1
|
Zhao H, Feng L, Cheng R, Wu M, Bai X, Fan L, Liu Y. miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma. Cell Signal 2024; 113:110936. [PMID: 37925048 DOI: 10.1016/j.cellsig.2023.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Ovarian Carcinoma (OvCa) is characterized by rapid and sustained growth, activated invasion and metastasis. Studies have shown that microRNAs recruit and alter the expression of key regulators to modulate carcinogenesis. Here, we find that miR-29c-3p is increased in benign OvCa and malignant OvCa compared to normal ovary. Univariate and multivariate analyses report that miR-29c-3p overexpression is associated with poor prognosis in OvCa. Furthermore, we investigate that expression of miR-29c-3p is inversely correlated to DNA methyltransferase (DNMT) 3 A and Ten-Eleven-Translocation enzyme TET1. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies confirm that aberrant miR-29c-3p modulates tumorigenesis in OvCa cells, including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion. This modulation occurs through the regulation of β-catenin signaling by directly targeting 3'UTR of DNMT3A, TET1 and the HMG box transcription factor HBP1 and suppressing their expression. The further 3D spheres assay clearly shows the regulatory effects of miR-29c-3p on OvCa tumorigenesis. Additionally, the receiver operating characteristic (ROC) curve analysis of miR-29c-3p and the clinical detection/diagnostic biomarker CA125 suggests that miR-29c-3p may be conducive for clinical diagnosis or co-diagnosis of OvCa. These findings support miR-29c-3p functions as a tumor promoter by targeting its functional targets, providing new potential biomarker (s) for precision medicine strategies in OvCa.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lijuan Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Rui Cheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Man Wu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Xiaozhou Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, PR China.
| |
Collapse
|
2
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Xie B, Zhao L, Zhang Z, Zhou C, Tian Y, Kang Y, Chen J, Wei H, Li L. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells. BMC Cancer 2023; 23:955. [PMID: 37814227 PMCID: PMC10561441 DOI: 10.1186/s12885-023-11458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.
Collapse
Affiliation(s)
- Bei Xie
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Lei Zhao
- Shaanxi Meili Omni-Honesty Animal Health Co., Ltd, Xi'an, 710000, Shaanxi, China
| | - Zhewen Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Cunmin Zhou
- The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ye Tian
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingying Kang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Jing Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hulai Wei
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Linjing Li
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
5
|
Aref S, El Tantawy A, Aref M, El Agdar M, Ayed M. Prognostic Value of Plasma miR-29a Evaluation in Chronic Lymphocytic Leukemia Patients. Asian Pac J Cancer Prev 2023; 24:2439-2444. [PMID: 37505778 PMCID: PMC10676476 DOI: 10.31557/apjcp.2023.24.7.2439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Dysregulation of microRNA expression could attenuate the course of chronic lymphocytic leukemia (CLL). Therefore, the aim of our study is to address the association between miR-29a expression and other prognostic markers in CLL patients. METHODS miR-29a expression was determined by quantitative real-time PCR in the plasma of 158 CLL patients at diagnosis beside 21 healthy controls in a prospective study. RESULTS The levels of miR-29a expression were found to be significantly higher in CLL patients as compared to healthy controls (P<0.001). Moreover, a significant association between high miR-29a expression and poor prognostic markers (high expression of CD38 and ZAP70, high LDH levels, Stage III Rai stage, unfavorable cytogenetic finding, time to first treatment (TTFT) and patients outcome (P<0.001 for All). Using ROC curve, we have reported that miR-29a expression levels (29a<0.76 vs >0.76) is able to discriminate severity subgroups of CLL patients. CONCLUSION Up regulation of miR-29a expression at CLL diagnosis was detected. Determination of miR-29a expression concentration levels at diagnosis could be demonstrated as a prognostic biomarker in CLL patients.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Oncology Center Mansoura University, Mansoura, Egypt.
| | - Ahmed El Tantawy
- Medical Oncology Unit, Oncology Center Mansoura University, Mansoura, Egypt.
| | - Mohamed Aref
- Intrnal Medicine, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed El Agdar
- Hematology Unit, Oncology Center Mansoura University, Mansoura, Egypt.
| | - Mohamed Ayed
- Hematology Unit, Oncology Center Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Han B, Wang M, Li J, Chen Q, Sun N, Yang X, Zhang Q. Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. Eur J Med Chem 2023; 258:115613. [PMID: 37399711 DOI: 10.1016/j.ejmech.2023.115613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Many populations worldwide are suffering from central nervous system (CNS) diseases such as brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease) and stroke. There is a shortage of effective drugs for most CNS diseases. As one of the regulatory mechanisms of epigenetics, the particular role and therapeutic benefits of histone deacetylases (HDACs) in the CNS have been extensively studied. In recent years, HDACs have attracted increasing attention as potential drug targets for CNS diseases. In this review, we summarize the recent applications of representative histone deacetylases inhibitors (HDACis) in CNS diseases and discuss the challenges in developing HDACis with different structures and better blood-brain barrier (BBB) permeability, hoping to promote the development of more effective bioactive HDACis for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mengfei Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jiayi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiushi Chen
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Niubing Sun
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xuezhi Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
7
|
Chattopadhyay S, Sarkar SS, Saproo S, Yadav S, Antil D, Das B, Naidu S. Apoptosis-targeted gene therapy for non-small cell lung cancer using chitosan-poly-lactic-co-glycolic acid -based nano-delivery system and CASP8 and miRs 29A-B1 and 34A. Front Bioeng Biotechnol 2023; 11:1188652. [PMID: 37346791 PMCID: PMC10281530 DOI: 10.3389/fbioe.2023.1188652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with resistance to apoptosis being a major driver of therapeutic resistance and aggressive phenotype. This study aimed to develop a novel gene therapy approach for NSCLC by targeting resistance to apoptosis. Loss of function mutations of caspase 8 (CASP8) and downregulation of microRNAs (miRs) 29A-B1 and 34A were identified as key contributors to resistance to apoptosis in NSCLC. A biodegradable polymeric nano-gene delivery system composed of chitosan-poly-lactic-co-glycolic acid was formulated to deliver initiator CASP8 and miRs 29A-B1 and 34A. The nano-formulation efficiently encapsulated the therapeutic genes effectively internalized into NSCLC cells and induced significant apoptosis. Evaluation of the nano-formulation in A549 tumor spheroids showed a significant increase in apoptosis within the core of the spheroids, suggesting effective penetration into the spheroid structures. We provide a novel nano-formulation that demonstrate therapeutic potential for suicidal gene therapy in NSCLC.
Collapse
|
8
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Abbasi Sourki P, Pourfathollah AA, Kaviani S, Soufi Zomorrod M, Ajami M, Wollenberg B, Multhoff G, Bashiri Dezfouli A. The profile of circulating extracellular vesicles depending on the age of the donor potentially drives the rejuvenation or senescence fate of hematopoietic stem cells. Exp Gerontol 2023; 175:112142. [PMID: 36921675 DOI: 10.1016/j.exger.2023.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Blood donor age has become a major concern due to the age-associated variations in the content and concentration of circulating extracellular nano-sized vesicles (EVs), including exosomes. These EVs mirror the state of their parental cells and transfer it to the recipient cells via biological messengers such as microRNAs (miRNAs, miRs). Since the behavior of hematopoietic stem cells (HSCs) is potentially affected by the miRs of plasma-derived EVs, a better understanding of the content of EVs is important for the safety and efficacy perspectives in blood transfusion medicine. Herein, we investigated whether the plasma-derived EVs of young (18-25 years) and elderly human donors (45-60 years) can deliver "youth" or "aging" signals into human umbilical cord blood (hUCB)-derived HSCs in vitro. The results showed that EVs altered the growth functionality and differentiation of HSCs depending on the age of the donor from which they are derived. EVs of young donors could ameliorate the proliferation and self-renewal potential of HSCs whereas those of aged donors induced senescence-associated differentiation in the target cells, particularly toward the myeloid lineage. These findings were confirmed by flow cytometric analysis of surface markers and microarray profiling of genes related to stemness (e.g., SOX-1, Nanog) and differentiation (e.g., PU-1). The results displayed an up-regulation of miR-29 and miR-96 and a down-regulation of miR-146 in EVs derived from elderly donors. The higher expression of miR-29 and miR-96 contributed to the diminished expression of CDK-6 and CDKN1A (p21), promoting senescence fate via cell growth suppression, while the lower expression of miR-146 positively regulates TRAF-6 expression to accelerate biological aging. Our findings reveal that plasma-derived EVs from young donors can reverse the aging-associated changes in HSCs, while vice versa, the EVs from elderly donors rather promote the senescence process.
Collapse
Affiliation(s)
- Parvaneh Abbasi Sourki
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University Tehran, Iran.
| | - Saeed Kaviani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Cell Science, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Munich, Germany.
| | - Ali Bashiri Dezfouli
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany; Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
10
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
11
|
Shi C, Luo W, Sun C, Yu L, Zhou X, Hua D, Jiang Z, Wang Q, Yu S. The miR-29 family members induce glioblastoma cell apoptosis by targeting cell division cycle 42 in a p53-dependent manner. Eur J Clin Invest 2023; 53:e13964. [PMID: 36727260 DOI: 10.1111/eci.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Emerging evidence has shown that miR-29 is a promising biomarker and therapeutic target for malignancies. The roles of miR-29a/b/c in glioma pathogenesis remain need further investigation. METHODS The expression levels of miR-29a/b/c and CDC42 were systematically analysed, and prognostic significance was evaluated by Kaplan-Meier survival and Cox regression analyses. The roles of miR-29a/b/c in apoptosis and the underlying mechanisms were explored via an alkaline single-cell gel electrophoresis assay, caspase 3/7 activity assays and Western blotting. RESULTS miR-29a/b/c expression decreased progressively with the elevation of the WHO grade in our 147 human glioma specimens, compared with 20 non-tumour control brain tissues, and decreased miR-29a/b/c expression was associated with more aggressive phenotypes. Kaplan-Meier and Cox regression analyses demonstrated that lower miR-29a/b/c expression was correlated with worse prognosis, which was confirmed by analysis of 198 glioma patients from the CGGA cohort. These all indicate that miR-29a/b/c were independent predictors of prognosis in glioma patients. miR-29a/b/c induced apoptosis in GBM cells by silencing CDC42. Further detailed mechanistic investigation revealed that miR-29a/b/c promoted apoptosis in a p53-dependent manner by suppressing the CDC42/PAK/AKT/MDM2 pathway. CONCLUSIONS miR-29a/b/c are independent predictors of prognosis in glioma patients. They induce glioblastoma cell apoptosis via silencing of CDC42 and suppression of downstream PAK/AKT/MDM2 signalling in a p53-dependent manner.
Collapse
Affiliation(s)
- Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
12
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
13
|
Yaghobi R, Afshari A, Roozbeh J. Host and viral
RNA
dysregulation during
BK
polyomavirus
infection in kidney transplant recipients. WIRES RNA 2022:e1769. [DOI: 10.1002/wrna.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
14
|
Graziosi A, Sita G, Corrieri C, Angelini S, d’Emmanuele di Villa Bianca R, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Effects of Subtoxic Concentrations of Atrazine, Cypermethrin, and Vinclozolin on microRNA-Mediated PI3K/Akt/mTOR Signaling in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms232314538. [PMID: 36498866 PMCID: PMC9737829 DOI: 10.3390/ijms232314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples—Federico II, via Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Study of Naples—Federico II, via Pansini 5, 80131 Naples, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-1798
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
15
|
Whole Transcriptome Sequencing Reveals Cancer-Related, Prognostically Significant Transcripts and Tumor-Infiltrating Immunocytes in Mantle Cell Lymphoma. Cells 2022; 11:cells11213394. [PMID: 36359790 PMCID: PMC9654955 DOI: 10.3390/cells11213394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) subtype characterized by overexpression of CCND1 and SOX11 genes. It is generally associated with clinically poor outcomes despite recent improvements in therapeutic approaches. The genes associated with the development and prognosis of MCL are still largely unknown. Through whole transcriptome sequencing (WTS), we identified mRNAs, lncRNAs, and alternative transcripts differentially expressed in MCL cases compared with reactive tonsil B-cell subsets. CCND1, VCAM1, and VWF mRNAs, as well as MIR100HG and ROR1-AS1 lncRNAs, were among the top 10 most significantly overexpressed, oncogenesis-related transcripts. Survival analyses with each of the top upregulated transcripts showed that MCL cases with high expression of VWF mRNA and low expression of FTX lncRNA were associated with poor overall survival. Similarly, high expression of MSTRG.153013.3, an overexpressed alternative transcript, was associated with shortened MCL survival. Known tumor suppressor candidates (e.g., PI3KIP1, UBXN) were significantly downregulated in MCL cases. Top differentially expressed protein-coding genes were enriched in signaling pathways related to invasion and metastasis. Survival analyses based on the abundance of tumor-infiltrating immunocytes estimated with CIBERSORTx showed that high ratios of CD8+ T-cells or resting NK cells and low ratios of eosinophils are associated with poor overall survival in diagnostic MCL cases. Integrative analysis of tumor-infiltrating CD8+ T-cell abundance and overexpressed oncogene candidates showed that MCL cases with high ratio CD8+ T-cells and low expression of FTX or PCA3 can potentially predict high-risk MCL patients. WTS results were cross-validated with qRT-PCR of selected transcripts as well as linear correlation analyses. In conclusion, expression levels of oncogenesis-associated transcripts and/or the ratios of microenvironmental immunocytes in MCL tumors may be used to improve prognostication, thereby leading to better patient management and outcomes.
Collapse
|
16
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
17
|
MicroRNA-29a Manifests Multifaceted Features to Intensify Radiosensitivity, Escalate Apoptosis, and Revoke Cell Migration for Palliating Radioresistance-Enhanced Cervical Cancer Progression. Int J Mol Sci 2022; 23:ijms23105524. [PMID: 35628336 PMCID: PMC9141925 DOI: 10.3390/ijms23105524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Radioresistance remains a major clinical challenge in cervical cancer therapy and results in tumor relapse and metastasis. Nevertheless, the detailed mechanisms are still largely enigmatic. This study was conducted to elucidate the prospective impacts of microRNA-29a (miR-29a) on the modulation of radioresistance-associated cervical cancer progression. Herein, we established two pairs of parental wild-type (WT) and radioresistant (RR) cervical cancer cells (CaSki and C33A), and we found that constant suppressed miR-29a, but not miR-29b/c, was exhibited in RR-clones that underwent a dose of 6-Gy radiation treatment. Remarkably, radioresistant clones displayed low radiosensitivity, and the reduced apoptosis rate resulted in augmented surviving fractions, measured by the clonogenic survival curve assay and the Annexin V/Propidium Iodide apoptosis assay, respectively. Overexpression of miR-29a effectively intensified the radiosensitivity and triggered the cell apoptosis in RR-clones. In contrast, suppressed miR-29a modestly abridged the radiosensitivity and abolished the cell apoptosis in WT-clones. Hence, ectopically introduced miR-29a into RR-clones notably attenuated the wound-healing rate and cell migration, whereas reduced miR-29a aggravated cell mobilities of WT-clones estimated via the in vitro wound-healing assay and time-lapse recording assay. Notably, we further established the in vivo short-term lung locomotion metastasis model in BALB/c nude mice, and we found that increased lung localization was shown after tail-vein injection of RR-CaSki cells compared to those of WT-CaSki cells. Amplified miR-29a significantly eliminated the radioresistance-enhanced lung locomotion. Our data provide evidence suggesting that miR-29a is a promising microRNA signature in radioresistance of cervical cancer cells and displays multifaceted innovative roles involved in anti-radioresistance, escalated apoptosis, and anti-cell migration/metastasis. Amalgamation of a nucleoid-based strategy (miR-29a) together with conventional radiotherapy may be an innovative and eminent strategy to intensify the radiosensitivity and further protect against the subsequent radioresistance and the potential metastasis in cervical cancer treatment.
Collapse
|
18
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Ruan X, Zhang R, Zhu H, Ye C, Wang Z, Dong E, Li R, Cheng Z, Peng H. Research progress on epigenetics of small B-cell lymphoma. Clin Transl Oncol 2022; 24:1501-1514. [PMID: 35334078 DOI: 10.1007/s12094-022-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Small B-cell lymphoma is the classification of B-cell chronic lymphoproliferative disorders that include chronic lymphocytic leukaemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. The clinical presentation is somewhat heterogeneous, and its occurrence and development mechanisms are not yet precise and may involve epigenetic changes. Epigenetic alterations mainly include DNA methylation, histone modification, and non-coding RNA, which are essential for genetic detection, early diagnosis, and assessment of treatment resistance in small B-cell lymphoma. As chronic lymphocytic leukemia/small lymphocytic lymphoma has already been reported in the literature, this article focuses on small B-cell lymphomas such as follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, and Waldenstrom macroglobulinemia. It discusses recent developments in epigenetic research to diagnose and treat this group of lymphomas. This review provides new ideas for the treatment and prognosis assessment of small B-cell lymphoma by exploring the connection between small B-cell lymphoma and epigenetics.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - En Dong
- Blood Center, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Rusu-Nastase EG, Lupan AM, Marinescu CI, Neculachi CA, Preda MB, Burlacu A. MiR-29a Increase in Aging May Function as a Compensatory Mechanism Against Cardiac Fibrosis Through SERPINH1 Downregulation. Front Cardiovasc Med 2022; 8:810241. [PMID: 35118144 PMCID: PMC8804242 DOI: 10.3389/fcvm.2021.810241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Deregulation of microRNA (miRNA) profile has been reportedly linked to the aging process, which is a dominant risk factor for many pathologies. Among the miRNAs with documented roles in aging-related cardiac diseases, miR-18a, -21a, -22, and -29a were mainly associated with hypertrophy and/or fibrosis; however, their relationship to aging was not fully addressed before. The purpose of this paper was to evaluate the variations in the expression levels of these miRNAs in the aging process. To this aim, multiple organs were harvested from young (2–3-months-old), old (16–18-months-old), and very old (24–25-months-old) mice, and the abundance of the miRNAs was evaluated by quantitative real-time (RT)-PCR. Our studies demonstrated that miR-21a, miR-22, and miR-29a were upregulated in the aged heart. Among them, miR-29a was highly expressed in many other organs, i.e., the brain, the skeletal muscle, the pancreas, and the kidney, and its expression was further upregulated during the natural aging process. Western blot, immunofluorescence, and xCELLigence analyses concurrently indicated that overexpression of miR-29a in the muscle cells decreased the collagen levels as well as cell migration and proliferation. Computational prediction analysis and overexpression studies identified SERPINH1, a specific chaperone of procollagens, as a potential miR-29a target. Corroborating to this, significantly downregulated SERPINH1 levels were found in the skeletal muscle, the heart, the brain, the kidney, and the pancreas harvested from very old animals, thereby indicating the role of the miR-29a-SERPINH1 axis in the aging process. In vitro analysis of miR-29a effects on fibroblast and cardiac muscle cells pointed toward a protective role of miR-29a on aging-related fibrosis, by reducing cell migration and proliferation. In conclusion, our study indicates an adaptive increase of miR-29 in the natural aging process and suggests its role as a transcriptional repressor of SERPINH1, with a potential therapeutic value against adverse matrix remodeling and aging-associated tissue fibrosis.
Collapse
|
21
|
Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS One 2021; 16:e0256588. [PMID: 34506539 PMCID: PMC8432782 DOI: 10.1371/journal.pone.0256588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagenesis remain poorly understood. Here, after deep sequencing, we performed comparative analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV. In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene expression; however, BLV AS1 expression had a significant negative correlation with many of the down-regulated bta-miRNAs that are important for tumor development and/or tumor suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a tumor-suppressing function, and this downregulation is linked to increased PVL.
Collapse
|
22
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
23
|
Jiang P, Desai A, Ye H. Progress in molecular feature of smoldering mantle cell lymphoma. Exp Hematol Oncol 2021; 10:41. [PMID: 34256839 PMCID: PMC8278675 DOI: 10.1186/s40164-021-00232-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022] Open
Abstract
Mantle cell lymphoma (MCL) is considered one of the most aggressive lymphoid tumors. However, it sometimes displays indolent behavior in patients and might not necessitate treatment at diagnosis; this has been described as "smoldering MCL" (SMCL). There are significant differences in the diagnosis, prognosis, molecular mechanisms and treatments of indolent MCL and classical MCL. In this review, we discuss the progress in understanding the molecular mechanism of indolent MCL to provide insights into the genomic nature of this entity. Reported findings of molecular features of indolent MCL include a low Ki-67 index, CD200 positivity, a low frequency of mutations in TP53, a lack of SOX11, normal arrangement and expression of MYC, IGHV mutations, differences from classical MCL by L-MCL16 assays and MCL35 assays, an unmutated P16 status, few defects in ATM, no NOTCH1/2 mutation, Amp 11q gene mutation, no chr9 deletion, microRNA upregulation/downregulation, and low expression of several genes that have been valued in recent years (SPEN, SMARCA4, RANBP2, KMT2C, NSD2, CARD11, FBXW7, BIRC3, KMT2D, CELSR3, TRAF2, MAP3K14, HNRNPH1, Del 9p and/or Del 9q, SP140 and PCDH10). Based on the above molecular characteristics, we may distinguish indolent MCL from classical MCL. If so, indolent MCL will not be overtreated, whereas the treatment of classical MCL will not be delayed.
Collapse
Affiliation(s)
- Panruo Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University - Zhejiang, Wenzhou, China
| | - Aakash Desai
- Division of Hematology, Department of Medicine, Mayo Clinic-MN, Rochester, US
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University - Zhejiang, Wenzhou, China.
| |
Collapse
|
24
|
Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC. MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep 2021; 36:109390. [PMID: 34260911 DOI: 10.1016/j.celrep.2021.109390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/07/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Amita Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Mrinal Srivastava
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR), Hyderabad 500046, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge, United Kingdom
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
He J, Xi Y, Gao N, Xu E, Chang J, Liu J. Identification of miRNA-34a and miRNA-155 as prognostic markers for mantle cell lymphoma. J Int Med Res 2021; 49:3000605211016390. [PMID: 34024195 PMCID: PMC8142528 DOI: 10.1177/03000605211016390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective MicroRNAs (miRNAs) with functional relevance have not been previously identified in mantle cell lymphoma (MCL). Here, we aimed to evaluate the relationships between miR-34a and miR-155-5p and MCL clinicopathology and prognosis. Methods Seventy-five paraffin-embedded tissue samples from patients with MCL who completed at least four cycles of chemotherapy from January 2006 to October 2016, and 27 samples from control patients with reactive lymphoid hyperplasia (RLH), were collected. MiRNA expression levels were measured by qRT-PCR. Results The miR-155-5p levels were significantly higher in patients with MCL than in the controls. The Eastern Cooperative Oncology Group (ECOG) ≥ 2 and Sex-Determining Region Y-Box transcription factor 11 (SOX11) < median value (M) groups presented lower miR-34a expression than the ECOG < 2 and SOX11 ≥ M groups, respectively. MiR-155-5p expression differed between low, intermediate, and high MCL International Prognostic Index risk groups. The AUCs of miR-34a and miR-155-5p were 0.5819 and 0.7784, respectively. The median survival times of the miR-34a ≤ 0.2150 and miR-155-5p > 2.11 groups were shorter than those of the miR-34a > 0.2150 and miR-155-5p ≤ 2.11 groups, respectively. Conclusions Low miR-34a and elevated miR-155-5p levels may be correlated with poor prognosis in MCL.
Collapse
Affiliation(s)
- Jianxia He
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Ning Gao
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Jin Chang
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Jie Liu
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
26
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Sharma S, Pavlasova GM, Seda V, Cerna KA, Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF, Borsky M, Oppelt J, Liskova K, Kren L, Janikova A, Pospisilova S, Fernandes SM, Shehata M, Rassenti LZ, Jaeger U, Doubek M, Davids MS, Brown JR, Mayer J, Kipps TJ, Mraz M. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors. Blood 2021; 137:2481-2494. [PMID: 33171493 PMCID: PMC7610744 DOI: 10.1182/blood.2020005627] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
B-cell receptor (BCR) signaling and T-cell interactions play a pivotal role in chronic lymphocytic leukemia (CLL) pathogenesis and disease aggressiveness. CLL cells can use microRNAs (miRNAs) and their targets to modulate microenvironmental interactions in the lymph node niches. To identify miRNA expression changes in the CLL microenvironment, we performed complex profiling of short noncoding RNAs in this context by comparing CXCR4/CD5 intraclonal cell subpopulations (CXCR4dimCD5bright vs CXCR4brightCD5dim cells). This identified dozens of differentially expressed miRNAs, including several that have previously been shown to modulate BCR signaling (miR-155, miR-150, and miR-22) but also other candidates for a role in microenvironmental interactions. Notably, all 3 miR-29 family members (miR-29a, miR-29b, miR-29c) were consistently down-modulated in the immune niches, and lower miR-29(a/b/c) levels associated with an increased relative responsiveness of CLL cells to BCR ligation and significantly shorter overall survival of CLL patients. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a novel direct target of miR-29s and revealed that higher TRAF4 levels increase CLL responsiveness to CD40 activation and downstream nuclear factor-κB (NF-κB) signaling. In CLL, BCR represses miR-29 expression via MYC, allowing for concurrent TRAF4 upregulation and stronger CD40-NF-κB signaling. This regulatory loop is disrupted by BCR inhibitors (bruton tyrosine kinase [BTK] inhibitor ibrutinib or phosphatidylinositol 3-kinase [PI3K] inhibitor idelalisib). In summary, we showed for the first time that a miRNA-dependent mechanism acts to activate CD40 signaling/T-cell interactions in a CLL microenvironment and described a novel miR-29-TRAF4-CD40 signaling axis modulated by BCR activity.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Piperidines/pharmacology
- Prognosis
- Proto-Oncogene Proteins c-bcr/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Survival Rate
- TNF Receptor-Associated Factor 4/genetics
- TNF Receptor-Associated Factor 4/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonali Sharma
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriela Mladonicka Pavlasova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Vojackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sandova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Kostalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pedro F Zeni
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kvetoslava Liskova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Medhat Shehata
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Laura Z Rassenti
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ulrich Jaeger
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Thomas J Kipps
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, Fei J, Shi J. miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene 2021; 40:3434-3448. [PMID: 33888868 DOI: 10.1038/s41388-021-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.
Collapse
Affiliation(s)
- Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanmei Zhai
- Department of Hematology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China. .,Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Vera O, Bok I, Jasani N, Nakamura K, Xu X, Mecozzi N, Angarita A, Wang K, Tsai KY, Karreth FA. A MAPK/miR-29 Axis Suppresses Melanoma by Targeting MAFG and MYBL2. Cancers (Basel) 2021; 13:1408. [PMID: 33808771 PMCID: PMC8003541 DOI: 10.3390/cancers13061408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The miR-29 family of microRNAs is encoded by two clusters, miR-29b1~a and miR-29b2~c, and is regulated by several oncogenic and tumor suppressive stimuli. While in vitro evidence suggests a tumor suppressor role for miR-29 in melanoma, the mechanisms underlying its deregulation and contribution to melanomagenesis have remained elusive. Using various in vitro systems, we show that oncogenic MAPK signaling paradoxically stimulates transcription of pri-miR-29b1~a and pri-miR-29b2~c, the latter in a p53-dependent manner. Expression analyses in melanocytes, melanoma cells, nevi, and primary melanoma revealed that pri-miR-29b2~c levels decrease during melanoma progression. Inactivation of miR-29 in vivo with a miRNA sponge in a rapid melanoma mouse model resulted in accelerated tumor development and decreased overall survival, verifying tumor suppressive potential of miR-29 in melanoma. Through integrated RNA sequencing, target prediction, and functional assays, we identified the transcription factors MAFG and MYBL2 as bona fide miR-29 targets in melanoma. Our findings suggest that attenuation of miR-29b2~c expression promotes melanoma development, at least in part, by derepressing MAFG and MYBL2.
Collapse
Affiliation(s)
- Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Koji Nakamura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ariana Angarita
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
30
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
31
|
Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, Derakhshani A, Baghbanzadeh A, Dolatkhah K, Silvestris N, Baradaran B. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci 2021; 22:ijms22052652. [PMID: 33800752 PMCID: PMC7962059 DOI: 10.3390/ijms22052652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene–miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Katayoun Dolatkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nicola Silvestris
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma (MCL) is a heterogenous disease with a variety of morphologic and genetic features, some of which are associated with high risk disease. Here we critically analyze the current state of the understanding of MCL's biology and its implications in therapy, with a focus on chemotherapy-free and targeted therapy regimens. RECENT FINDINGS Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin's lymphoma, defined by a hallmark chromosomal translocation t(11;14) which leads to constitutive expression of cyclin D1. Recent discoveries in the biology of MCL have identified a number of factors, including TP53 mutations and complex karyotype, that lead to unresponsiveness to traditional chemoimmunotherapy and poor outcomes. Bruton tyrosine kinase inhibitors, BH3-mimetics and other novel agents thwart survival of the neoplastic B-cells in a manner independent of high-risk mutations and have shown promising activity in relapsed/refractory MCL. These therapies are being investigated in the frontline setting, while optimal responses to chemotherapy-free regimens, particularly in high-risk disease, might require combination approaches. High-risk MCL does not respond well to chemoimmunotherapy. Targeted agents are highly active in the relapsed refractory setting and show promise in high-risk disease. Novel approaches may soon replace the current standard of care in both relapsed and frontline settings.
Collapse
|
33
|
Morales-Martinez M, Vega MI. Participation of different miRNAs in the regulation of YY1: Their role in pathogenesis, chemoresistance, and therapeutic implication in hematologic malignancies. YY1 IN THE CONTROL OF THE PATHOGENESIS AND DRUG RESISTANCE OF CANCER 2021:171-198. [DOI: 10.1016/b978-0-12-821909-6.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Abe S, Iwasaki M, Habata S, Mariya T, Tamate M, Matsuura M, Satohisa S, Saito T. ERα increases endometrial cancer cell resistance to cisplatin via upregulation of BAG3. Oncol Lett 2020; 21:20. [PMID: 33240426 PMCID: PMC7681203 DOI: 10.3892/ol.2020.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is a leading cause of cancer-associated mortality in women and has a poor prognosis in advanced stages. Our previous study revealed that BCL-2-associated athanogene 3 (BAG3) may contribute to enhancing cell viability through downregulation of microRNA (miR)-29b in endometrial cancer cell lines. In addition, a relationship between estrogen receptor α (ERα) and BAG3 was recently reported in several cancer cell types. The present study investigated the relationship between ERα and BAG3 in endometrial cancer cell lines. The results demonstrated that exogenous ERα overexpression enhanced BAG3 expression in the EMTOKA endometrial cancer cell line, which does not endogenously express ERα, but had no effect on BAG3 expression levels in the Ishikawa cell line, which does endogenously express ERα. In addition, ERα overexpression suppressed miR-29b expression and enhanced the expression of Mcl-1, a mediator situated downstream of BAG3, in EMTOKA cells, but not Ishikawa cells. ERα overexpression also enhanced EMTOKA, but not Ishikawa, endometrial cancer cell viability in the presence of cisplatin. These findings suggested that ERα may contribute to enhancing endometrial cancer cell resistance to anticancer agents through BAG3 overexpression.
Collapse
Affiliation(s)
- Shuetsu Abe
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Masahiro Iwasaki
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Shutaro Habata
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Tasuku Mariya
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Masato Tamate
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Seiro Satohisa
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| |
Collapse
|
35
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol 2020; 41:932-947. [PMID: 32888820 DOI: 10.1016/j.it.2020.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a diverse class of hematological cancers, many of which arise from germinal center (GC)-experienced B cells. Thus GCs, the sites of antibody affinity maturation triggered during immune responses, also provide an environment that facilitates B cell oncogenic transformation. miRNAs provide attractive and mechanistically different strategies to treat these malignancies based on their potential for simultaneous modulation of multiple targets. Here, we discuss the scientific rationale for miRNA-based therapeutics in B cell neoplasias and review recent advances that may help establish a basis for novel candidate miRNA-based therapies for B cell-NHL (B-NHL).
Collapse
Affiliation(s)
- Teresa Fuertes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Virginia G de Yebenes
- Universidad Complutense de Madrid School of Medicine, Department of Immunology, Ophthalmology and ENT, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
37
|
Feng S, Ma J, Long K, Zhang J, Qiu W, Li Y, Jin L, Wang X, Jiang A, Liu L, Xiao W, Li X, Tang Q, Li M. Comparative microRNA Transcriptomes in Domestic Goats Reveal Acclimatization to High Altitude. Front Genet 2020; 11:809. [PMID: 32849809 PMCID: PMC7411263 DOI: 10.3389/fgene.2020.00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
High-altitude acclimatization is a representative example of vertebrates' acclimatization to harsh and extreme environments. Previous studies reported sufficient evidence for a molecular genetic basis of high-altitude acclimatization, and genomic patterns of genetic variation among populations and species have been widely elucidated in recent years. However, understanding of the miRNA role in high-altitude acclimatization have lagged behind, especially in non-model species. To investigate miRNA expression alterations of goats that were induced by high-altitude stress, we performed comparative miRNA transcriptome analysis on six hypoxia-sensitive tissues (heart, kidney, liver, lung, skeletal muscle, and spleen) in two goat populations from distinct altitudes (600 and 3000 m). We obtained the expression value of 1391 mature miRNAs and identified 138 differentially expressed (DE) miRNAs between high and low altitudes. Combined with tissue specificity analysis, we illustrated alterations of expression levels among altitudes and tissues, and found that there were coexisting tissue-specific and -conserved mechanisms for hypoxia acclimatization. Notably, the interplay between DE miRNA and DE target genes strongly indicated post-transcriptional regulation in the hypoxia inducible factor 1, insulin, and p53 signaling pathways, which might play significant roles in high-altitude acclimatization in domestic goats. It's also worth noting that we experimentally confirmed miR-106a-5p to have a negative regulation effect on angiogenesis by directly targeting FLT-1. These results provide insight into the complicated miRNA expression patterns and regulatory mechanisms of high-altitude acclimatization in domestic goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Drees EEE, Pegtel DM. Circulating miRNAs as Biomarkers in Aggressive B Cell Lymphomas. Trends Cancer 2020; 6:910-923. [PMID: 32660885 DOI: 10.1016/j.trecan.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
B cell lymphomas are heterogeneous malignancies of hematological origin with vastly different biology and clinical outcomes. Histopathology of tissue biopsies and image-based assessment guide clinical decisions. Given that tissue biopsies cannot be frequently repeated and will not inform on systemic responses to the treatment, more accessible biomarkers, such as circulating miRNAs, are considered. Aberrant miRNA expression in lymphoma tissues and ongoing immune reactions may lead to miRNA alterations in circulation. miRNAs bound to extracellular vesicles (EVs) are of interest because of their role in intercellular communication and organ crosstalk. Herein, we highlight the role of miRNAs and EVs in B cell lymphomagenesis and explain how circulating miRNAs may be turned into robust liquid biopsy tests for aggressive B cell lymphoma.
Collapse
Affiliation(s)
- Esther E E Drees
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2020; 153:103038. [PMID: 32739830 DOI: 10.1016/j.critrevonc.2020.103038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
MCL is a well-characterized generally aggressive lymphoma with a poor prognosis. However, patients with a more indolent disease have been reported in whom the initiation of therapy can be delayed without any consequence for the survival. In 2017 the World Health Organization updated the classification of MCL describing two main subtypes with specific molecular characteristics and clinical features, classical and indolent leukaemic nonnodal MCL. Recent research results suggested an improving outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it did not improve overall survival compared to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidation with autologous stem cell transplantation ameliorated response rate and prolonged progression-free survival in young fit patients, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better understanding of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy and spare the toxicity of intense therapy in most patients. Cases not eligible for intensive regimens, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy as the first-line strategy in a wide range of patients. Finally, since the optimal approach to the management of MCL is still evolving, it is critical that these patients are enrolled in clinical trials to identify the better treatment options.
Collapse
Affiliation(s)
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy; Medical Oncology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Dreyling
- Medizinische Klinik III der Universität München-Grosshadern, München, Germany
| |
Collapse
|
40
|
Wang LJ, Cai HQ. Let-7b downgrades CCND1 to repress osteogenic proliferation and differentiation of MC3T3-E1 cells: An implication in osteoporosis. Kaohsiung J Med Sci 2020; 36:775-785. [PMID: 32533643 DOI: 10.1002/kjm2.12236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/10/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to reveal the effect of let-7b on osteoporosis (OP). Synthetic let-7b mimics or inhibitors were transfected into MC3T3-E1 cells. The expression of let-7b in MC3T3-E1 and its effect on cell viability, apoptosis, and the apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase-9) were tested by CCK-8 assay, flow cytometry and Western blot, severally. The osteogenic differentiation markers (Runx2 and Osterix) and Wnt/β-catenin pathway related markers (β-catenin and C-myc) were detected by qRT-PCR and Western blot. The relationships between let-7b and cyclin D1 (CCND1) were confirmed by luciferase reporter assay. The differentiation and mineralization of MC3T3-E1 cells were analyzed by alkaline phosphatase (ALP) activity assay and alizarin red staining. The outcomes indicated that overexpression/ablation of let-7b repressed/facilitated MC3T3-E1 cell viability and accelerated/suppressed MC3T3-E1 cell apoptosis. Besides, a remarkable decrease/augment of Bcl-2 protein expression and the distinct fortify/reduction of Bax and cleaved caspase-9 expression levels were observed in let-7b mimics/inhibitors group in MC3T3-E1 cells. Moreover, we discovered that let-7b overexpression/ablation retrained/facilitated the mRNA and protein expression of Runx2 and Osterix. It was confirmed that CCND1 was a downstream target of let-7b and was negatively modulated by let-7b. In addition, high-expression/deficiency of let-7b inhibited/increased the expression levels of β-catenin and C-myc in MC3T3-E1 cells. Taken together, our study revealed that let-7b overexpression/depletion repressed/accelerated MC3T3-E1 cell proliferation, differentiation, and mineralization while promoted/suppressed MC3T3-E1 cell apoptosis through targeting CCND1, which might be adjusted by Wnt/β-catenin pathway. Our findings might offer a basis for developing novel targets for OP treatment.
Collapse
Affiliation(s)
- Li-Juan Wang
- Department of endocrinology, the Second Hospital of Jilin University, Jilin, People's Republic of China
| | - Han-Qing Cai
- Department of endocrinology, the Second Hospital of Jilin University, Jilin, People's Republic of China
| |
Collapse
|
41
|
Shi X, Ye L, Xu S, Guo G, Zuo Z, Ye M, Zhu L, Li B, Xue X, Lin Q, Ding X. Downregulated miR‑29a promotes B cell overactivation by upregulating Crk‑like protein in systemic lupus erythematosus. Mol Med Rep 2020; 22:841-849. [PMID: 32467986 PMCID: PMC7339478 DOI: 10.3892/mmr.2020.11166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder; however, the pathogenesis is not fully understood. Accumulating evidence suggested an important role of microRNAs (miRNA/miR) in autoimmunity. The present study aimed therefore to determine the miRNA expression patterns in the B cells from the peripheral blood of 66 patients with SLE and 10 healthy controls (HCs) by using an Affymetrix GeneChip® miRNA 2.0 array. In addition, next‑generation sequencing was used to obtain the peripheral blood mononuclear cell (PBMC) miRNA profiles from three patients with SLE and three HCs. Candidate miRNAs that were considered to contribute to the pathogenesis of SLE were obtained based on the intersection of miRNA profiles. The analysis revealed a significant downregulation in miR‑29a expression levels in B cells from patients with SLE, which was subsequently verified using reverse transcription‑quantitative PCR. Based on these results, the expression pattern of miR‑29a in SLE was further investigated and its role in the hyperactivity of B cells was determined. miR‑29a inhibitors and mimics were transfected into PBMCs obtained from HCs and patients with SLE, and an ELISA was used to demonstrate that miR‑29a inhibition increased the production of IgG. Bioinformatics analysis predicted Crk‑like protein (CRKL) as a target gene of miR‑29a in patients with SLE. Therefore, CRKL expression levels were compared between patients with SLE and HCs by using western blotting, and its direct transcriptional regulation by miR‑29a was determined using a dual‑luciferase reporter assay. Low expression levels of miR‑29a were revealed to upregulate the expression levels of CRKL in B cells, and the protein expression levels of CRKL in patients with SLE were significantly upregulated compared with the HCs. In conclusion, the results from the present study suggested that miR‑29a may affect IgG antibody secretion in B cells by regulating CRKL, thereby contributing to the development and progression of SLE, which offers a novel candidate target for treatment.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lulu Ye
- Department of Laboratory Medicine, Anqing Petrochemical Hospital, Anqing, Anhui 246000, P.R. China
| | - Shuqi Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyi Zuo
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengke Ye
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lejiang Zhu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Baoqing Li
- Department of Laboratory Medicine, Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaokai Ding
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
42
|
Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, Liu Q, Zhang Y, Wang X, Li Q, Zhang Q, Liu C, Li F. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res 2020; 12:1136-1154. [PMID: 32269740 PMCID: PMC7137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The microRNA-29 family, which contains mir-29a, mir-29b, and mir-29c, can promote or resist the development of several types of tumors. However, its role in rhabdomyosarcoma (RMS) has not been determined. In this work, we detected the expression of mir-29a/b/c in RMS. Results showed that the tissues and cell lines in RMS were significantly lower than those in muscle and human skeletal muscle cells, and that these cell lines could also inhibit the proliferation, migration, and invasion and induce apoptosis of RMS cells. Dual-luciferase reporter assay and RNA immunoprecipitation verified the direct binding site between mir-29a/b/c and GEFT. Under the combined actions of mir-29a/b/c and GEFT, the former weakened the promoting effect of GEFT on RMS cells. Finally, mir-29a inhibited the tumorigenesis of subcutaneous xenografts in nude mice and inhibited the mRNA and protein expression levels of GEFT in transplanted tumors. These findings proved that mir-29 inhibits the occurrence of RMS and may be a potential molecular target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Liang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuweng Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
43
|
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27:282-297. [PMID: 31544709 DOI: 10.2174/0929867326666190911114842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small endogenous non-coding RNAs involved in many cancers and various cellular processes such as cellular growth, DNA methylation, apoptosis, and differentiation. 13q14.3 chromosomal region contains miR-15 and miR-16 and deletion of this region is a commonly reported aberration in Chronic Lymphoblastic Leukemia (CLL), suggesting miRNAs involvement in CLL pathogenesis. MicroRNAs are known as oncogenes and tumor suppressors in CLL which may also serve as markers of onset and progression of the disease. The most prevalent form of leukemia diagnosed in adults in the western world, chronic lymphocytic leukemia, accounts for one-third of all leukemias. CLL is characterized by the presence of B Cell Malignant Clones in secondary lymphoid tissues, peripheral blood and bone marrow. The precise etiology of CLL is remained to be known, however, a number of Chromosomal Abnormalities such as deletions of 13q14.3, 11q and 17p and trisomy 12 have been detected. In this review, we offer our prospect on how miRNAs are involved in the CLL pathogenesis and disease progression. Further understanding of the underlying mechanisms and regulation of CLL pathogenesis has underscored the need for further research regarding their role in this disease.
Collapse
Affiliation(s)
- Ehsan Javandoost
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Firoozi-Majd
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
45
|
Owen KL, Brockwell NK, Parker BS. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers (Basel) 2019; 11:E2002. [PMID: 31842362 PMCID: PMC6966445 DOI: 10.3390/cancers11122002] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling mediates almost all immune regulatory processes, including those that are involved in tumor cell recognition and tumor-driven immune escape. Antitumor immune responses are largely driven by STAT1 and STAT2 induction of type I and II interferons (IFNs) and the downstream programs IFNs potentiate. Conversely, STAT3 has been widely linked to cancer cell survival, immunosuppression, and sustained inflammation in the tumor microenvironment. The discovery of JAK-STAT cross-regulatory mechanisms, post-translational control, and non-canonical signal transduction has added a new level of complexity to JAK-STAT governance over tumor initiation and progression. Endeavors to better understand the vast effects of JAK-STAT signaling on antitumor immunity have unearthed a wide range of targets, including oncogenes, miRNAs, and other co-regulatory factors, which direct specific phenotypical outcomes subsequent to JAK-STAT stimulation. Yet, the rapidly expanding field of therapeutic developments aimed to resolve JAK-STAT aberrations commonly reported in a multitude of cancers has been marred by off-target effects. Here, we discuss JAK-STAT biology in the context of immunity and cancer, the consequences of pathway perturbations and current therapeutic interventions, to provide insight and consideration for future targeting innovations.
Collapse
Affiliation(s)
- Katie L. Owen
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| | - Natasha K. Brockwell
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| | - Belinda S. Parker
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| |
Collapse
|
46
|
Zhao W, Cheng L, Quek C, Bellingham SA, Hill AF. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci Rep 2019; 9:17449. [PMID: 31767948 PMCID: PMC6877611 DOI: 10.1038/s41598-019-53868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs "react" and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Camelia Quek
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
47
|
Liu ZJ, Chen SG, Yang YZ, Lu SJ, Zhao XM, Hu B, Zhang L. miR-29a inhibits adhesion, migration, and invasion of osteosarcoma cells by suppressing CDC42. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4171-4180. [PMID: 31933817 PMCID: PMC6949774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Osteosarcoma is one of the most common tumors of the bone in children and adolescents worldwide. The relapse and metastasis of osteosarcoma are a major therapeutic challenge. Recently, several metastasis regulators, including miRNAs, kinases, and lncRNAs, were reported in osteosarcoma. Identifying novel regulators of metastasis will be useful to explore novel biomarkers for osteosarcoma. The present study showed miR-29a overexpression significantly inhibited HOS and MG-63 cell adhesion, invasion, and migration. About 70% of the wound area was repaired by migrating cells after 24 h in the control group, and only 50% of the wound area was repaired in the miR-29a overexpression group. The numbers of invading cells were decreased by 40% and 50% in HOS and MG-63 cells transfected with miR-29a, respectively, compared with the negative control group. Moreover, the present study validated that CDC42 was a direct target of miR-29a in OS cells. In conclusion, miR-29a may serve as a therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zheng-Jie Liu
- Department of Orthopedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Shun-Guang Chen
- Department of Orthopedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Ye-Zi Yang
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Sheng-Jun Lu
- Department of Orthopedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Xun-Ming Zhao
- Department of Orthopedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Biao Hu
- Department of Orthopedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| | - Ling Zhang
- Department of Pathology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze UniversityJingzhou, Hubei, P. R. China
| |
Collapse
|
48
|
Lee KM, Bassig BA, Zhang L, Vermeulen RC, Hu W, Wong JYY, Qiu C, Wen C, Huang Y, Purdue MP, Ji BT, Li L, Tang X, Rothman N, Smith MT, Lan Q. Association between occupational exposure to trichloroethylene and serum levels of microRNAs: a cross-sectional molecular epidemiology study in China. Int Arch Occup Environ Health 2019; 92:1077-1085. [PMID: 31161417 PMCID: PMC6953905 DOI: 10.1007/s00420-019-01448-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/28/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The objective of our study was to evaluate the association between occupational exposure to trichloroethylene (TCE), a suspected lymphomagen, and serum levels of miRNAs in a cross-sectional molecular epidemiology study of TCE-exposed workers and comparable unexposed controls in China. METHODS Serum levels of 40 miRNAs were compared in 74 workers exposed to TCE (median: 12 ppm) and 90 unexposed control workers. Linear regression models were used to test for differences in serum miRNA levels between exposed and unexposed workers and to evaluate exposure-response relationships across TCE exposure categories using a three-level ordinal variable [i.e., unexposed, < 12 ppm, the median value among workers exposed to TCE) and ≥ 12 ppm)]. Models were adjusted for sex, age, current smoking, current alcohol use, and recent infection. RESULTS Seven miRNAs showed significant differences between exposed and unexposed workers at FDR (false discovery rate) < 0.20. miR-150-5p and let-7b-5p also showed significant inverse exposure-response associations with TCE exposure (Ptrend= 0.002 and 0.03, respectively). The % differences in serum levels of miR-150-5p relative to unexposed controls were - 13% and - 20% among workers exposed to < 12 ppm and ≥ 12 ppm TCE, respectively. CONCLUSIONS miR-150-5p is involved in B cell receptor pathways and let-7b-5p plays a role in the innate immune response processes that are potentially important in the etiology of non-Hodgkin lymphoma (NHL). Further studies are needed to replicate these findings and to directly test the association between serum levels of these miRNAs and risk of NHL in prospective studies.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.
- Department of Environmental Health, Korea National Open University, Seoul, Korea.
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roel C Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Services, Utrecht University, Utrecht, The Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chuangyi Qiu
- Guangdong Poison Control Center, Guangzhou, China
| | - Cuiju Wen
- Guangdong Poison Control Center, Guangzhou, China
| | | | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laiyu Li
- Guangdong Poison Control Center, Guangzhou, China
| | - Xiaojiang Tang
- Guangdong Medical Laboratory Animal Center, Foshan, Guangdong, China
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
49
|
Robaina MC, Mazzoccoli L, Klumb CE. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019; 8:E1365. [PMID: 31683676 PMCID: PMC6912346 DOI: 10.3390/cells8111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor MYC regulates several biological cellular processes, and its target gene network comprises approximately 15% of all human genes, including microRNAs (miRNAs), that also contribute to MYC regulatory activity. Although miRNAs are emerging as key regulators of immune functions, the specific roles of miRNAs in the regulation/dysregulation of germinal centre B-cells and B-cell lymphomas are still being uncovered. The regulatory network that integrates MYC, target genes and miRNAs is a field of intense study, highlighting potential pathways to be explored in the context of future clinical approaches. METHODS The scientific literature that is indexed in PUBMED was consulted for publications involving MYC and miRNAs with validated bioinformatics analyses or experimental protocols. Additionally, seminal studies on germinal centre B-cell functions and lymphomagenesis were reported. CONCLUSIONS This review summarizes the interactions between MYC and miRNAs through regulatory loops and circuits involving target genes in germinal centre B-cell lymphomas with MYC alterations. Moreover, we provide an overview of the understanding of the regulatory networks between MYC and miRNAs, highlighting the potential implication of this approach for the comprehension of germinal centre B-cell lymphoma pathogenesis. Therefore, circuits involving MYC, target genes and miRNAs provide novel insight into lymphomagenesis that could be useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Cristina Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| |
Collapse
|
50
|
Yan S, Jia C, Quan L, Zhao L, Tian Y, Liu A. Significance of the microRNA‑17‑92 gene cluster expressed in B‑cell non‑Hodgkin's lymphoma. Mol Med Rep 2019; 20:2459-2467. [PMID: 31322189 DOI: 10.3892/mmr.2019.10448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/26/2018] [Indexed: 11/06/2022] Open
Abstract
To evaluate the prognostic value of the microRNA (miR)‑17‑92 gene cluster, the expression of miR‑17‑92 in B‑cell non‑Hodgkin's lymphoma (B‑NHL) was examined. Patients with B‑NHL, who received therapy in the Department of Hematology, Harbin Medical University Cancer Hospital between January 2012 and October 2014, were enrolled in the study. The expression of the miR‑17‑92 cluster in tumor tissue samples was detected by reverse transcription‑quantitative polymerase chain reaction analysis. The overall survival (OS) and event‑free survival (EFS) times were also investigated by the Kaplan‑Meier method and comparisons between groups were estimated using a log‑rank test. Three types of lymphoid cancer cells with wild‑type (WT), knockout of miR‑17‑92 (KO), and overexpression of miR‑17‑92 (TG), were utilized to establish a tumor xenograft model, and a reactive hyperplasia lymph cell was used as a control. The tumor incubation times and weights were examined. A total of 71 patients with B‑NHL were registered. No significant correlations were identified between the expression of miR‑17‑92 and clinical factors (P>0.05). Members of the miR‑17‑92 cluster exhibited various expression in the subtypes of B‑NHL, and the difference between follicular lymphoma (FL) and germinal center B‑cell like (GBC) was most marked. The overexpression of miR‑18, miR‑19a, and miR‑92a induced a marked reduction in the OS of patients with B‑NHL, and high‑levels of miR‑19a and miR‑92a led to a decline in EFS. The overexpression of miR‑17‑92 shortened the duration of incubation required for visualization of the xenograft tumor, whereas knockout led to inhibition of tumor formation. The expression of miR‑17‑92 in FL differed significantly from that in GBC, and miR‑19a may have a crucial effect on the OS and EFS of patients with B‑NHL.
Collapse
Affiliation(s)
- Shujie Yan
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Chuiming Jia
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Lina Quan
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Lina Zhao
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Yuyang Tian
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|