1
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
4
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
5
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
6
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
7
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
8
|
Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, Giannakopoulou N, Viniou NA. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv 2021; 5:4794-4805. [PMID: 34529761 PMCID: PMC8759124 DOI: 10.1182/bloodadvances.2021004638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key mediator of various forms of DNA damage repair and plays an important role in the progression of several cancer types. The enzyme is activated by binding to DNA single-strand and double-strand breaks. Its contribution to chromatin remodeling makes PARP1 crucial for gene expression regulation. Inhibition of its activity with small molecules leads to the synthetic lethal effect by impeding DNA repair in the treatment of cancer cells. At first, PARP1 inhibitors (PARPis) were developed to target breast cancer mutated cancer cells. Currently, PARPis are being studied to be used in a broader variety of patients either as single agents or in combination with chemotherapy, antiangiogenic agents, ionizing radiation, and immune checkpoint inhibitors. Ongoing clinical trials on olaparib, rucaparib, niraparib, veliparib, and the recent talazoparib show the advantage of these agents in overcoming PARPi resistance and underline their efficacy in targeted treatment of several hematologic malignancies. In this review, focusing on the crucial role of PARP1 in physiological and pathological effects in myelodysplastic syndrome and acute myeloid leukemia, we give an outline of the enzyme's mechanisms of action and its role in the pathophysiology and prognosis of myelodysplastic syndrome/acute myeloid leukemia and we analyze the available data on the use of PARPis, highlighting their promising advances in clinical application.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Tiblalexi
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Dellomo AJ, Abbotts R, Eberly CL, Karbowski M, Baer MR, Kingsbury TJ, Rassool FV. PARP1 PARylates and stabilizes STAT5 in FLT3-ITD acute myeloid leukemia and other STAT5-activated cancers. Transl Oncol 2021; 15:101283. [PMID: 34808460 PMCID: PMC8609071 DOI: 10.1016/j.tranon.2021.101283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
PARP1-dependent PARylation post-translationally modifies and regulates STAT5. Catalytic PARP inhibition reduces STAT5 stability. PARP1 loss results in reduced STAT5 signaling and activation of downstream targets. STAT5-activated cancers are sensitive to PARP inhibition. PARP inhibition overcomes TKI-resistance in FLT3-ITD AML.
Signal transducer and activator of transcription 5 (STAT5) signaling plays a pathogenic role in both hematologic malignancies and solid tumors. In acute myeloid leukemia (AML), internal tandem duplications of fms-like tyrosine kinase 3 (FLT3-ITD) constitutively activate the FLT3 receptor, producing aberrant STAT5 signaling, driving cell survival and proliferation. Understanding STAT5 regulation may aid development of new treatment strategies in STAT5-activated cancers including FLT3-ITD AML. Poly ADP-ribose polymerase (PARP1), upregulated in FLT3-ITD AML, is primarily known as a DNA repair factor, but also regulates a diverse range of proteins through PARylation. Analysis of STAT5 protein sequence revealed putative PARylation sites and we demonstrate a novel PARP1 interaction and direct PARylation of STAT5 in FLT3-ITD AML. Moreover, PARP1 depletion and PARylation inhibition decreased STAT5 protein expression and activity via increased degradation, suggesting that PARP1 PARylation of STAT5 at least in part potentiates aberrant signaling by stabilizing STAT5 protein in FLT3-ITD AML. Importantly for translational significance, PARPis are cytotoxic in numerous STAT5-activated cancer cells and are synergistic with tyrosine kinase inhibitors (TKI) in both TKI-sensitive and TKI-resistant FLT3-ITD AML. Therefore, PARPi may have therapeutic benefit in STAT5-activated and therapy-resistant leukemias and solid tumors.
Collapse
Affiliation(s)
- Anna J Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Christian L Eberly
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mariusz Karbowski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Scarpa M, Kapoor S, Tvedte ES, Doshi KA, Zou YS, Singh P, Lee JK, Chatterjee A, Ali MKM, Bromley RE, Hotopp JCD, Rassool FV, Baer MR. Pim kinase inhibitor co-treatment decreases alternative non-homologous end-joining DNA repair and genomic instability induced by topoisomerase 2 inhibitors in cells with FLT3 internal tandem duplication. Oncotarget 2021; 12:1763-1779. [PMID: 34504649 PMCID: PMC8416564 DOI: 10.18632/oncotarget.28042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.
Collapse
Affiliation(s)
- Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Kshama A. Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ying S. Zou
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Julie C. Dunning Hotopp
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute for Genome Sciences, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V. Rassool
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
12
|
Zhu Y, Dai H, Wang Y, Liang Y, Feng W, Yuan Y. Targeting FEN1 Suppresses the Proliferation of Chronic Myeloid Leukemia Cells Through Regulating Alternative End-Joining Pathways. DNA Cell Biol 2021; 40:1101-1111. [PMID: 34156283 DOI: 10.1089/dna.2021.0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the formation of the BCR-ABL fusion gene. The BCR-ABL protein leads to an increased level of reactive oxygen species, which is a major cause of endogenous DNA double-strand breaks (DSBs). CML cells are prone to rely on a highly mutagenic alternative end-joining (Alt-EJ) pathway to cope with enhanced DSBs, which aggravates chromosomal instability. Hence, targeting dysregulated DNA repair proteins provides new insights into cancer treatment. In this study, we discovered the abnormal upregulation of Flap endonuclease 1 (FEN1) in CML, as well as FEN1's participation in the error-prone Alt-EJ repair pathway and its interplay with DNA Ligase1 and proliferating cell nuclear antigen in DSB repair. Knockdown of FEN1 by shRNA not only inhibited the proliferation and induced apoptosis but also enhanced the efficacy of imatinib (IM) in drug-resistant CML cell K562/G01. Moreover, excessive DSB accumulation was detected after FEN1 inhibition. In summary, our results demonstrated that FEN1 is a promising therapeutic target in CML treatment. This work extends the understanding of regulating abnormal DSB repair for cancer treatment.
Collapse
Affiliation(s)
- Yalin Zhu
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongdan Dai
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yonghong Wang
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yang Liang
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are defined as unspecialized cells that give rise to more differentiated cells. In a similar way, leukaemic stem and progenitor cells (LSPCs) are defined as unspecialized leukaemic cells, which can give rise to more differentiated cells. Leukaemic cells carry leukaemic mutations/variants and have clear differentiation abnormalities. Pre-leukaemic HSPCs (PreL-HSPCs) carry pre-leukaemic mutations/variants (pLMs) and are capable of producing mature functional cells, which will carry the same variants. Under the roof of LSPCs, one can find a broad range of cell types genetic and disease phenotypes. Present-day knowledge suggests that this phenotypic heterogeneity is the result of interactions between the cell of origin, the genetic background and the microenvironment background. The combination of these attributes will define the LSPC phenotype, frequency, differentiation capacity and evolutionary trajectory. Importantly, as LSPCs are leukaemia-initiating cells that sustain clinical remission and are the source of relapse, an improved understanding of LSPCs phenotype would offer better clinical opportunities for the treatment and hopefully prevention of human leukaemia. The current review will focus on LSPCs attributes in the context of human haematologic malignancies.
Collapse
Affiliation(s)
- L I Shlush
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T Feldman
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021; 13:cancers13061392. [PMID: 33808562 PMCID: PMC8003480 DOI: 10.3390/cancers13061392] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer’s Achilles’ heel to be therapeutically exploited in precision oncology.
Collapse
|
15
|
Luo Y, Lu Y, Long B, Lin Y, Yang Y, Xu Y, Zhang X, Zhang J. Blocking DNA Damage Repair May Be Involved in Stattic (STAT3 Inhibitor)-Induced FLT3-ITD AML Cell Apoptosis. Front Cell Dev Biol 2021; 9:637064. [PMID: 33796529 PMCID: PMC8007876 DOI: 10.3389/fcell.2021.637064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The FMS-like tyrosine kinase 3 (FLT3)- internal tandem duplication (ITD) mutation can be found in approximately 25% of all acute myeloid leukemia (AML) cases and is associated with a poor prognosis. The main treatment for FLT3-ITD-positive AML patients includes genotoxic therapy and FLT3 inhibitors, which are rarely curative. Inhibiting STAT3 activity can improve the sensitivity of solid tumor cells to radiotherapy and chemotherapy. This study aimed to explore whether Stattic (a STAT3 inhibitor) affects FLT3-ITD AML cells and the underlying mechanism. Stattic can inhibit the proliferation, promote apoptosis, arrest cell cycle at G0/G1, and suppress DNA damage repair in MV4-11cells. During the process, through mRNA sequencing, we found that DNA damage repair-related mRNA are also altered during the process. In summary, the mechanism by which Stattic induces apoptosis in MV4-11cells may involve blocking DNA damage repair machineries.
Collapse
Affiliation(s)
- Yuxuan Luo
- Department of Pediatric, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lu
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Blood Transfusion, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Long
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| | - Yansi Lin
- Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling Yang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yichuang Xu
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangzhong Zhang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| | - Jingwen Zhang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| |
Collapse
|
16
|
Caracciolo D, Scionti F, Juli G, Altomare E, Golino G, Todoerti K, Grillone K, Riillo C, Arbitrio M, Iannone M, Morelli E, Amodio N, Di Martino MT, Rossi M, Neri A, Tagliaferri P, Tassone P. Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma. Haematologica 2021; 106:185-195. [PMID: 32079692 PMCID: PMC7776341 DOI: 10.3324/haematol.2019.240713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple Myeloma (MM) is a hematologic malignancy strongly characterized by genomic instability, which promotes disease progression and drug resistance. Since we previously demonstrated that LIG3-dependent repair is involved in the genomic instability, drug resistance and survival of MM cells, we here investigated the biological relevance of PARP1, a driver component of Alternative-Non Homologous End Joining (Alt-NHEJ) pathway, in MM. We found a significant correlation between higher PARP1 mRNA expression and poor prognosis of MM patients. PARP1 knockdown or its pharmacological inhibition by Olaparib impaired MM cells viability in vitro and was effective against in vivo xenografts of human MM. Anti-proliferative effects induced by PARP1-inhibition were correlated to increase of DNA double-strand breaks, activation of DNA Damage Response (DDR) and finally apoptosis. Importantly, by comparing a gene expression signature of PARP inhibitors (PARPi) sensitivity to our plasma cell dyscrasia (PC) gene expression profiling (GEP), we identified a subset of MM patients which could benefit from PARP inhibitors. In particular, Gene Set Enrichment Analysis (GSEA) suggested that high MYC expression correlates to PARPi sensitivity in MM. Indeed, we identified MYC as promoter of PARP1-mediated repair in MM and, consistently, we demonstrate that cytotoxic effects induced by PARP inhibition are mostly detectable on MYC-proficient MM cells. Taken together, our findings indicate that MYC-driven MM cells are addicted to PARP1 Alt-NHEJ repair, which represents therefore a druggable target in this still incurable disease.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Gaetanina Golino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Katia Todoerti
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Eugenio Morelli
- Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute,Boston, USA
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Antonino Neri
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| |
Collapse
|
17
|
Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol 2020; 13:126. [PMID: 32958072 PMCID: PMC7507691 DOI: 10.1186/s13045-020-00959-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancer has recently gained interest, and different DDR inhibitors have been developed. Among them, the most promising ones target the WEE1 kinase family, which has a crucial role in cell cycle regulation and DNA damage identification and repair in both nonmalignant and cancer cells. This review recapitulates and discusses the most recent findings on the biological function of WEE1/PKMYT1 during the cell cycle and in the DNA damage repair, with a focus on their dual role as tumor suppressors in nonmalignant cells and pseudo-oncogenes in cancer cells. We here report the available data on the molecular and functional alterations of WEE1/PKMYT1 kinases in both hematological and solid tumors. Moreover, we summarize the preclinical information on 36 chemo/radiotherapy agents, and in particular their effect on cell cycle checkpoints and on the cellular WEE1/PKMYT1-dependent response. Finally, this review outlines the most important pre-clinical and clinical data available on the efficacy of WEE1/PKMYT1 inhibitors in monotherapy and in combination with chemo/radiotherapy agents or with other selective inhibitors currently used or under evaluation for the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| |
Collapse
|
18
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
19
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
20
|
Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020; 147:2658-2668. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Defects in DNA repair machinery play a critical role in the pathogenesis and progression of human cancer. When they occur, the tumor cells activate error-prone mechanisms which lead to genomic instability and high mutation rate. These defects represent, therefore, a cancer Achilles'heel which could be therapeutically exploited by the use of DNA damage response inhibitors. Moreover, experimental and clinical evidence indicates that DNA repair deregulation has a pivotal role also in promoting immune recognition and immune destruction of cancer cells. Indeed, immune checkpoint inhibitors have received regulatory approval in tumors characterized by high genomic instability, such as melanomas and lung cancer. Here, we discuss how deregulation of DNA repair, through activation of error-prone mechanisms, increases immune activation against cancer. Finally, we address the potential strategies to use DNA repair components as biomarkers and/or therapeutic targets to empower immune-oncology treatment of human cancer.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Sun DL, Poddar S, Pan RD, Rosser EW, Abt ER, Van Valkenburgh J, Le TM, Lok V, Hernandez SP, Song J, Li J, Turlik A, Chen X, Cheng CA, Chen W, Mona CE, Stuparu AD, Vergnes L, Reue K, Damoiseaux R, Zink JI, Czernin J, Donahue TR, Houk KN, Jung ME, Radu CG. Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Med Chem 2020; 11:392-410. [PMID: 33479645 DOI: 10.1039/c9md00594c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.
Collapse
Affiliation(s)
- Daniel L Sun
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Roy D Pan
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Juno Van Valkenburgh
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Selena P Hernandez
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Janet Song
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Joanna Li
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Aneta Turlik
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Xiaohong Chen
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Chi-An Cheng
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA . .,Department of Bioengineering , University of California, Los Angeles , CA 90095 , USA
| | - Wei Chen
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Laurent Vergnes
- Department of Human Genetics , David Geffen School of Medicine , University of California, Los Angeles , California 90095 , USA
| | - Karen Reue
- Department of Human Genetics , David Geffen School of Medicine , University of California, Los Angeles , California 90095 , USA.,Molecular Biology Institute , University of California, Los Angeles , California 90095 , USA
| | - Robert Damoiseaux
- UCLA Metabolomic Center , University of California, Los Angeles , Los Angeles , California 90095 , USA
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Surgery , University of California, Los Angeles , CA 90095 , USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Michael E Jung
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| |
Collapse
|
22
|
Sullivan-Reed K, Bolton-Gillespie E, Dasgupta Y, Langer S, Siciliano M, Nieborowska-Skorska M, Hanamshet K, Belyaeva EA, Bernhardy AJ, Lee J, Moore M, Zhao H, Valent P, Matlawska-Wasowska K, Müschen M, Bhatia S, Bhatia R, Johnson N, Wasik MA, Mazin AV, Skorski T. Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Rep 2019; 23:3127-3136. [PMID: 29898385 PMCID: PMC6082171 DOI: 10.1016/j.celrep.2018.05.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
PARP inhibitors (PARPis) have been used to induce synthetic lethality in BRCA-deficient tumors in clinical trials with limited success. We hypothesized that RAD52-mediated DNA repair remains active in PARPi-treated BRCA-deficient tumor cells and that targeting RAD52 should enhance the synthetic lethal effect of PARPi. We show that RAD52 inhibitors (RAD52is) attenuated single-strand annealing (SSA) and residual homologous recombination (HR) in BRCA-deficient cells. Simultaneous targeting of PARP1 and RAD52 with inhibitors or dominant-negative mutants caused synergistic accumulation of DSBs and eradication of BRCA-deficient but not BRCA-proficient tumor cells. Remarkably, Parp1-/-;Rad52-/- mice are normal and display prolonged latency of BRCA1-deficient leukemia compared with Parp1-/- and Rad52-/- counterparts. Finally, PARPi+RAD52i exerted synergistic activity against BRCA1-deficient tumors in immunodeficient mice with minimal toxicity to normal cells and tissues. In conclusion, our data indicate that addition of RAD52i will improve therapeutic outcome of BRCA-deficient malignancies treated with PARPi.
Collapse
Affiliation(s)
- Katherine Sullivan-Reed
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Elisabeth Bolton-Gillespie
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yashodhara Dasgupta
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Samantha Langer
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Micheal Siciliano
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizaveta A Belyaeva
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jaewong Lee
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Morgan Moore
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, 1090, Austria
| | - Ksenia Matlawska-Wasowska
- Division of Pediatric Research, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Smita Bhatia
- Department of Pediatrics, University of Alabama Birmingham, Birmingham, AL 35223, USA
| | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
23
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
24
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
25
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
27
|
Dellomo AJ, Baer MR, Rassool FV. Partnering with PARP inhibitors in acute myeloid leukemia with FLT3-ITD. Cancer Lett 2019; 454:171-178. [PMID: 30953707 DOI: 10.1016/j.canlet.2019.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/01/2023]
Abstract
Internal tandem duplications within the juxtamembrane domain of fms-like tyrosine kinase 3 (FLT3-ITD) occur in acute myeloid leukemia (AML) cells of 20-25% of patients and are associated with poor treatment outcomes. FLT3 inhibitors have been developed, but have had limited clinical efficacy due to development of resistance, highlighting the need for better understanding of the function of FLT3-ITD and how to target it more effectively using novel combination strategies. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown efficacy in cancers with impaired homologous recombination (HR) due to BRCA mutations, but PARP inhibitor efficacy has not been fully explored in BRCA-proficient cancers, including AML. Recent research has connected inhibition of FLT3-ITD signaling to downregulation of numerous DNA repair proteins, including those involved in HR, and the novel combination with PARP inhibitors induces synthetic lethality in AML. Additionally, PARP inhibitor therapy may also target the highly error-prone alternative non-homologous end-joining (ALT NHEJ) DNA repair pathway in which PARP participates, thereby decreasing genomic instability and development of therapy resistance. Therefore, PARP inhibitors may be attractive therapeutic agents in combination with FLT3 inhibitors in FLT3-ITD AML.
Collapse
Affiliation(s)
- Anna J Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA; Veterans Affairs Medical Center, Baltimore, MD, 20201, USA
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
28
|
Caracciolo D, Di Martino MT, Amodio N, Morelli E, Montesano M, Botta C, Scionti F, Talarico D, Altomare E, Gallo Cantafio ME, Zuccalà V, Maltese L, Todoerti K, Rossi M, Arbitrio M, Neri A, Tagliaferri P, Tassone P. miR-22 suppresses DNA ligase III addiction in multiple myeloma. Leukemia 2019; 33:487-498. [PMID: 30120376 PMCID: PMC6365379 DOI: 10.1038/s41375-018-0238-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability. Here we provide evidence that hyper-activation of DNA ligase III (LIG3) is crucial for genomic instability and survival of MM cells. LIG3 mRNA expression in MM patients correlates with shorter survival and even increases with more advanced stage of disease. Knockdown of LIG3 impairs MM cells viability in vitro and in vivo, suggesting that neoplastic plasmacells are dependent on LIG3-driven repair. To investigate the mechanisms involved in LIG3 expression, we investigated the post-transcriptional regulation. We identified miR-22-3p as effective negative regulator of LIG3 in MM. Enforced expression of miR-22 in MM cells downregulated LIG3 protein, which in turn increased DNA damage inhibiting in vitro and in vivo cell growth. Taken together, our findings demonstrate that myeloma cells are addicted to LIG3, which can be effectively inhibited by miR-22, promoting a novel axis of genome stability regulation.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | | | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | | | | | - Katia Todoerti
- Department of Oncology and Hemato-oncology, University of Milan, and Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Mariamena Arbitrio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, and Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Poh W, Dilley RL, Moliterno AR, Maciejewski JP, Pratz KW, McDevitt MA, Herman JG. BRCA1 Promoter Methylation Is Linked to Defective Homologous Recombination Repair and Elevated miR-155 to Disrupt Myeloid Differentiation in Myeloid Malignancies. Clin Cancer Res 2019; 25:2513-2522. [PMID: 30692098 DOI: 10.1158/1078-0432.ccr-18-0179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Defective homologous recombination (HR) has been reported in multiple myeloid disorders, suggesting a shared dysregulated pathway in these diverse malignancies. Because targeting HR-defective cancers with PARP inhibition (PARPi) has yielded clinical benefit, improved understanding of HR defects is needed to implement this treatment modality. EXPERIMENTAL DESIGN We used an ex vivo irradiation-based assay to evaluate HR repair, HR gene promoter methylation, and mRNA expression in primary myeloid neoplastic cells. In vitro BRCA1 gene silencing was achieved to determine the consequences on HR repair, sensitivity to PARPi, and expression of miR-155, an oncogenic miRNA. RESULTS Impaired HR repair was frequently detected in myeloid neoplasm samples (9/21, 43%) and was linked to promoter methylation-mediated transcriptional repression of BRCA1, which was not observed for other members of the HR pathway (BRCA2, ATM, ATR, FANC-A). In vitro BRCA1 knockdown increased sensitivity to PARP inhibition, and BRCA1 expression is inversely correlated with miR-155 expression, a finding reproduced in vitro with BRCA1 knockdown. Increased miR-155 was associated with PU.1 and SHIP1 repression, known myeloid differentiation factors that are frequently downregulated during leukemic transformation. CONCLUSIONS This study demonstrates frequent defective HR, associated with BRCA1 epigenetic silencing, in a broad range of myeloid neoplasms. The increased prevalence of BRCA1 promoter methylation, resulting in repressed BRCA1, may have an additional role in leukemogenesis by increasing miR-155 expression, which then inhibits transcription factors associated with normal myeloid differentiation. Further study of HR defects may facilitate the identification of HR-defective myeloid neoplasms sensitive to PARPi.
Collapse
Affiliation(s)
- Weijie Poh
- Graduate Program in Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert L Dilley
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alison R Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research, Cleveland Clinic/Taussig Cancer Institute, Cleveland, Ohio
| | - Keith W Pratz
- Division of Hematological Malignancy, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Michael A McDevitt
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Hematological Malignancy, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - James G Herman
- Graduate Program in Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland. .,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood 2018; 132:67-77. [PMID: 29784639 DOI: 10.1182/blood-2018-02-834895] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Mutations in FMS-like tyrosine kinase 3 (FLT3), such as internal tandem duplications (ITDs), can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i's), which are rarely curative. PARP1 inhibitors (PARP1i's) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) activity by the FLT3i AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of 2 major DNA double-strand break (DSB) repair pathways, HR, and nonhomologous end-joining. PARP1i, olaparib, and BMN673 caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells, thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells, as well as leukemic progenitors, from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia-initiating cells in an FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i's. Therefore, FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1i's.
Collapse
|
31
|
Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther 2018; 16:991-1001. [PMID: 28576946 DOI: 10.1158/1535-7163.mct-16-0876] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/13/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Multimerization
- Tandem Repeat Sequences
- Treatment Outcome
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/chemistry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Maria Larrosa-Garcia
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
32
|
Doshi KA, Trotta R, Natarajan K, Rassool FV, Tron AE, Huszar D, Perrotti D, Baer MR. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress. Oncotarget 2018; 7:48280-48295. [PMID: 27374090 PMCID: PMC5217017 DOI: 10.18632/oncotarget.10209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD.
Collapse
Affiliation(s)
- Kshama A Doshi
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rossana Trotta
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karthika Natarajan
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V Rassool
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Danilo Perrotti
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R Baer
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
33
|
Wong MK, Ng CCY, Kuick CH, Aw SJ, Rajasegaran V, Lim JQ, Sudhanshi J, Loh E, Yin M, Ma J, Zhang Z, Iyer P, Loh AHP, Lian DWQ, Wang S, Goh SGH, Lim TH, Lim AST, Ng T, Goytain A, Loh AHL, Tan PH, Teh BT, Chang KTE. Clear cell sarcomas of the kidney are characterised by BCOR
gene abnormalities, including exon 15 internal tandem duplications and BCOR-CCNB3
gene fusion. Histopathology 2017; 72:320-329. [DOI: 10.1111/his.13366] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Meng K Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Laboratory; KK Women's and Children's Hospital; Singapore
| | - Cedric C Y Ng
- Laboratory of Cancer Epigenome; National Cancer Centre; Singapore
| | - Chik H Kuick
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
| | - Sze J Aw
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
- Department of Anatomical Pathology; Singapore General Hospital; Singapore
| | | | - Jing Q Lim
- Laboratory of Cancer Epigenome; National Cancer Centre; Singapore
| | - Jain Sudhanshi
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
| | - Minzhi Yin
- Department of Pathology; Shanghai Children's Medical Centre; Shanghai China
| | - Jing Ma
- Department of Pathology; Shanghai Children's Medical Centre; Shanghai China
| | - Zhongde Zhang
- Department of Pathology; Shanghai Children's Medical Centre; Shanghai China
| | - Prasad Iyer
- Paediatric Haematology-Oncology Service; Singapore
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Laboratory; KK Women's and Children's Hospital; Singapore
- Department of Paediatric Surgery; KK Women's and Children's Hospital; Singapore
- Duke-NUS Medical School; Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
- Duke-NUS Medical School; Singapore
| | - Shi Wang
- Department of Pathology; National University Health System; Singapore
| | - Shaun G H Goh
- Department of Pathology; National University Health System; Singapore
| | - Tse H Lim
- Department of Molecular Pathology; Singapore General Hospital; Singapore
| | - Alvin S T Lim
- Department of Molecular Pathology; Singapore General Hospital; Singapore
| | - Tony Ng
- Department of Pathology; Vancouver General Hospital and University of British Columbia; Vancouver British Columbia Canada
| | - Angela Goytain
- Department of Pathology; Vancouver General Hospital and University of British Columbia; Vancouver British Columbia Canada
| | - Alwin H L Loh
- Department of Anatomical Pathology; Singapore General Hospital; Singapore
- Duke-NUS Medical School; Singapore
| | - Puay H Tan
- Department of Anatomical Pathology; Singapore General Hospital; Singapore
- Duke-NUS Medical School; Singapore
| | - Bin T Teh
- Laboratory of Cancer Epigenome; National Cancer Centre; Singapore
- Duke-NUS Medical School; Singapore
| | - Kenneth T E Chang
- VIVA-KKH Paediatric Brain and Solid Tumour Laboratory; KK Women's and Children's Hospital; Singapore
- Department of Pathology and Laboratory Medicine; KK Women's and Children's Hospital; Singapore
- Duke-NUS Medical School; Singapore
| |
Collapse
|
34
|
Cagnetta A, Soncini D, Orecchioni S, Talarico G, Minetto P, Guolo F, Retali V, Colombo N, Carminati E, Clavio M, Miglino M, Bergamaschi M, Nahimana A, Duchosal M, Todoerti K, Neri A, Passalacqua M, Bruzzone S, Nencioni A, Bertolini F, Gobbi M, Lemoli RM, Cea M. Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica 2017; 103:80-90. [PMID: 29025907 PMCID: PMC5777193 DOI: 10.3324/haematol.2017.176248] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Genomic instability plays a pathological role in various malignancies, including acute myeloid leukemia (AML), and thus represents a potential therapeutic target. Recent studies demonstrate that SIRT6, a NAD+-dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in different tumor cells. Here, we demonstrate that also CD34+ blasts from AML patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for DNA-replication stress. As a result, SIRT6 depletion compromises the ability of leukemia cells to repair DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in vitro and in vivo In contrast, low SIRT6 levels observed in normal CD34+ hematopoietic progenitors explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that inactivation of SIRT6 in leukemia cells leads to disruption of DNA-repair mechanisms, genomic instability and aggressive AML. This synthetic lethal approach, enhancing DNA damage while concomitantly blocking repair responses, provides the rationale for the clinical evaluation of SIRT6 modulators in the treatment of leukemia.
Collapse
Affiliation(s)
- Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Debora Soncini
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | | | | | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Veronica Retali
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Nicoletta Colombo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Enrico Carminati
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Italy and
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Italy and
| | - Alessio Nencioni
- Hematology Unit, Policlinico San Martino, Genova, Italy.,Department of Internal Medicine, University of Genova, Italy
| | | | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Roberto M Lemoli
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy .,Hematology Unit, Policlinico San Martino, Genova, Italy
| |
Collapse
|
35
|
Garcia TB, Snedeker JC, Baturin D, Gardner L, Fosmire SP, Zhou C, Jordan CT, Venkataraman S, Vibhakar R, Porter CC. A Small-Molecule Inhibitor of WEE1, AZD1775, Synergizes with Olaparib by Impairing Homologous Recombination and Enhancing DNA Damage and Apoptosis in Acute Leukemia. Mol Cancer Ther 2017; 16:2058-2068. [PMID: 28655785 DOI: 10.1158/1535-7163.mct-16-0660] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/22/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023]
Abstract
Although some patients with acute leukemia have good prognoses, the prognosis of adult and pediatric patients who relapse or cannot tolerate standard chemotherapy is poor. Inhibition of WEE1 with AZD1775 has been shown to sensitize cancer cells to genotoxic chemotherapies, including cytarabine in acute myeloid leukemia (AML) and T-ALL. Inhibition of WEE1 impairs homologous recombination by indirectly inhibiting BRCA2. Thus, we sought to determine whether AZD1775 could sensitize cells to the PARP1/2 inhibitor olaparib. We found that combined treatment with AZD1775 and olaparib was synergistic in AML and ALL cells, and this combination impaired proliferative capacity upon drug withdrawal. AZD1775 impaired homologous recombination in olaparib-treated cells, resulting in enhanced DNA damage accumulation and apoptosis induction. This combination enhanced disease control and increased survival in a murine AML model. Furthermore, we demonstrated that combined treatment with AZD1775 and olaparib reduces proliferation and colony formation and increases apoptosis in AML patient samples. In aggregate, these studies raise the possibility of rational combinations of targeted agents for leukemia in patients for whom conventional chemotherapeutics may not be effective or well tolerated. Mol Cancer Ther; 16(10); 2058-68. ©2017 AACR.
Collapse
Affiliation(s)
- Tamara B Garcia
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan C Snedeker
- Department of Pediatrics Summer Internship Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Dmitry Baturin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lori Gardner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Susan P Fosmire
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Chengjing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, Colorado
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Christopher C Porter
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado. .,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
36
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1200] [Impact Index Per Article: 171.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|
38
|
PARP inhibitors in acute myeloid leukaemia therapy: How a synthetic lethality approach can be a valid therapeutic alternative. Med Hypotheses 2017; 104:30-34. [PMID: 28673584 DOI: 10.1016/j.mehy.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/21/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukaemia (AML) is a malignancy in need of new therapeutic options. The current standard of care chemotherapy, leads to complete remission (CR) in the vast majority of adult patients under the age of 60. In contrast, CR rates in patients over the age of 60 reaches only 40-60%. While achievement of a CR is an important stepping stone in the treatment of AML, the majority of these patients experience relapse and die of their disease without adequate consolidation chemotherapy. Blood and marrow transplantation (BMT) can improve outcome in a select patient with AML but unfortunately, it is not a valid treatment option for the majority of older patients. Thus, the development of novel chemotherapy regimens that capitalizes on AML biology to eliminate the malignant clone with little to no side effects on the normal haematopoiesis is paramount in the treatment of elderly patients. In the current paper, we propose to take advantage of the dysfunctional DNA repair mechanisms present in AML cells and induce synthetic lethality using a combination of PARP inhibitors with low dose anthracycline and DNMT inhibitors. Such a combination, while effectively eliminating leukaemia should be well tolerated and thus, suitable for the treatment of frail patients.
Collapse
|
39
|
Nieborowska-Skorska M, Sullivan K, Dasgupta Y, Podszywalow-Bartnicka P, Hoser G, Maifrede S, Martinez E, Di Marcantonio D, Bolton-Gillespie E, Cramer-Morales K, Lee J, Li M, Slupianek A, Gritsyuk D, Cerny-Reiterer S, Seferynska I, Stoklosa T, Bullinger L, Zhao H, Gorbunova V, Piwocka K, Valent P, Civin CI, Muschen M, Dick JE, Wang JC, Bhatia S, Bhatia R, Eppert K, Minden MD, Sykes SM, Skorski T. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 2017; 127:2392-2406. [PMID: 28481221 DOI: 10.1172/jci90825] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023] Open
Abstract
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.
Collapse
Affiliation(s)
- Margaret Nieborowska-Skorska
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Katherine Sullivan
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Yashodhara Dasgupta
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | - Grazyna Hoser
- The Center of Postgraduate Medical Education, Laboratory of Flow Cytometry, Warsaw, Poland
| | - Silvia Maifrede
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Daniela Di Marcantonio
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Elisabeth Bolton-Gillespie
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Kimberly Cramer-Morales
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Jaewong Lee
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Min Li
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Artur Slupianek
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Daniel Gritsyuk
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Sabine Cerny-Reiterer
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Ilona Seferynska
- Department of Hematology, Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | - Tomasz Stoklosa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Huaqing Zhao
- Temple University Lewis Katz School of Medicine, Department of Clinical Sciences, Philadelphia, Pennsylvania, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - Peter Valent
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Markus Muschen
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Cy Wang
- Princess Margaret Cancer Centre, UHN, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, UHN, Toronto, Ontario, Canada
| | | | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama, USA
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mark D Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Stephen M Sykes
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
41
|
Rebechi MT, Pratz KW. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278729 DOI: 10.1080/10428194.2017.1283031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute Myeloid Leukemia with FLT3 ITD mutations are associated with a poor prognosis characterized by a higher relapse rate, shorter relapse free survival, and decreased likelihood of response to therapy at relapse. FLT3 ITD signaling drives cell proliferation and survival. FLT3 ITD AML disease progression is associated with cytogenetic evolution and acquired tyrosine kinase inhibitor (TKI) resistance suggesting a potential role of genomic instability. There is growing evidence demonstrating a relationship between FLT3 signaling and increased DNA damage, specifically through increased reactive oxygen species (ROS) resulting in double-strand breaks (DSB), as well as impaired DNA repair, involving deficiencies in the non-homologous end joining (NHEJ), alternative non-homologous end joining (ALT NHEJ) and homologous recombination (HR) pathways. The role of genomic instability in the pathogenesis of FLT3 ITD AML warrants further examination as it offers potential therapeutic targets.
Collapse
Affiliation(s)
- Melanie T Rebechi
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| | - Keith W Pratz
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
42
|
NOX-driven ROS formation in cell transformation of FLT3-ITD-positive AML. Exp Hematol 2016; 44:1113-1122. [DOI: 10.1016/j.exphem.2016.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/28/2016] [Indexed: 12/22/2022]
|
43
|
Gu P, Wang Y, Bisht KK, Wu L, Kukova L, Smith EM, Xiao Y, Bailey SM, Lei M, Nandakumar J, Chang S. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 2016; 36:1939-1951. [PMID: 27869160 PMCID: PMC5383532 DOI: 10.1038/onc.2016.405] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/02/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Chromosomal aberrations are a hallmark of human cancers, with complex cytogenetic rearrangements leading to genetic changes permissive for cancer initiation and progression. Protection of Telomere 1 (POT1) is an essential component of the shelterin complex and functions to maintain chromosome stability by repressing the activation of aberrant DNA damage and repair responses at telomeres. Sporadic and familial mutations in the oligosaccharide-oligonucleotide (OB) folds of POT1 have been identified in many human cancers, but the mechanism underlying how hPOT1 mutations initiate tumorigenesis has remained unclear. Here we show that the human POT1’s OB-folds are essential for the protection of newly replicated telomeres. Oncogenic mutations in hPOT1 OB-fold fail to bind to ss telomeric DNA, eliciting a DNA damage response at telomeres that promote inappropriate chromosome fusions via the mutagenic alternative non-homologous end joining (A-NHEJ) pathway. hPOT1 mutations also result in telomere elongation and the formation of transplantable hematopoietic malignancies. Strikingly, conditional deletion of both mPot1a and p53 in mouse mammary epithelium resulted in development of highly invasive breast carcinomas and the formation of whole chromosomes containing massive arrays of telomeric fusions reminiscent of chromothripsis. Our results reveal that hPOT1 OB-folds are required to protect and prevent newly replicated telomeres from engaging in A-NHEJ mediated fusions that would otherwise promote genome instability to fuel tumorigenesis.
Collapse
Affiliation(s)
- P Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Y Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - K K Bisht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - L Wu
- Department of GI Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Kukova
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Y Xiao
- Section of Hematology-Oncology, Department of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - S M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Pratz KW, Koh BD, Patel AG, Flatten KS, Poh W, Herman JG, Dilley R, Harrell MI, Smith BD, Karp JE, Swisher EM, McDevitt MA, Kaufmann SH. Poly (ADP-Ribose) Polymerase Inhibitor Hypersensitivity in Aggressive Myeloproliferative Neoplasms. Clin Cancer Res 2016; 22:3894-902. [PMID: 26979391 DOI: 10.1158/1078-0432.ccr-15-2351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE DNA repair defects have been previously reported in myeloproliferative neoplasms (MPN). Inhibitors of PARP have shown activity in solid tumors with defects in homologous recombination (HR). This study was performed to assess MPN sensitivity to PARP inhibitors ex vivo EXPERIMENTAL DESIGN HR pathway integrity in circulating myeloid cells was evaluated by assessing the formation of RAD51 foci after treatment with ionizing radiation or PARP inhibitors. Sensitivity of MPN erythroid and myeloid progenitors to PARP inhibitors was evaluated using colony formation assays. RESULTS Six of 14 MPN primary samples had reduced formation of RAD51 foci after exposure to ionizing radiation, suggesting impaired HR. This phenotype was not associated with a specific MPN subtype, JAK2 mutation status, or karyotype. MPN samples showed increased sensitivity to the PARP inhibitors veliparib and olaparib compared with normal myeloid progenitors. This hypersensitivity, which was most pronounced in samples deficient in DNA damage-induced RAD51 foci, was observed predominantly in samples from patients with diagnoses of chronic myelogenous leukemia, chronic myelomonocytic leukemia, or unspecified myelodysplastic/MPN overlap syndromes. CONCLUSIONS Like other neoplasms with HR defects, MPNs exhibit PARP inhibitor hypersensitivity compared with normal marrow. These results suggest that further preclinical and possibly clinical study of PARP inhibitors in MPNs is warranted. Clin Cancer Res; 22(15); 3894-902. ©2016 AACR.
Collapse
Affiliation(s)
- Keith W Pratz
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland.
| | - Brian D Koh
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Anand G Patel
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - Weijie Poh
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - James G Herman
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert Dilley
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Maria I Harrell
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, Washington
| | - B Douglas Smith
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Judith E Karp
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, Washington
| | - Michael A McDevitt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota. Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
45
|
Hydroxylated Dimeric Naphthoquinones Increase the Generation of Reactive Oxygen Species, Induce Apoptosis of Acute Myeloid Leukemia Cells and Are Not Substrates of the Multidrug Resistance Proteins ABCB1 and ABCG2. Pharmaceuticals (Basel) 2016; 9:ph9010004. [PMID: 26797621 PMCID: PMC4812368 DOI: 10.3390/ph9010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/24/2023] Open
Abstract
Selective targeting of the oxidative state, which is a tightly balanced fundamental cellular property, is an attractive strategy for developing novel anti-leukemic chemotherapeutics with potential applications in the treatment of acute myeloid leukemia (AML), a molecularly heterogeneous disease. Dimeric naphthoquinones (BiQs) with the ability to undergo redox cycling and to generate reactive oxygen species (ROS) in cancer cells are a novel class of compounds with unique characteristics that make them excellent candidates to be tested against AML cells. We evaluated the effect of two BiQ analogues and one monomeric naphthoquinone in AML cell lines and primary cells from patients. All compounds possess one halogen and one hydroxyl group on the quinone cores. Dimeric, but not monomeric, naphthoquinones demonstrated significant anti-AML activity in the cell lines and primary cells from patients with favorable therapeutic index compared to normal hematopoietic cells. BiQ-1 effectively inhibited clonogenicity and induced apoptosis as measured by Western blotting and Annexin V staining and mitochondrial membrane depolarization by flow cytometry. BiQ-1 significantly enhances intracellular ROS levels in AML cells and upregulates expression of key anti-oxidant protein, Nrf2. Notably, systemic exposure to BiQ-1 was well tolerated in mice. In conclusion, we propose that BiQ-induced therapeutic augmentation of ROS in AML cells with dysregulation of antioxidants kill leukemic cells while normal cells remain relatively intact. Further studies are warranted to better understand this class of potential chemotherapeutics.
Collapse
|
46
|
Sinha S, Villarreal D, Shim EY, Lee SE. Risky business: Microhomology-mediated end joining. Mutat Res 2016; 788:17-24. [PMID: 26790771 DOI: 10.1016/j.mrfmmm.2015.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
Prevalence of microhomology (MH) at the breakpoint junctions in somatic and germ-line chromosomal rearrangements and in the programmed immune receptor rearrangements from cells deficient in classical end joining reveals an enigmatic process called MH-mediated end joining (MMEJ). MMEJ repairs DNA double strand breaks (DSBs) by annealing flanking MH and deleting genetic information at the repair junctions from yeast to humans. Being genetically distinct from canonical DNA DSB pathways, MMEJ is involved with the fusions of eroded/uncapped telomeres as well as with the assembly of chromosome fragments in chromothripsis. In this review article, we will discuss an up-to-date model representing the MMEJ process and the mechanism by which cells regulate MMEJ to limit repair-associated mutagenesis. We will also describe the possible therapeutic gains resulting from the inhibition of MMEJ in recombination deficient cancers. Lastly, we will embark on two contentious issues associated with MMEJ such as the significance of MH at the repair junction to be the hallmark of MMEJ and the relationship of MMEJ to other mechanistically related DSB repair pathways.
Collapse
Affiliation(s)
- Supriya Sinha
- Department of Molecular Medicine, Institute of Biotechnology, United States
| | - Diana Villarreal
- Children's Hospital of San Antonio, Baylor College of Medicine, San Antonio, TX 78207, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States.
| |
Collapse
|
47
|
How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 2015; 471:1-11. [PMID: 26392571 DOI: 10.1042/bj20150582] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.
Collapse
|
48
|
Bose P, Grant S. Rational Combinations of Targeted Agents in AML. J Clin Med 2015; 4:634-664. [PMID: 26113989 PMCID: PMC4470160 DOI: 10.3390/jcm4040634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Internal Medicine, Virginia Commonwealth University and VCU Massey Cancer Center Center, 1201 E Marshall St, MMEC 11-213, P.O. Box 980070, Richmond, VA 23298, USA; E-Mail:
| | - Steven Grant
- Departments of Internal Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, Human and Molecular Genetics and the Institute for Molecular Medicine, Virginia Commonwealth University and VCU Massey Cancer Center, 401 College St, P.O. Box 980035, Richmond, VA 23298, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-804-828-5211; Fax: +1-804-628-5920
| |
Collapse
|
49
|
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K, Rassool FV. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias. Mol Cancer Res 2015; 13:699-712. [PMID: 25828893 DOI: 10.1158/1541-7786.mcr-14-0422] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.
Collapse
Affiliation(s)
- Nidal Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shannon Kelley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carine Robert
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | - Curt Civin
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kara Scheibner
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
50
|
Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability. PLoS One 2015. [PMID: 25790254 DOI: 10.1371/journal.pone.0121581.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB) repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR)-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ), and Rad51, involved in homologous recombination (HR). Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ) were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited.
Collapse
|