom;
| |
Collapse
|
14
|
Al-Naamani N, Sagliani KD, Dolnikowski GG, Warburton RR, Toksoz D, Kayyali U, Hill NS, Fanburg BL, Roberts KE, Preston IR. Plasma 12- and 15-hydroxyeicosanoids are predictors of survival in pulmonary arterial hypertension. Pulm Circ 2016; 6:224-33. [PMID: 27252849 DOI: 10.1086/686311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to characterize alterations in select eicosanoids in experimental and human pulmonary arterial hypertension (PAH) and to assess their potential utility as predictors of outcome. Using liquid chromatography-mass spectrometry, we performed targeted lipidomic analyses of the lungs and right ventricles (RVs) of chronically hypoxic rats and plasma of consecutive PAH patients and healthy controls. In rat lungs, chronic hypoxia was associated with significantly decreased lung prostacyclin (PGI2)/thromboxane B2 (TXB2) ratio and elevated lung 8-hydroxyeicosanoid (HETE) acid concentrations. RV eicosanoids did not exhibit any changes with chronic hypoxia. PAH treatment-naïve patients had significantly increased plasma concentrations of TXB2 and 5-, 8-, 12-, and 15-HETE. The PGI2/TXB2 ratio was lower in PAH patients than in controls, especially in the treatment-naïve cohort (median: 2.1, 0.3, and 1.3 in controls, treatment-naïve, and treated patients, respectively, P = 0.001). Survival was significantly worse in PAH patients with 12-HETEhigh (≥57 pg/mL) and 15-HETEhigh (≥256 pg/mL) in unadjusted and adjusted analyses (hazard ratio [HR]: 2.8 [95% confidence interval (CI): 1.1-7.3], P = 0.04 and HR: 4.3 [95% CI: 1.6-11.8], P = 0.004, respectively; adjustment was performed with the REVEAL [Registry to Evaluate Early and Long-Term PAH Disease Management] risk score). We demonstrate significant alterations in eicosanoid pathways in experimental and human PAH. We found that 12- and 15-HETE were independent predictors of survival in human PAH, even after adjusting for the REVEAL score, suggesting their potential role as novel biomarkers.
Collapse
Affiliation(s)
- Nadine Al-Naamani
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kristen D Sagliani
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gregory G Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Rod R Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Usamah Kayyali
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicholas S Hill
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Barry L Fanburg
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Kari E Roberts
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ioana R Preston
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Wu SY, Rupaimoole R, Shen F, Pradeep S, Pecot CV, Ivan C, Nagaraja AS, Gharpure KM, Pham E, Hatakeyama H, McGuire MH, Haemmerle M, Vidal-Anaya V, Olsen C, Rodriguez-Aguayo C, Filant J, Ehsanipour EA, Herbrich SM, Maiti SN, Huang L, Kim JH, Zhang X, Han HD, Armaiz-Pena GN, Seviour EG, Tucker S, Zhang M, Yang D, Cooper LJN, Ali-Fehmi R, Bar-Eli M, Lee JS, Ram PT, Baggerly KA, Lopez-Berestein G, Hung MC, Sood AK. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun 2016; 7:11169. [PMID: 27041221 PMCID: PMC4822037 DOI: 10.1038/ncomms11169] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022] Open
Abstract
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy. The formation of blood vessels in tumours, angiogenesis, is a promising target for therapy. Here, the authors show that microRNA192 has anti-angiogenic functions and negatively regulates EGR1 and HOXB9, and that delivery of this microRNA to tumours in vivo can reduce angiogenesis and tumour growth.
Collapse
Affiliation(s)
- Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Fangrong Shen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chad V Pecot
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth Pham
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Hiroto Hatakeyama
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael H McGuire
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monika Haemmerle
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Viviana Vidal-Anaya
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Courtney Olsen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Cristian Rodriguez-Aguayo
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Justyna Filant
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ehsan A Ehsanipour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shelley M Herbrich
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sourindra N Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ji Hoon Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hee-Dong Han
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Immunology Laboratory, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elena G Seviour
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sue Tucker
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Zhang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Laurence J N Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M. Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. Gastroenterology 2016; 150:168-80. [PMID: 26433161 DOI: 10.1053/j.gastro.2015.09.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Enteric glial cells (EGCs) produce soluble mediators that regulate homeostasis and permeability of the intestinal epithelial barrier (IEB). We investigated the profile of polyunsaturated fatty acid (PUFA) metabolites produced by EGCs from rats and from patients with Crohn's disease (CD), compared with controls, along with the ability of one of these metabolites, 15-hydroxyeicosatetraenoic acid (15-HETE), to regulate the permeability of the IEB. METHODS We isolated EGCs from male Sprague-Dawley rats, intestinal resections of 6 patients with CD, and uninflamed healthy areas of intestinal tissue from 6 patients who underwent surgery for colorectal cancer (controls). EGC-conditioned media was analyzed by high-sensitivity liquid-chromatography tandem mass spectrometry to determine PUFA signatures. We used immunostaining to identify 15-HETE-producing enzymes in EGCs and tissues. The effects of human EGCs and 15-HETE on permeability and transepithelial electrical resistance of the IEB were measured using Caco-2 cells; effects on signal transduction proteins were measured with immunoblots. Levels of proteins were reduced in Caco-2 cells using short-hairpin RNAs or proteins were inhibited pharmacologically. Rats were given intraperitoneal injections of 15-HETE or an inhibitor of 15-lipoxygenase (the enzyme that produces 15-HETE); colons were collected and permeability was measured. RESULTS EGCs expressed 15-lipoxygenase-2 and produced high levels of 15-HETE, which increased IEB resistance and reduced IEB permeability. 15-HETE production was reduced in EGCs from patients with CD compared with controls. EGCs from patients with CD were unable to reduce the permeability of the IEB; the addition of 15-HETE restored permeability to levels of control tissues. Inhibiting 15-HETE production in rats increased the permeability of the IEB in colon tissues. We found that 15-HETE regulates IEB permeability by inhibiting an adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1. CONCLUSIONS Enteric glial cells from patients with CD have reduced production of 15-HETE, which controls IEB permeability by inhibiting adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1.
Collapse
Affiliation(s)
- Camille Pochard
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Sabrina Coquenlorge
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | | | | | - Guillaume Meurette
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Marie Freyssinet
- INSERM, UMR913, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| |
Collapse
|
17
|
Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 2015; 6:297-310. [PMID: 26298204 PMCID: PMC4556770 DOI: 10.1016/j.redox.2015.08.006] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Lipoxygenases (LOXs) are dioxygenases that catalyze the formation of corresponding hydroperoxides from polyunsaturated fatty acids such as linoleic acid and arachidonic acid. LOX enzymes are expressed in immune, epithelial, and tumor cells that display a variety of physiological functions, including inflammation, skin disorder, and tumorigenesis. In the humans and mice, six LOX isoforms have been known. 15-LOX, a prototypical enzyme originally found in reticulocytes shares the similarity of amino acid sequence as well as the biochemical property to plant LOX enzymes. 15-LOX-2, which is expressed in epithelial cells and leukocytes, has different substrate specificity in the humans and mice, therefore, the role of them in mammals has not been established. 12-LOX is an isoform expressed in epithelial cells and myeloid cells including platelets. Many mutations in this isoform are found in epithelial cancers, suggesting a potential link between 12-LOX and tumorigenesis. 12R-LOX can be found in the epithelial cells of the skin. Defects in this gene result in ichthyosis, a cutaneous disorder characterized by pathophysiologically dried skin due to abnormal loss of water from its epithelial cell layer. Similarly, eLOX-3, which is also expressed in the skin epithelial cells acting downstream 12R-LOX, is another causative factor for ichthyosis. 5-LOX is a distinct isoform playing an important role in asthma and inflammation. This isoform causes the constriction of bronchioles in response to cysteinyl leukotrienes such as LTC4, thus leading to asthma. It also induces neutrophilic inflammation by its recruitment in response to LTB4. Importantly, 5-LOX activity is strictly regulated by 5-LOX activating protein (FLAP) though the distribution of 5-LOX in the nucleus. Currently, pharmacological drugs targeting FLAP are actively developing. This review summarized these functions of LOX enzymes under pathophysiological conditions in mammals.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
18
|
Zhang L, Li Y, Liu Y, Wang X, Chen M, Xing Y, Zhu D. STAT3-mediated MMP-2 expression is required for 15-HETE-induced vascular adventitial fibroblast migration. J Steroid Biochem Mol Biol 2015; 149:106-17. [PMID: 25623089 DOI: 10.1016/j.jsbmb.2015.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Vascular adventitial fibroblasts (VAFs) migration was involved in neointima formation, and increased 15-HETE levels contributed to vascular remodeling. However, how 15-HETE-induced VAF migration was not clear. METHODS AND RESULTS 15-HETE-stimulated VAF phenotypic changes and migration as measured by the wound healing assay required STAT3 phosphorylation. JNK1 and CREB inhibition blocked 15-HETE-induced STAT3 activation and VAF changes. 15-HETE-induced MMP-2 expression and secretion were analyzed by Western blot and ELISA, respectively. MMP-2 knockdown blocked VAF migration and phenotypic alterations. JNK1, STAT3 and CREB blockade suppressed 15-HETE-induced MMP-2 expression in VAFs. MMP-2 promoter activity was assessed by chromatin immunoprecipitation using anti-STAT3 antibodies, which demonstrated that STAT3 was essential for 15-HETE-induced MMP-2 expression. Rats that suffered from hypoxia injury with or without treatment were examined. Pulmonary artery remodeling was obviously observed, and even the media was broken. MMP-2-positive staining was observed in the adventitia and intima. MMP-2 Serum secretion was enhanced as detected by ELISA, and MMP-2 and α-SMA protein expressions were increased after inducing hypoxia in the rats, which was restored in rats that had been administrated with NDGA. CONCLUSION These results reveal that STAT3-mediated MMP-2 expression is required for 15-HETE induced-VAF migration.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China
| | - Yumei Li
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China; Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province 150081, China
| | - Yumei Liu
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China
| | - Xiaoyan Wang
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China
| | - Minggang Chen
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China
| | - Daling Zhu
- Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang Province 163319, China; Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
19
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
20
|
Soumya SJ, Binu S, Helen A, Reddanna P, Sudhakaran PR. 15-LOX metabolites and angiogenesis: angiostatic effect of 15(S)-HPETE involves induction of apoptosis in adipose endothelial cells. PeerJ 2014; 2:e635. [PMID: 25346880 PMCID: PMC4207198 DOI: 10.7717/peerj.635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/01/2014] [Indexed: 11/20/2022] Open
Abstract
Inflammation is critical in the dysregulated growth of adipose tissue and associated vascular dysfunctions. 15-Lipoxygenase metabolites, important mediators of inflammation in adipose tissue during obese conditions, may contribute to codependence of inflammation and angiogenesis in adipose tissue. We have already reported the pro-angiogenic effect of 15(S)-HETE in adipose tissue. The present study was designed to understand the effect of 15(S)-HPETE, precursor of 15(S)-HETE, on angiogenesis in adipose tissue. Results showed that 15(S)-HPETE exerts an anti-angiogenic effect in adipose tissue. This was evidenced from decreased endothelial sprouting in adipose tissue explants, inhibition of angiogenic phenotype in adipose endothelial cells, decreased production of CD31 and VEGF in endothelial cells treated with 15(S)-HPETE. Further studies to examine the molecular mechanism of anti-angiogenic effect of 15(S)-HPETE showed that it inhibited cell survival signaling molecule Akt and anti-apoptotic Bcl-2 and also activated caspase-3 in adipose endothelial cells. These observations indicate that 15(S)-HPETE exerts its angiostatic effect in adipose tissue by inducing apoptosis of endothelial cells.
Collapse
Affiliation(s)
- Sasikumar J Soumya
- Department of Biochemistry, University of Kerala , Thiruvananthapuram, Kerala , India ; Inter-University Centre for Genomics and Gene Technology, University of Kerala , Kariavattom, Thiruvananthapuram, Kerala , India
| | - Sheela Binu
- Department of Biochemistry, University of Kerala , Thiruvananthapuram, Kerala , India
| | - Antony Helen
- Department of Biochemistry, University of Kerala , Thiruvananthapuram, Kerala , India
| | - Pallu Reddanna
- National Institute of Animal Biotechnology, University of Hyderabad , Hyderabad , India
| | - Perumana R Sudhakaran
- Department of Biochemistry, University of Kerala , Thiruvananthapuram, Kerala , India ; Department of Computational Biology and Bioinformatics, University of Kerala , Kariavattom, Thiruvananthapuram, Kerala , India
| |
Collapse
|
21
|
Soumya SJ, Binu S, Helen A, Reddanna P, Sudhakaran PR. 15(S)-HETE-induced angiogenesis in adipose tissue is mediated through activation of PI3K/Akt/mTOR signaling pathway. Biochem Cell Biol 2013; 91:498-505. [PMID: 24219292 DOI: 10.1139/bcb-2013-0037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic low-grade inflammation underlies obesity and associated metabolic dysfunctions. Lipoxygenase pathways are activated in adipose tissue during obese conditions. Since adipogenesis is associated with angiogenesis, the present study was designed to examine the role of 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE] on angiogenesis in adipose tissue. Results showed that 15(S)-HETE induced sprouting in fat pad stromovascular tissues, induced morphological changes relevant to angiogenesis in endothelial cells derived from adipose tissue, upregulated the production of CD31, upregulated the gene level expression and production of vascular endothelial growth factor (VEGF), indicating the pro-angiogenic effect of 15(S)-HETE. LY294002, an inhibitor of PI3K-Akt pathway, and rapamycin, inhibitor of mammalian target of rapamycin (mTOR), significantly reversed the effect of 15(S)-HETE. 15(S)-HETE also induced activation of Akt and mTOR. These observations suggest that 15(S)-HETE stimulates angiogenesis in adipose tissue through activation of PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Sasikumar J Soumya
- a Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695 581, India
| | | | | | | | | |
Collapse
|
22
|
Wu MY, Yang RS, Lin TH, Tang CH, Chiu YC, Liou HC, Fu WM. Enhancement of PLGF production by 15-(S)-HETE via PI3K-Akt, NF-κB and COX-2 pathways in rheumatoid arthritis synovial fibroblast. Eur J Pharmacol 2013; 714:388-96. [DOI: 10.1016/j.ejphar.2013.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 01/09/2023]
|
23
|
Ferdous T, Harada K, Kin T, Harada T, Ueyama Y. Efficacy of schedule-dependent metronomic S-1 chemotherapy in human oral squamous cell carcinoma cells. Int J Oncol 2013; 43:271-9. [PMID: 23695365 DOI: 10.3892/ijo.2013.1950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/19/2013] [Indexed: 11/05/2022] Open
Abstract
Metronomic chemotherapy is based on administration of anticancer agents at low-doses at close regular intervals with no prolonged breaks, and aims to inhibit vascular endothelial cells as well as tumor cells. Recently, it was suggested that metronomic chemotherapy exerts anti-angiogenic effects by inducing thrombospondin-1 (TSP-1) and early growth response-1 (EGR-1), and antitumor effects by suppressing cancer stem cells. S-1 is a novel orally administered anticancer drug that is a combination of tegafur, 5-chloro-2, 4-dihydroxypyridine and oteracil potassium for maintaining efficacious concentrations of 5-FU and reducing the serious gastrointestinal toxicity associated with 5-FU. In the present study, we tried to determine the suitable administration method of S-1 against oral squamous cell carcinoma as a metronomic chemotherapy. We performed in vivo experiments in which tumor-bearing nude mice were used to examine the antitumor activity of S-1 (6.9 mg/kg). HSC2 tumors were treated with three different regimens, given as 4-week treatment and 2-week rest (4W-2W, 1 cycle); 2-week treatment and 1-week rest (2W-1W, 2 cycles); or alternate days treatment (1D-1D, 6 weeks). A fourth group served as control. Antitumor effects and body weight changes were compared in each group. Expression of TSP-1, EGR-1, CD31 and CD44 in HSC2 tumors was examined by immunohistochemistry. The treated groups showed higher tumor growth inhibition compared to the control group, and the relative tumor growth inhibition was not different between the treated groups. Briefly, each relative tumor growth inhibition was 32.4% (4W-2W), 39.6% (2W-1W) and 37.0% (1D-1D). During treatment periods, body weights were lower in the mice with 4W-2W or 2W-1W than 1D-1D or control. Moreover, reduction of microvessel density and CD44 expression, and induction of TSP-1 and EGR-1 expression was markedly seen in 1D-1D-treated tumors compared to 4W-2W-, 2W-1W-treated tumors or untreated control tumors by immunohistochemistry. These findings suggest that the 1D-1D regimen is more useful than the 4W-2W or 2W-1W regimen as a metronomic chemotherapy.
Collapse
Affiliation(s)
- Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | |
Collapse
|
24
|
He C, Qu X, Wan J, Rong R, Huang L, Cai C, Zhou K, Gu Y, Qian SY, Kang JX. Inhibiting delta-6 desaturase activity suppresses tumor growth in mice. PLoS One 2012; 7:e47567. [PMID: 23112819 PMCID: PMC3480421 DOI: 10.1371/journal.pone.0047567] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/18/2012] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that a tumor-supportive microenvironment is characterized by high levels of pro-inflammatory and pro-angiogenic eicosanoids derived from omega-6 (n−6) arachidonic acid (AA). Although the metabolic pathways (COX, LOX, and P450) that generate these n−6 AA eicosanoids have been targeted, the role of endogenous AA production in tumorigenesis remains unexplored. Delta-6 desaturase (D6D) is the rate-limiting enzyme responsible for the synthesis of n−6 AA and increased D6D activity can lead to enhanced n−6 AA production. Here, we show that D6D activity is upregulated during melanoma and lung tumor growth and that suppressing D6D activity, either by RNAi knockdown or a specific D6D inhibitor, dramatically reduces tumor growth. Accordingly, the content of AA and AA-derived tumor-promoting metabolites is significantly decreased. Angiogenesis and inflammatory status are also reduced. These results identify D6D as a key factor for tumor growth and as a potential target for cancer therapy and prevention.
Collapse
Affiliation(s)
- Chengwei He
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Quality Research in Chinese Medicine (UM), Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Xiying Qu
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianbo Wan
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rong Rong
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lili Huang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chun Cai
- Laboratory for Genetics, Nutrition and Health, Guangdong Medical College, Zhanjiang, Guangdong, P. R. China
| | - Keyuan Zhou
- Laboratory for Genetics, Nutrition and Health, Guangdong Medical College, Zhanjiang, Guangdong, P. R. China
| | - Yan Gu
- Department of Pharmaceutical Science, North Dakota State University, Fargo, North Dakota, United States of America
| | - Steven Y. Qian
- Department of Pharmaceutical Science, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory for Genetics, Nutrition and Health, Guangdong Medical College, Zhanjiang, Guangdong, P. R. China
- * E-mail:
| |
Collapse
|
25
|
Egr-1 induces DARPP-32 expression in striatal medium spiny neurons via a conserved intragenic element. J Neurosci 2012; 32:6808-18. [PMID: 22593050 DOI: 10.1523/jneurosci.5448-11.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DARPP-32 (dopamine and adenosine 3', 5'-cyclic monophosphate cAMP-regulated phosphoprotein, 32 kDa) is a striatal-enriched protein that mediates signaling by dopamine and other first messengers in the medium spiny neurons. The transcriptional mechanisms that regulate striatal DARPP-32 expression remain enigmatic and are a subject of much interest in the efforts to induce a striatal phenotype in stem cells. We report the identification and characterization of a conserved region, also known as H10, in intron IV of the gene that codes for DARPP-32 (Ppp1r1b). This DNA sequence forms multiunit complexes with nuclear proteins from adult and embryonic striata of mice and rats. Purification of proteins from these complexes identified early growth response-1 (Egr-1). The interaction between Egr-1 and H10 was confirmed in vitro and in vivo by super-shift and chromatin immunoprecipitation assays, respectively. Importantly, brain-derived neurotrophic factor (BDNF), a known inducer of DARPP-32 and Egr-1 expression, enhanced Egr-1 binding to H10 in vitro. Moreover, overexpression of Egr-1 in primary striatal neurons induced the expression of DARPP-32, whereas a dominant-negative Egr-1 blocked DARPP-32 induction by BDNF. Together, this study identifies Egr-1 as a transcriptional activator of the Ppp1r1b gene and provides insight into the molecular mechanisms that regulate medium spiny neuron maturation.
Collapse
|
26
|
Suppression of transcription factor early growth response 1 reduces herpes simplex virus 1-induced corneal disease in mice. J Virol 2012; 86:8559-67. [PMID: 22647700 DOI: 10.1128/jvi.00505-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus 1 replication initiates angiogenesis and inflammation in the cornea. This can result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced corneal blindness. Host cellular factors mediate the progression of HSK, but little is known about these cellular factors and their mechanisms of action. We show here that the expression of the cellular transcription factor early growth response 1 (Egr-1) in HSV-1-infected mouse corneas was enhanced. Enhanced Egr-1 expression aggravated HSK by increasing viral replication and subsequent neovascularization with high levels of potent angiogenic factors, fibroblast growth factor 2, and vascular endothelial growth factor. Furthermore, Egr-1 deficiency due to a targeted disruption of the gene or knockdown of Egr-1 expression topically using a DNA-based enzyme significantly reduced HSK by decreasing both viral replication and the angiogenic response. The present study provides the first evidence that endogenous Egr-1 aggravates HSK and that blocking Egr-1 reduces corneal damage.
Collapse
|
27
|
Kundumani-Sridharan V, Van Quyen D, Subramani J, Singh NK, Chin YE, Rao GN. Novel interactions between NFATc1 (Nuclear Factor of Activated T cells c1) and STAT-3 (Signal Transducer and Activator of Transcription-3) mediate G protein-coupled receptor agonist, thrombin-induced biphasic expression of cyclin D1, with first phase influencing cell migration and second phase directing cell proliferation. J Biol Chem 2012; 287:22463-82. [PMID: 22566696 DOI: 10.1074/jbc.m112.362996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.
Collapse
|
28
|
Shi X, Liu M, Li D, Wang J, Aneja R, Zhou J. Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration. Cell Cycle 2012; 11:1554-63. [PMID: 22437770 DOI: 10.4161/cc.19954] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Centrosomal proteins intricately regulate diverse microtubule-mediated cellular activities, including cell polarization and migration. However, the direct participation of these proteins in angiogenesis, which involves vascular endothelial cell migration from preexisting blood vessels, remains elusive. Here we show that the centrosomal protein Cep70 is necessary for angiogenic response in mice. This protein is also required for tube formation and capillary sprouting in vitro from vascular endothelial cells. Wound healing and transwell assays reveal that Cep70 plays a significant role in endothelial cell migration. Depletion of Cep70 results in severe defects in membrane ruffling and centrosome reorientation, indicating a requirement for this protein in cell polarization. In addition, Cep70 is critically involved in microtubule rearrangement in response to the migratory stimulus. Our data further demonstrate that Cep70 is important for Cdc42 and Rac1 activation to promote angiogenesis. These findings thus establish Cep70 as a crucial regulator of the angiogenic process and emphasize the significance of microtubule rearrangement and cell polarization and migration in angiogenesis.
Collapse
Affiliation(s)
- Xingjuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
29
|
Soumya SJ, Binu S, Helen A, Anil Kumar K, Reddanna P, Sudhakaran PR. Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic. Inflamm Res 2012; 61:707-18. [PMID: 22450700 DOI: 10.1007/s00011-012-0463-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/10/2011] [Accepted: 03/08/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE 15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] are the products of arachidonic acid formed in the 15-lipoxygenase pathway. They have opposing effects on the inflammatory process. The present study was designed to examine the role of these metabolites on angiogenesis, which is critically associated with inflammatory conditions. METHODS Chick chorio-allantoic membrane (CAM), rat aortic rings and human umbilical vein endothelial cells (HUVECs) in culture were used to study the effect of 15(S)-HETE and 15(S)-HPETE on angiogenesis. Biochemical markers of angiogenesis were analysed by ELISA. RESULTS 15(S)-HETE increased vessel density in chick CAM, induced sprouting in rat aortic rings and increased endothelial cell-cell contact and formation of tubular network-like structures in HUVECs. Furthermore, it up-regulated the expression of CD31, E-selectin and vascular endothelial growth factor (VEGF) in HUVECs, indicating its pro-angiogenic effect. 15(S)-HPETE, on the other hand, decreased vessel density in chick CAM, down-regulated the expression of E-selectin (<35 %), VEGF (<90 %) and CD31 (<50 %) and did not produce sprouting in aortic rings, suggesting an anti-angiogenic property. 15(S)-HETE-mediated up-regulation of CD 31 and VEGF was reversed by treatment with 15(S)-HPETE. CONCLUSION These results indicate the divergent effects of hydroxy and hydroperoxy products of 15-LOX on angiogenesis, highlighting the role of these products in the co-dependence of inflammation and angiogenesis.
Collapse
Affiliation(s)
- Sasikumar J Soumya
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581 Kerala, India
| | | | | | | | | | | |
Collapse
|
30
|
Angiogenesis: the HETE is on. Blood 2012; 118:5367-9. [PMID: 22096255 DOI: 10.1182/blood-2011-09-376152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Singh and colleagues identify HMG-CoA reductase-dependent farnesylation of Rac-1 as critical for 15(S)-HETE-induced angiogenesis. These findings establish a novel link between eicosanoid and cholesterol metabolism with important biologic and therapeutic implications for angiogenesis.
Collapse
|
31
|
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, Hardman WE, Egleton RD, Chen YC, Mangiarua EI, Dasgupta P. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 2011; 15:99-114. [PMID: 22198237 DOI: 10.1007/s10456-011-9246-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/14/2011] [Indexed: 01/18/2023]
Abstract
Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C Brown
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Avenue, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
12/15-Lipoxygenase gene knockout severely impairs ischemia-induced angiogenesis due to lack of Rac1 farnesylation. Blood 2011; 118:5701-12. [PMID: 21841162 DOI: 10.1182/blood-2011-04-347468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To understand the mechanisms by which 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) activates Rac1 in the induction of angiogenesis, we studied the role of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and αPix. 15(S)-HETE stimulated Rac1 in a sustained manner in human dermal microvascular endothelial cells (HDMVECs). Simvastatin, a potent inhibitor of HMG-CoA reductase, suppressed 15(S)-HETE-induced Rac1 activation in HDMVECs affecting their migration and tube formation. 15(S)-HETE by inducing HMG-CoA reductase expression caused increased farnesylation and membrane translocation of Rac1 where it became activated by Src-dependent αPix stimulation. Mevalonate rescued 15(S)-HETE-induced Rac1 farnesylation and membrane translocation in HDMVECs and the migration and tube formation of these cells from inhibition by simvastatin. Down-regulation of αPix inhibited 15(S)-HETE-induced HDMVEC migration and tube formation. Hind-limb ischemia induced Rac1 farnesylation and activation leading to increased angiogenesis and these effects were blocked by simvastatin and rescued by mevalonate in WT mice. In contrast, hind-limb ischemia failed to induce Rac1 farnesylation and activation as well as angiogenic response in 12/15-Lox(-/-) mice. Activation of Src and αPix were also compromised at least to some extent in 12/15-Lox(-/-) mice compared with WT mice in response to hind-limb ischemia. Together, these findings demonstrate for the first time that HMG-CoA reductase plays a determinant role in 12/15-Lox-induced angiogenesis.
Collapse
|
33
|
Jain S, Gabunia K, Kelemen SE, Panetti TS, Autieri MV. The anti-inflammatory cytokine interleukin 19 is expressed by and angiogenic for human endothelial cells. Arterioscler Thromb Vasc Biol 2010; 31:167-75. [PMID: 20966397 DOI: 10.1161/atvbaha.110.214916] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To characterize the expression and function of interleukin (IL) 19, a recently described T-helper 2 anti-inflammatory IL, on endothelial cell (EC) pathophysiological features. METHODS AND RESULTS The expression and effects of anti-inflammatory ILs on EC activation and development of angiogenesis are uncharacterized. We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal, human coronary endothelium and can be induced in cultured human ECs by serum and basic fibroblast growth factor. IL-19 is mitogenic and chemotactic, and it promotes EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cordlike structure formation of cultured ECs and enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in gelatinous protein (Matrigel) plugs in vivo. CONCLUSIONS To our knowledge, these data are the first to report expression of the anti-inflammatory agent, IL-19, in ECs; and the first to indicate that IL-19 is mitogenic and chemotactic for ECs and can induce the angiogenic potential of ECs.
Collapse
Affiliation(s)
- Surbhi Jain
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
34
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
35
|
Singh NK, Quyen DV, Kundumani-Sridharan V, Brooks PC, Rao GN. AP-1 (Fra-1/c-Jun)-mediated induction of expression of matrix metalloproteinase-2 is required for 15S-hydroxyeicosatetraenoic acid-induced angiogenesis. J Biol Chem 2010; 285:16830-43. [PMID: 20353950 DOI: 10.1074/jbc.m110.106187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the involvement of matrix metalloproteinases (MMPs) in 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE)-induced angiogenesis, we have studied the role of MMP-2. 15(S)-HETE induced MMP-2 expression and activity in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Inhibition of MMP-2 activity or depletion of its levels attenuated 15(S)-HETE-induced HDMVEC migration, tube formation, and Matrigel plug angiogenesis. 15(S)-HETE also induced Fra-1 and c-Jun expression in a Rac1-MEK1-JNK1-dependent manner. In addition, 15(S)-HETE-induced MMP-2 expression and activity were mediated by Rac1-MEK1-JNK1-dependent activation of AP-1 (Fra-1/c-Jun). Cloning and site-directed mutagenesis of MMP-2 promoter revealed that AP-1 site proximal to the transcriptional start site is required for 15(S)-HETE-induced MMP-2 expression, and Fra-1 and c-Jun are the essential components of AP-1 that bind to MMP-2 promoter in response to 15(S)-HETE. Hind limb ischemia led to an increase in MEK1 and JNK1 activation and Fra-1, c-Jun, and MMP-2 expression resulting in enhanced neovascularization and recovery of blood perfusion in wild-type mice as compared with 12/15-Lox(-/-) mice. Together, these results provide the first direct evidence for a role of 12/15-Lox-12/15(S)-HETE axis in the regulation of ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|