1
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Zhou Y, Yin Y, Xu J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. An update on Alectinib: a first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:1361-1373. [PMID: 37278051 DOI: 10.1080/14656566.2023.2221786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxin Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
El Sayed R, Tehfe M, Blais N. Successful Treatment with Brigatinib after Alectinib-Induced Hemolytic Anemia in Patients with Metastatic Lung Adenocarcinoma-A Case Series. Curr Oncol 2022; 30:518-528. [PMID: 36661690 PMCID: PMC9858242 DOI: 10.3390/curroncol30010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Alectinib is a second-generation anaplastic lymphoma kinase (ALK) inhibitor used in the treatment of advanced ALK-rearrangement positive non-small-cell lung cancer (NSCLC). Many tolerable adverse events were reported with the use of Alectinib; nevertheless, hemolytic anemia was not mentioned in the safety analysis. In this case, series, we report four cases of Alectinib-induced oxidative hemolytic anemia and discuss different etiologic hypotheses on the underlying mechanism of such overlooked adverse event of the drug. Furthermore, we draw attention to the successful treatment with Brigatinib, an alternative second-generation ALK-inhibitor without recurrence of hemolytic anemia in three of our four cases, suggesting a probable class effect.
Collapse
Affiliation(s)
- Rola El Sayed
- Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | |
Collapse
|
4
|
Beuret L, Fortier-Beaulieu SP, Rondeau V, Roy S, Houde N, Balabanian K, Espéli M, Charron J. Mek1 and Mek2 Functional Redundancy in Erythropoiesis. Front Cell Dev Biol 2021; 9:639022. [PMID: 34386488 PMCID: PMC8353236 DOI: 10.3389/fcell.2021.639022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have established the crucial role of the extracellular signal–regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.
Collapse
Affiliation(s)
- Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sophie Roy
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22147682. [PMID: 34299300 PMCID: PMC8307237 DOI: 10.3390/ijms22147682] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.
Collapse
|
6
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Liu H, Tang F, Su J, Ma J, Qin Y, Ji L, Geng H, Wang S, Zhang P, Liu J, Cui S, Ge RL, Li Z. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis 2020; 84:102446. [PMID: 32470757 DOI: 10.1016/j.bcmd.2020.102446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
Excessive erythrocytosis (EE) is a characteristic of chronic mountain sickness (CMS). Currently, the pathogenesis of CMS remains unclear. This study was intended to investigate the role of EPAS1 in the proliferation of erythroblasts in CMS. Changes of HIF-1α and EPAS1/HIF-2α in the bone marrow erythroblasts of 21 patients with CMS and 14 control subjects residing at the same altitudes were determined by RT-qPCR and western blotting. We also developed a lentiviral vector, Lv-EPAS1/sh-EPAS1, to over-express/silence EPAS1 in K562 cells. Cells cycle and proliferation were detected by flow cytometry. Transcriptome analyses were carried out on Illumina. CMS patients showed a higher expression of EPAS1/HIF-2α in the bone marrow erythroblasts than those of controls. Variations in EPAS1 expression in CMS patients were positively correlated with RBC levels, and negatively correlated with SaO2. Over-expressing of EPAS1 in K562 cells accelerated the erythroid cells cycle progression and promoted the erythroid cells proliferation-and vice versa. Transcriptome data indicated that proliferation-related DEGs were significantly enriched in EPAS1 overexpression/silencing K562 cells. Our results suggest that EPAS1 might participate in the pathogenesis of EE by regulating the proliferation of erythroblasts.
Collapse
Affiliation(s)
- Huihui Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China; Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Juan Su
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jie Ma
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yajing Qin
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Linhua Ji
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Hui Geng
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shengyan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Peili Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Junli Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Sen Cui
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Zhanquan Li
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China.
| |
Collapse
|
8
|
Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Cells 2020; 9:cells9010129. [PMID: 31935908 PMCID: PMC7016714 DOI: 10.3390/cells9010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unique characteristics distinguish extracellular signal-regulated kinases (Erks) from other eukaryotic protein kinases (ePKs). Unlike most ePKs, Erks do not autoactivate and they manifest no basal activity; they become catalysts only when dually phosphorylated on neighboring Thr and Tyr residues and they possess unique structural motifs. Erks function as the sole targets of the receptor tyrosine kinases (RTKs)-Ras-Raf-MEK signaling cascade, which controls numerous physiological processes and is mutated in most cancers. Erks are therefore the executers of the pathway’s biology and pathology. As oncogenic mutations have not been identified in Erks themselves, combined with the tight regulation of their activity, Erks have been considered immune against mutations that would render them intrinsically active. Nevertheless, several such mutations have been generated on the basis of structure-function analysis, understanding of ePK evolution and, mostly, via genetic screens in lower eukaryotes. One of the mutations conferred oncogenic properties on Erk1. The number of interesting mutations in Erks has dramatically increased following the development of Erk-specific pharmacological inhibitors and identification of mutations that cause resistance to these compounds. Several mutations have been recently identified in cancer patients. Here we summarize the mutations identified in Erks so far, describe their properties and discuss their possible mechanism of action.
Collapse
|
9
|
Ulyanova T, Georgolopoulos G, Papayannopoulou T. Reappraising the role of α5 integrin and the microenvironmental support in stress erythropoiesis. Exp Hematol 2019; 81:16-31.e4. [PMID: 31887343 DOI: 10.1016/j.exphem.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
We previously studied the role of β1 integrin and some of its different α partners relevant to erythropoiesis. Although clear and consistent answers regarding the role of α4β1 (VLA-4) were evident, the role of its companion integrin α5β1 (VLA-5) was clouded by inconsistent outcomes in all prior publications. Furthermore, the functional consequences of integrin deficiencies only in microenvironmental (ME) cells supporting erythroid cell expansion and maturation post stress have never been explored. In the study described here, we created several additional mouse models in the aim of addressing unanswered questions regarding functional consequences of single or combined integrin deficiencies in erythroid cells or only in ME supporting cells. Our novel and expansive data solidified the intrinsic requirement of both α4 and α5 integrins in erythroid cells for their proliferative expansion and maturation in response to stress; α5 integrin alone, deleted either early in all hematopoietic cells or only in erythroid cell, has only a redundant role in proliferative expansion and is dispensable for erythroid maturation. By contrast, α4 integrin, on its own, exerts a dominant effect on timely and optimal erythroid maturation. Deficiency of both α4 and α5 integrins in ME cells, including macrophages, does not negatively influence stress response by normal erythroid cells, in great contrast to the effect of ME cells deficient in all β1 integrins. Collectively the present data offer deeper insight into the coordination of different β1 integrin functional activities in erythroid cells or in ME cells for optimal erythroid stress response.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
10
|
Matte A, Federti E, Winter M, Koerner A, Harmeier A, Mazer N, Tomka T, Di Paolo ML, De Falco L, Andolfo I, Beneduce E, Iolascon A, Macias-Garcia A, Chen JJ, Janin A, Lebouef C, Turrini F, Brugnara C, De Franceschi L. Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of β-thalassemia. JCI Insight 2019; 4:130111. [PMID: 31593554 DOI: 10.1172/jci.insight.130111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Anemia of β-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage, as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes, and in heme-regulated inhibitor activation and eIF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation and Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Enrica Federti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Michael Winter
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Annette Koerner
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Harmeier
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Norman Mazer
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tomas Tomka
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Luigia De Falco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Elisabetta Beneduce
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Alejandra Macias-Garcia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anne Janin
- INSERM, U1165, Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christhophe Lebouef
- INSERM, U1165, Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Franco Turrini
- Department of Oncology, University of Torino, Torino, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
11
|
Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell 2018; 173:634-648.e12. [DOI: 10.1016/j.cell.2018.02.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
|
12
|
Wang X, Yu S, Jia Q, Chen L, Zhong J, Pan Y, Shen P, Shen Y, Wang S, Wei Z, Cao Y, Lu Y. NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia. Oncotarget 2017; 8:55920-55937. [PMID: 28915563 PMCID: PMC5593534 DOI: 10.18632/oncotarget.18473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
NiaoDuQing (NDQ) granules, a traditional Chinese medicine, has been clinically used in China for over fourteen years to treat chronic kidney disease (CKD). To elucidate the mechanisms underlying the therapeutic benefits of NDQ, we designed an approach incorporating chemoinformatics, bioinformatics, network biology methods, and cellular and molecular biology experiments. A total of 182 active compounds were identified in NDQ granules, and 397 putative targets associated with different diseases were derived through ADME modelling and target prediction tools. Protein-protein interaction networks of CKD-related and putative NDQ targets were constructed, and 219 candidate targets were identified based on topological features. Pathway enrichment analysis showed that the candidate targets were mostly related to the TGF-β, the p38MAPK, and the erythropoietin (EPO) receptor signaling pathways, which are known contributors to renal fibrosis and/or renal anemia. A rat model of CKD was established to validate the drug-target mechanisms predicted by the systems pharmacology analysis. Experimental results confirmed that NDQ granules exerted therapeutic effects on CKD and its comorbidities, including renal anemia, mainly by modulating the TGF-β and EPO signaling pathways. Thus, the pharmacological actions of NDQ on CKD symptoms correlated well with in silico predictions.
Collapse
Affiliation(s)
- Xu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lichuan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jinqiu Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Siliang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
13
|
Frey H, Moreth K, Hsieh LTH, Zeng-Brouwers J, Rathkolb B, Fuchs H, Gailus-Durner V, Iozzo RV, de Angelis MH, Schaefer L. A novel biological function of soluble biglycan: Induction of erythropoietin production and polycythemia. Glycoconj J 2016; 34:393-404. [DOI: 10.1007/s10719-016-9722-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022]
|
14
|
Saba-El-Leil MK, Frémin C, Meloche S. Redundancy in the World of MAP Kinases: All for One. Front Cell Dev Biol 2016; 4:67. [PMID: 27446918 PMCID: PMC4921452 DOI: 10.3389/fcell.2016.00067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
The protein kinases ERK1 and ERK2 are the effector components of the prototypical ERK1/2 mitogen-activated protein (MAP) kinase pathway. This signaling pathway regulates cell proliferation, differentiation and survival, and is essential for embryonic development and cellular homeostasis. ERK1 and ERK2 homologs share similar biochemical properties but whether they exert specific physiological functions or act redundantly has been a matter of controversy. However, recent studies now provide compelling evidence in support of functionally redundant roles of ERK1 and ERK2 in embryonic development and physiology. In this review, we present a critical assessment of the evidence for the functional specificity or redundancy of MAP kinase isoforms. We focus on the ERK1/ERK2 pathway but also discuss the case of JNK and p38 isoforms.
Collapse
Affiliation(s)
- Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal Montréal, QC, Canada
| | - Christophe Frémin
- Institute for Research in Immunology and Cancer, Université de MontréalMontréal, QC, Canada; Institute for Research in Cancer of MontpellierMontpellier, France
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de MontréalMontréal, QC, Canada; Molecular Biology Program, Université de MontréalMontréal, QC, Canada; Department of Pharmacology, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
15
|
Macrophage migration inhibitory factor is an endogenous regulator of stress-induced extramedullary erythropoiesis. Histochem Cell Biol 2016; 146:311-24. [DOI: 10.1007/s00418-016-1442-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
|
16
|
Rainville N, Jachimowicz E, Wojchowski DM. Targeting EPO and EPO receptor pathways in anemia and dysregulated erythropoiesis. Expert Opin Ther Targets 2015; 20:287-301. [PMID: 26419263 DOI: 10.1517/14728222.2016.1090975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recombinant human erythropoietin (rhEPO) is a first-line therapeutic for the anemia of chronic kidney disease, cancer chemotherapy, AIDS (Zidovudine therapy), and lower-risk myelodysplastic syndrome. However, rhEPO frequently elevates hypertension, is costly, and may affect cancer progression. Potentially high merit therefore exists for defining new targets for anti-anemia agents within erythropoietin (EPO) and EPO receptor (EPOR) regulatory circuits. AREAS COVERED EPO production by renal interstitial fibroblasts is subject to modulation by several regulators of hypoxia-inducible factor 2a (HIF2a) including Iron Response Protein-1, prolyl hydroxylases, and HIF2a acetylases, each of which holds potential as anti-anemia drug targets. The cell surface receptor for EPO (EPOR) preassembles as a homodimer, together with Janus Kinase 2 (JAK2), and therefore it remains attractive to develop novel agents that trigger EPOR complex activation (activating antibodies, mimetics, small-molecule agonists). Additionally, certain downstream transducers of EPOR/JAK2 signaling may be druggable, including Erythroferrone (a hepcidin regulator), a cytoprotective Spi2a serpin, and select EPOR-associated protein tyrosine phosphatases. EXPERT OPINION While rhEPO (and biosimilars) are presently important mainstay erythropoiesis-stimulating agents (ESAs), impetus exists for studies of novel ESAs that fortify HIF2a's effects, act as EPOR agonists, and/or bolster select downstream EPOR pathways to erythroid cell formation. Such agents could lessen rhEPO dosing, side effects, and/or costs.
Collapse
Affiliation(s)
- Nicole Rainville
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Edward Jachimowicz
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Don M Wojchowski
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA.,b 2 Tufts University School of Medicine , Boston, MA, USA.,c 3 Maine Medical Center Research Institute, Center of Excellence in Stem & Progenitor Cell Biology and Regenerative Medicine , Scarborough, ME 04074, USA ; .,d 4 Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
17
|
Frémin C, Saba-El-Leil M, Lévesque K, Ang SL, Meloche S. Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development. Cell Rep 2015; 12:913-21. [DOI: 10.1016/j.celrep.2015.07.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022] Open
|
18
|
Trinh BQ, Barengo N, Kim SB, Lee JS, Zweidler-McKay PA, Naora H. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling. J Cell Sci 2015. [PMID: 26208636 PMCID: PMC4541043 DOI: 10.1242/jcs.168187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Megakaryocyte and erythroid development are tightly controlled by a repertoire of cytokines, but it is not clear how cytokine-activated signaling pathways are controlled during development of these two lineages. Here, we identify that expression of DLX4, a transcription factor encoded by a homeobox gene, increases during megakaryopoiesis but decreases during erythropoiesis. Enforced expression of DLX4 in CD34(+) stem and progenitor cells and in bipotent K562 cells induced lineage markers and morphologic features of megakaryocytes and repressed erythroid marker expression and hemoglobin levels. Converse results were obtained when DLX4 was knocked down. Gene Ontology and Gene Set Enrichment Analyses of genome-wide changes in gene expression revealed that DLX4 induces a megakaryocytic transcriptional program and inhibits an erythroid transcriptional program. DLX4 also induced gene signatures that are associated with nuclear factor κB (NF-κB) signaling. The ability of DLX4 to promote megakaryocyte development at the expense of erythroid generation was diminished by blocking NF-κB activity or by repressing IL1B, a transcriptional target of DLX4. Collectively, our findings indicate that DLX4 exerts opposing effects on the megakaryocytic and erythroid lineages in part by inducing IL-1β and NF-κB signaling.
Collapse
Affiliation(s)
- Bon Q Trinh
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Nicolas Barengo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Sang Bae Kim
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Patrick A Zweidler-McKay
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 853, Houston, TX 77030, USA
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| |
Collapse
|
19
|
Emerging EPO and EPO receptor regulators and signal transducers. Blood 2015; 125:3536-41. [PMID: 25887776 DOI: 10.1182/blood-2014-11-575357] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia.
Collapse
|
20
|
Chen J, Enns CA. CD81 promotes both the degradation of transferrin receptor 2 (TfR2) and the Tfr2-mediated maintenance of hepcidin expression. J Biol Chem 2015; 290:7841-50. [PMID: 25635054 DOI: 10.1074/jbc.m114.632778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in transferrin receptor 2 (TfR2) cause a rare form of the hereditary hemochromatosis, resulting in iron overload predominantly in the liver. TfR2 is primarily expressed in hepatocytes and is hypothesized to sense iron levels in the blood to positively regulate the expression of hepcidin through activation of the BMP signaling pathway. Hepcidin is a peptide hormone that negatively regulates iron egress from cells and thus limits intestinal iron uptake. In this study, a yeast two-hybrid approach using the cytoplasmic domain of TfR2 identified CD81 as an interacting protein. CD81 is an abundant tetraspanin in the liver. Co-precipitations of CD81 with different TfR2 constructs demonstrated that both the cytoplasmic and ecto-transmembrane domains of TfR2 interact with CD81. Knockdown of CD81 using siRNA significantly increased TfR2 levels by increasing the half-life of TfR2, indicating that CD81 promotes degradation of TfR2. Previous studies showed that CD81 is targeted for degradation by GRAIL, an ubiquitin E3 ligase. Knockdown of GRAIL in Hep3B-TfR2 cells increased TfR2 levels, consistent with inhibition of CD81 ubiquitination. These results suggest that down-regulation of CD81 by GRAIL targets TfR2 for degradation. Surprisingly, knockdown of CD81 decreased hepcidin expression, implying that the TfR2/CD81 complex is involved in the maintenance of hepcidin mRNA. Moreover, knockdown of CD81 did not affect the stimulation of hepcidin expression by BMP6 but increased both the expression of ID1 and SMAD7, direct targets of BMP signaling pathway, and the phosphorylation of ERK1/2, indicating that the CD81 regulates hepcidin expression differently from the BMP and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Juxing Chen
- From the Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Koulnis M, Porpiglia E, Hidalgo D, Socolovsky M. Erythropoiesis: from molecular pathways to system properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:37-58. [PMID: 25480636 DOI: 10.1007/978-1-4939-2095-2_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Erythropoiesis is regulated through a long-range negative feedback loop, whereby tissue hypoxia stimulates erythropoietin (Epo) secretion, which promotes an increase in erythropoietic rate. However, this long-range feedback loop, by itself, cannot account for the observed system properties of erythropoiesis, namely, a wide dynamic range, stability in the face of random perturbations, and a rapid stress response. Here, we show that three Epo-regulated erythroblast survival pathways each give rise to distinct system properties. The induction of Bcl-xL by signal transducer and activator of transcription 5 (Stat5) is responsive to the rate of change in Epo levels, rather than to its absolute level, and is therefore maximally but transiently activated in acute stress. By contrast, Epo-mediated suppression of the pro-survival Fas and Bim pathways is proportional to the levels of stress/Epo and persists throughout chronic stress. Together, these elements operate in a manner reminiscent of a "proportional-integral-derivative (PID)" feedback controller frequently found in engineering applications. A short-range negative autoregulatory loop within the early erythroblast compartment, operated by Fas/FasL, filters out random noise and controls a reserve pool of early erythroblasts that is poised to accelerate the response to acute stress. Both these properties have previously been identified as inherent to negative regulatory motifs. Finally, we show that signal transduction by Stat5 combines binary and graded modalities, thereby increasing signaling fidelity over the wide dynamic range of Epo found in health and disease.
Collapse
Affiliation(s)
- Miroslav Koulnis
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building (LRB) Room 440A, 01605, Worcester, MA, USA,
| | | | | | | |
Collapse
|
22
|
Chu HC, Lee HY, Huang YS, Tseng WL, Yen CJ, Cheng JC, Tseng CP. Erythroid differentiation is augmented in Reelin-deficient K562 cells and homozygous reeler mice. FEBS Lett 2013; 588:58-64. [PMID: 24239537 DOI: 10.1016/j.febslet.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119(+)CD71(+) erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Hsing-Ying Lee
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Yen-Shu Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Wei-Lien Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ching-Ju Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ju-Chien Cheng
- Department of Medical Laboratory Sciences and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC.
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
23
|
Qu G, Wang X, Wang Z, Liu S, Jiang G. Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages. NANOSCALE RESEARCH LETTERS 2013; 8:198. [PMID: 23631472 PMCID: PMC3646675 DOI: 10.1186/1556-276x-8-198] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/16/2013] [Indexed: 05/04/2023]
Abstract
Great concerns have been raised about the exposure and possible adverse influence of nanomaterials due to their wide applications in a variety of fields, such as biomedicine and daily lives. The blood circulation system and blood cells form an important barrier against invaders, including nanomaterials. However, studies of the biological effects of nanomaterials on blood cells have been limited and without clear conclusions thus far. In the current study, the biological influence of quantum dots (QDs) with various surface coating on erythroid cells and graphene oxide (GO) on macrophages was closely investigated. We found that QDs posed great damage to macrophages through intracellular accumulation of QDs coupled with reactive oxygen species generation, particularly for QDs coated with PEG-NH2. QD modified with polyethylene glycol-conjugated amine particles exerted robust inhibition on cell proliferation of J744A.1 macrophages, irrespective of apoptosis. Additionally, to the best of our knowledge, our study is the first to have demonstrated that GO could provoke apoptosis of erythroid cells through oxidative stress in E14.5 fetal liver erythroid cells and in vivo administration of GO-diminished erythroid population in spleen, associated with disordered erythropoiesis in mice.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Overexpression of MyrAkt1 in endothelial cells leads to erythropoietin- and BMP4-independent splenic erythropoiesis in mice. PLoS One 2013; 8:e55095. [PMID: 23383068 PMCID: PMC3557261 DOI: 10.1371/journal.pone.0055095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/24/2012] [Indexed: 12/15/2022] Open
Abstract
Under steady state conditions, erythropoiesis occurs in the bone marrow. However, in mice, stress or tissue hypoxia results in increased erythropoiesis in the spleen. There is increasing evidence that the hematopoietic microenvironment, including endothelial cells, plays an important role in regulating erythropoiesis. Here, we show that short-term expression of constitutively active Akt in the endothelium of mice results in non-anemic stress erythropoiesis in the spleen. The initiation of this stress response was independent of erythropoietin and BMP4, and was observed in endothelial myrAkt1 mice reconstituted with wild-type bone marrow. Together, these data suggest that endothelial cell hyperactivation is a potentially novel pathway of inducing red cell production under stress.
Collapse
|
25
|
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood 2013; 121:e43-9. [PMID: 23287863 DOI: 10.1182/blood-2012-09-456079] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Terminal erythroid differentiation is the process during which proerythroblasts differentiate to produce enucleated reticulocytes. Although it is well established that during murine erythropoiesis in vivo, 1 proerythroblast undergoes 3 mitosis to generate sequentially 2 basophilic, 4 polychromatic, and 8 orthochromatic erythroblasts, currently there is no method to quantitatively monitor this highly regulated process. Here we outline a method that distinguishes each distinct stage of erythroid differentiation in cells from mouse bone marrow and spleen based on expression levels of TER119, CD44, and cell size. Quantitative analysis revealed that the ratio of proerythroblasts:basophilic:polychromatic:orthromatic erythroblasts follows the expected 1:2:4:8 ratio, reflecting the physiologic progression of terminal erythroid differentiation in normal mice. Moreover, in 2 stress erythropoiesis mouse models, phlebotomy-induced acute anemia and chronic hemolytic anemia because of 4.1R deficiency, the ratio of these erythroblast populations remains the same as that of wild-type bone marrow. In contrast, in anemic β-thalassemia intermedia mice, there is altered progression which is restored to normal by transferrin treatment which was previously shown to ameliorate the anemic phenotype. The means to quantitate in vivo murine erythropoiesis using our approach will probably have broad application in the study of altered erythropoiesis in various red cell disorders.
Collapse
|
26
|
Guégan JP, Ezan F, Théret N, Langouët S, Baffet G. MAPK signaling in cisplatin-induced death: predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis 2012; 34:38-47. [PMID: 23042098 DOI: 10.1093/carcin/bgs317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma treatment by arterial infusion of cis-diamminedichloroplatinum-II (cisplatin) exhibits certain therapeutic efficacy. However, optimizations are required and the mechanisms underlying cisplatin proapoptotic effect remain unclear. The mitogen-activated protein kinase (MAPK) pathway plays a key role in cell response to cisplatin and the functional specificity of the isoform MAPK/ERK kinase 1 and 2 (MEK1/2) and ERK1/2 could influence this response. The individual contribution of each kinase on cisplatin-induced death was thus analyzed after a transient or stable specific inhibition by RNA interference in the human hepatocellular carcinoma cells Huh-7 or in knockout mice. We demonstrated here that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas MEK1 and MEK2 acted in a redundant manner. Indeed, at clinically relevant concentrations of cisplatin, ERK1 silencing alone was sufficient to protect cells from cisplatin-induced death both in vitro, in Huh-7 cells and ERK1(-/-) hepatocytes, and in vivo, in ERK1-deficient mice. Moreover, we showed that ERK1 activity correlated with the induction level of the proapoptotic BH3-only protein Noxa, a critical mediator of cisplatin toxicity. On the contrary, ERK2 inhibition upregulated ERK1 activity, favored Noxa induction and sensitized hepatocarcinoma cells to cisplatin. Our results point to a crucial role of ERK1 in cisplatin-induced proapoptotic signal and lead us to propose that ERK2-specific targeting could improve the efficacy of cisplatin therapy by increasing ERK1 prodeath functions.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Inserm U1085, Institut de Recherche sur la Santé l'Environnement et le Travail IRSET, Université de Rennes 1, Biosit, F-35043 Rennes, France
| | | | | | | | | |
Collapse
|
27
|
ROCK1 functions as a critical regulator of stress erythropoiesis and survival by regulating p53. Blood 2012; 120:2868-78. [PMID: 22889758 DOI: 10.1182/blood-2011-10-384172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Erythropoiesis is a dynamic, multistep process whereby hematopoietic stem cells differentiate toward a progressively committed erythroid lineage through intermediate progenitors. Although several downstream signaling molecules have been identified that regulate steady-state erythropoiesis, the major regulators under conditions of stress remain poorly defined. Rho kinases (ROCKs) belong to a family of serine/threonine kinases. Using gene-targeted ROCK1-deficient mice, we show that lack of ROCK1 in phenylhydrazine-induced oxidative stress model results in enhanced recovery from hemolytic anemia as well as enhanced splenic stress erythropoiesis compared with control mice. Deficiency of ROCK1 also results in enhanced survival, whereas wild-type mice die rapidly in response to stress. Enhanced survivability of ROCK1-deficient mice is associated with reduced level of reactive oxygen species. BM transplantation studies revealed that enhanced stress erythropoiesis in ROCK1-deficient mice is stem cell autonomous. We show that ROCK1 binds to p53 and regulates its stability and expression. In the absence of ROCK1, p53 phosphorylation and expression is significantly reduced. Our findings reveal that ROCK1 functions as a physiologic regulator of p53 under conditions of erythroid stress. These findings are expected to offer new perspectives on stress erythropoiesis and may provide a potential therapeutic target in human disease characterized by anemia.
Collapse
|
28
|
Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation. PLoS One 2012; 7:e38530. [PMID: 22808010 PMCID: PMC3396641 DOI: 10.1371/journal.pone.0038530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/07/2012] [Indexed: 01/30/2023] Open
Abstract
Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia). Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.
Collapse
|
29
|
Reactive oxygen species mediated DNA damage is essential for abnormal erythropoiesis in peroxiredoxin II−/− mice. Biochem Biophys Res Commun 2012; 424:189-95. [DOI: 10.1016/j.bbrc.2012.06.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 01/02/2023]
|
30
|
Saulnier N, Guihard S, Holy X, Decembre E, Jurdic P, Clay D, Feuillet V, Pagès G, Pouysségur J, Porteu F, Gaudry M. ERK1 regulates the hematopoietic stem cell niches. PLoS One 2012; 7:e30788. [PMID: 22303456 PMCID: PMC3268766 DOI: 10.1371/journal.pone.0030788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1(-/-) HSC are impaired, suggesting that the ERK1(-/-)-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1(-/-) defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments.
Collapse
Affiliation(s)
- Nathalie Saulnier
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm U1016, Paris, France
| | - Soizic Guihard
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm U1016, Paris, France
| | - Xavier Holy
- Service histologie et réparation tissulaire, IRBA/IMASSA, Brétigny-sur-Orge, France
| | - Elodie Decembre
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Denis Clay
- Inserm U972, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Vincent Feuillet
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm U1016, Paris, France
| | - Gilles Pagès
- Institut de recherche Signalisation, Biologie du Développement et Cancer, Université de Nice, France
| | - Jacques Pouysségur
- Institut de recherche Signalisation, Biologie du Développement et Cancer, Université de Nice, France
| | - Françoise Porteu
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm U1016, Paris, France
| | - Murielle Gaudry
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm U1016, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood 2011; 119:1228-39. [PMID: 22086418 DOI: 10.1182/blood-2011-07-365346] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Survival signaling by the erythropoietin (Epo) receptor (EpoR) is essential for erythropoiesis and for its acceleration in hypoxic stress. Several apparently redundant EpoR survival pathways were identified in vitro, raising the possibility of their functional specialization in vivo. Here we used mouse models of acute and chronic stress, including a hypoxic environment and β-thalassemia, to identify two markedly different response dynamics for two erythroblast survival pathways in vivo. Induction of the antiapoptotic protein Bcl-x(L) is rapid but transient, while suppression of the proapoptotic protein Bim is slower but persistent. Similar to sensory adaptation, however, the Bcl-x(L) pathway "resets," allowing it to respond afresh to acute stress superimposed on a chronic stress stimulus. Using "knock-in" mouse models expressing mutant EpoRs, we found that adaptation in the Bcl-x(L) response occurs because of adaptation of its upstream regulator Stat5, both requiring the EpoR distal cytoplasmic domain. We conclude that survival pathways show previously unsuspected functional specialization for the acute and chronic phases of the stress response. Bcl-x(L) induction provides a "stop-gap" in acute stress, until slower but permanent pathways are activated. Furthermore, pathologic elevation of Bcl-x(L) may be the result of impaired adaptation, with implications for myeloproliferative disease mechanisms.
Collapse
|
32
|
Maragno AL, Pironin M, Alcalde H, Cong X, Knobeloch KP, Tangy F, Zhang DE, Ghysdael J, Quang CT. ISG15 modulates development of the erythroid lineage. PLoS One 2011; 6:e26068. [PMID: 22022510 PMCID: PMC3192153 DOI: 10.1371/journal.pone.0026068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022] Open
Abstract
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.
Collapse
Affiliation(s)
- Ana Leticia Maragno
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Martine Pironin
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Hélène Alcalde
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Xiuli Cong
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | | | - Frederic Tangy
- Unité de Génomique Virale et Vaccination, CNRS URA-3015, Institut Pasteur, Paris, France
| | - Dong-Er Zhang
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | - Jacques Ghysdael
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Christine Tran Quang
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| |
Collapse
|
33
|
He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park SJ, Yuan J, Yang X, Li X, Jiang L, Chen S, Yang FC. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 2011; 6:e24780. [PMID: 21961044 PMCID: PMC3178550 DOI: 10.1371/journal.pone.0024780] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/17/2011] [Indexed: 01/02/2023] Open
Abstract
The extracellular signal-regulated kinases (ERK1 and 2) are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1−/− bone marrow mononuclear cells (BMMNCs) demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2−/− BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.
Collapse
Affiliation(s)
- Yongzheng He
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl Staser
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Steven D. Rhodes
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yaling Liu
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohua Wu
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Su-Jung Park
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jin Yuan
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xianlin Yang
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohong Li
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Li Jiang
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shi Chen
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Feng-Chun Yang
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
Talbot AL, Bullock GC, Delehanty LL, Sattler M, Zhao ZJ, Goldfarb AN. Aconitase regulation of erythropoiesis correlates with a novel licensing function in erythropoietin-induced ERK signaling. PLoS One 2011; 6:e23850. [PMID: 21887333 PMCID: PMC3161794 DOI: 10.1371/journal.pone.0023850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/26/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy. METHODOLOGY/PRINCIPAL FINDINGS In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition. CONCLUSIONS/SIGNIFICANCE Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.
Collapse
Affiliation(s)
- Anne-Laure Talbot
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Grant C. Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Lorrie L. Delehanty
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Adam N. Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp 2011:2809. [PMID: 21847081 DOI: 10.3791/2809] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic stress response. The resulting increase in the number of circulating red cells improves tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to the survival and recovery from physiological and pathological conditions such as high altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation. The mouse is a key model for the study of erythropoiesis and its stress response. Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between embryonic days 12.5 and 15.5, in the neonatal spleen, and in adult spleen and bone marrow. Classical methods of identifying erythroid progenitors in tissue rely on the ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-solid media. Their erythroid precursor progeny are identified based on morphological criteria. Neither of these classical methods allow access to large numbers of differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-cytometric method of identifying and studying differentiation-stage-specific erythroid progenitors and precursors, directly in the context of freshly isolated mouse tissue. The assay relies on the cell-surface markers CD71, Ter119, and on the flow-cytometric 'forward-scatter' parameter, which is a function of cell size. The CD71/Ter119 assay can be used to study erythroid progenitors during their response to erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen conditions. It may also be used to study erythroid progenitors directly in the tissues of genetically modified adult mice or embryos, in order to assess the specific role of the modified molecular pathway in erythropoiesis.
Collapse
Affiliation(s)
- Miroslav Koulnis
- Department of Pediatrics and Department of Cancer Biology, University of Massachusetts Medical School, USA
| | | | | | | | | | | |
Collapse
|
37
|
Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS One 2011; 6:e21192. [PMID: 21760888 PMCID: PMC3132744 DOI: 10.1371/journal.pone.0021192] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/22/2011] [Indexed: 01/19/2023] Open
Abstract
Erythropoiesis maintains a stable hematocrit and tissue oxygenation in the basal state, while mounting a stress response that accelerates red cell production in anemia, blood loss or high altitude. Thus, tissue hypoxia increases secretion of the hormone erythropoietin (Epo), stimulating an increase in erythroid progenitors and erythropoietic rate. Several cell divisions must elapse, however, before Epo-responsive progenitors mature into red cells. This inherent delay is expected to reduce the stability of erythropoiesis and to slow its response to stress. Here we identify a mechanism that helps to offset these effects. We recently showed that splenic early erythroblasts, 'EryA', negatively regulate their own survival by co-expressing the death receptor Fas, and its ligand, FasL. Here we studied mice mutant for either Fas or FasL, bred onto an immune-deficient background, in order to avoid an autoimmune syndrome associated with Fas deficiency. Mutant mice had a higher hematocrit, lower serum Epo, and an increased number of splenic erythroid progenitors, suggesting that Fas negatively regulates erythropoiesis at the level of the whole animal. In addition, Fas-mediated autoregulation stabilizes the size of the splenic early erythroblast pool, since mutant mice had a significantly more variable EryA pool than matched control mice. Unexpectedly, in spite of the loss of a negative regulator, the expansion of EryA and ProE progenitors in response to high Epo in vivo, as well as the increase in erythropoietic rate in mice injected with Epo or placed in a hypoxic environment, lagged significantly in the mutant mice. This suggests that Fas-mediated autoregulation accelerates the erythropoietic response to stress. Therefore, Fas-mediated negative autoregulation within splenic erythropoietic tissue optimizes key dynamic features in the operation of the erythropoietic network as a whole, helping to maintain erythroid homeostasis in the basal state, while accelerating the stress response.
Collapse
|
38
|
Akgül B, Lin KW, Ou Yang HM, Chen YH, Lu TH, Chen CH, Kikuchi T, Chen YT, Tu CPD. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis. PLoS One 2010; 5:e15358. [PMID: 21206920 PMCID: PMC3012072 DOI: 10.1371/journal.pone.0015358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/15/2010] [Indexed: 01/06/2023] Open
Abstract
Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other physiological effects.
Collapse
Affiliation(s)
- Bünyamin Akgül
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Kai-Wei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
| | - Hui-Mei Ou Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Taiwan Mouse Clinic, National Phenotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Tzu-Huan Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Tateki Kikuchi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Taiwan Mouse Clinic, National Phenotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Chen-Pei D. Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|