1
|
Xu H, Hu K, Wang Y, Cai S, Wu F, Bao J, Hu Q, Guan Y, Tao Y, Lu J. Single-cell transcriptome sequencing reveals the mechanism of Realgar improvement on erythropoiesis in mice with myelodysplastic syndrome. Cancer Cell Int 2025; 25:135. [PMID: 40200265 PMCID: PMC11978147 DOI: 10.1186/s12935-025-03768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Myelodysplastic syndrome (MDS) is a malignant hematologic disorder with limited curative options, primarily reliant on hematopoietic stem cell transplantation. Anemia, a prevalent symptom of MDS, has few effective treatment strategies. Realgar, though known for its therapeutic effects on MDS, remains poorly understood in terms of its mechanism of action. In this study, both in vivo and in vitro experiments were conducted using Realgar and its primary active component, As2S2, to examine their impact on mouse erythroblasts at the single-cell level. Realgar treatment significantly altered the transcriptional profiles and cellular composition of bone marrow in mice, both in vivo and in vitro. Differentially expressed genes in erythroblasts regulated by Realgar were identified, unveiling potential regulatory functions and signaling pathways, such as heme biosynthesis, hemoglobin production, oxygen binding, IL-17 signaling, and MAPK pathways. These findings suggest that Realgar enhances the differentiation of erythroblasts in mouse bone marrow and improves overall blood cell counts. This work offers preliminary insights into Realgar's mechanisms, expands the understanding of this mineral medicine, and may inform strategies to optimize its therapeutic potential in hematologic diseases.
Collapse
Affiliation(s)
- Hao Xu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kexin Hu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlu Wang
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Cai
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Wu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jizhang Bao
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Hu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Guan
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuchen Tao
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jiahui Lu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Hao R, Ao X, Xu Y, Gao M, Jia C, Dong X, Cirenluobu, Shang P, Ye Y, Wei Z. Enhancing oxygen utilization and mitigating oxidative stress in Tibetan chickens for adaptation to high-altitude hypoxia. Poult Sci 2025; 104:104893. [PMID: 40014967 PMCID: PMC11910141 DOI: 10.1016/j.psj.2025.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Tibetan chicken (TBC) is one of the native poultry species that is well adapted to the high-altitude environment of the Qinghai-Tibet Plateau. To elucidate the genetic mechanisms underlying adaptation, the transcriptomes of five tissues (heart (HE), lung (LU), liver (LI), ovary (OV), and abdominal fat (AB)) were compared between TBCs and Roman chickens (RMCs) inhabiting the plateau for one year. Moreover, weighted gene co-expression network analysis (WGCNA) was applied to detect tissue-associated modules and hub genes. A total of 1105, 239, 400, 483, and 275 differentially expressed genes (DEGs) were identified in the LI, HE, LU, AB, and OV tissues, respectively. Fifteen tissue-specific modules were identified in TBC and thirteen in RMC. Analysis of transcription factor (TF) binding sites revealed nineteen hub TFs in TBC and twenty in RMC across the pool of hub genes in these two breeds. Functional enrichment analyses demonstrated that TBC exhibited robust capacity for oxygen transport, heme binding, oxidative phosphorylation, and antioxidant responses in high-altitude regions. Further investigation of the function of hub TFs indicated the involvement of ATF4, CEBPA, TCF7L1, and GFI1B in improving oxygen transport in TBCs. These hub TFs were associated with angiogenesis or hematopoiesis and likely linked to various regulatory functions and facilitate communication across multiple tissues. In conclusion, TBCs have developed a systemic adaptive mechanism to cope with high altitudes, involving the coordinated transcriptional regulation in multi-tissues to enhance oxygen transport and utilization, along with amelioration of oxidative stress.
Collapse
Affiliation(s)
- Ruidong Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianpei Ao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yijing Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengyu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cirenluobu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 860000, PR China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Aldersey JE, Lange MD, Beck BH, Abernathy JW. Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species. PLoS One 2024; 19:e0309397. [PMID: 39325796 PMCID: PMC11426453 DOI: 10.1371/journal.pone.0309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
The catfish industry is the largest sector of U.S. aquaculture production. Given its role in food production, the catfish immune response to industry-relevant pathogens has been extensively studied and has provided crucial information on innate and adaptive immune function during disease progression. To further examine the channel catfish immune system, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chromium X with the Next GEM Single Cell 3' reagents and sequenced on an Illumina sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish reference assembly, filtered, and counted to generate feature-barcode matrices. From whole spleen samples, outputs were analyzed both individually and as an integrated dataset. The three splenic transcriptome libraries generated an average of 278,717,872 reads from a mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classified as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic cells, and macrophages were further identified. Differential gene expression analyses allowed for the identification of the most highly expressed genes for each cluster and subcluster. This dataset is a rich cellular gene expression resource for investigation of the channel catfish and teleost splenic immunome.
Collapse
Affiliation(s)
- Johanna E. Aldersey
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, United States of America
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| |
Collapse
|
4
|
Sun K, Liu X, Lan X. A single-cell atlas of chromatin accessibility in mouse organogenesis. Nat Cell Biol 2024; 26:1200-1211. [PMID: 38977846 DOI: 10.1038/s41556-024-01435-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.
Collapse
Affiliation(s)
- Keyong Sun
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xin Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine, Tsinghua University, Beijing, China.
- Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Pastori V, Zambanini G, Citterio E, Weiss T, Nakamura Y, Cantù C, Ronchi AE. Transcriptional repression of the oncofetal LIN28B gene by the transcription factor SOX6. Sci Rep 2024; 14:10287. [PMID: 38704454 PMCID: PMC11069503 DOI: 10.1038/s41598-024-60438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.
Collapse
Affiliation(s)
- Valentina Pastori
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | - Elisabetta Citterio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Ellena Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
6
|
Hoai Nga NT, Long TT, Ngoc TTB, Nguyen NHK, Thao DTP, Trinh NTM. Ethyl Acetate Extract from Romdoul ( Sphaerocoryne affinis) Fruit Induced Apoptosis in Human Promyelocytic Leukemia Cells. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241296826. [PMID: 39494213 PMCID: PMC11528603 DOI: 10.1177/27536130241296826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Background Romdoul (Sphaerocoryne affinis) is a flowering plant of the Annonaceae family and has been used customarily in folk medicine. The bioactivities of this plant, especially the anti-cancer effect, however, remain surprisingly few. Objective this study aimed to elucidate the anti-leukemic effect of romdoul fruit extracts and their underlining mechanisms. Methods The extracts were prepared from fresh fruits and the phytochemical contents were evaluated by biochemical assays and HPLC method. The promising extract was identified via the inhibition of HL60 as well as normal NIH-3T3 cell densities utilizing MTT assay. The underline mechanism of the extract's effect was studied by accessing the treated HL60 cell population overtime (via MTT assay). The morphology of abnormal cells was examined by bright-field microscopic imaging. Hallmarks of apoptosis including nucleus characteristics and caspase 3 activation were analyzed by fluorescence imaging. The underline mechanisms of apoptosis and proliferation inhibition were accessed via RT-qPCR examination of involved genes. Results Our findings showed that the ethyl acetate extract of romdoul fruit (SA-EA) was found to be an exceptional anti-leukemic candidate (IC50 was as low as 4.11 μg/mL). More interestingly, the treated HL60 cells expressed nuclear fragmentation and caspase 3 activation, indicating the effect could follow an apoptotic mechanism. Importantly, the transcription assessment of apoptotic and proliferative genes suggested that SA-EA might suppress the growth of HL60 cells and induce p21-dependent apoptotic pathway. Conclusion This study demonstrated one of the first scientific evidence for the anti-cancer activity of Sphaerocoryne affinis fruit-derived extract. Thus, our findings exhibited a novel and promising anti-leukemic candidate for future studies.
Collapse
Affiliation(s)
- Nguyen Thi Hoai Nga
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Tran Thanh Long
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nguyen Hoang Khoi Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- Laboratory of Cancer Research, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Simbula M, Manchinu MF, Mingoia M, Pala M, Asunis I, Caria CA, Perseu L, Shah M, Crossley M, Moi P, Ristaldi MS. miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102025. [PMID: 37744176 PMCID: PMC10514143 DOI: 10.1016/j.omtn.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal β-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Michela Simbula
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maura Mingoia
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Isadora Asunis
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Cristian Antonio Caria
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Lucia Perseu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Paolo Moi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| |
Collapse
|
8
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Jiang D, Zhang Q, Liu E, Shao H. Clinical implications and genetical insights of SOX6 expression in acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:4443-4453. [PMID: 36117190 DOI: 10.1007/s00432-022-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Transcription factor SOX6 belongs to Sry-related high-mobility-group box (SOX) family, has been reported to be downregulated and acts as a tumor-suppressor gene in various solid tumors, but in acute myeloid leukemia (AML) is incompletely understood. METHODS The SOX6 expression was analyzed between AML patients and normal controls from public data and our research cohort. Correlations between SOX6 expression and clinical, genetic features together with survival were further analyzed. RESULTS In both public and our present datasets, we demonstrated that SOX6 expression is notably downregulated in AML patients compared with normal controls. Moreover, the expression level of SOX6 was dynamic, along with the disease status. SOX6 was significantly decreased in relapsed/refractory AML compared with complete remission AML. Clinically, SOX6 underexpression was significantly correlated with bone marrow blasts, and WBC counts. Furthermore, decreased expression of SOX6 was more common in core binding factor AML (CBF-AML), rarely found in complex karyotype AML (CK-AML), and correlated with FLT3 mutations. By survival analyses, low-expression of SOX6 was associated with shorter overall survival (OS) and event-free survival (EFS) among cytogenetic normal AML (CN-AML) patients. Moreover, both univariate and multivariate analyses showed that low SOX6 expression was an independent unfavorable prognostic biomarker for CN-AML. CONCLUSIONS Our findings indicated that SOX6 underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. SOX6 might be a valuable biomarker for risk stratification, predicting prognosis and relapse of AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, Hainan, China
| | - Qin Zhang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haigang Shao
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
11
|
Peng Y, Tang L, Li Y, Song J, Liu H, Wang P, Zhong Z, Yang Y, Wang S, Chen L, Zhang J, Zhang S, Wang Z, Li M, Liang L, Liu J. Comprehensive proteomic analysis reveals dynamic phospho-profiling in human early erythropoiesis. Br J Haematol 2022; 199:427-442. [PMID: 35974424 DOI: 10.1111/bjh.18407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
Normal early erythropoiesis depends on the precise regulation of protein expression and phosphorylation modification. Dysregulation of protein levels or modification contributes to erythroid disorders. To date, the dynamics of protein phosphorylation profiling across human erythroid development is not fully understood. Here, we characterized quantitative proteomic and phosphoproteomic profiling by tandem mass-tagging technology. We systemically built phospho-expression profiling and expression clusters of 11 414 phosphopeptides for human early erythropoiesis. The standardization methods for multitier integrative analyses revealed multiple functional modules of phosphoproteins (e.g., regulation of the G2/M transition) and active phosphorylated signalling (e.g., cell cycle-related pathways). Our further analysis revealed that CDK family members were the main kinases that phosphorylate substrates in erythroid progenitors and identified that CDK9 played an important role in the proliferation of erythroid progenitors. Collectively, our phosphoproteomic profiling, integrative network analysis and functional studies define landscapes of the phosphoproteome and reveal signalling pathways that are involved in human early erythropoiesis. This study will serve as a valuable resource for further investigations of phosphatase and kinase functions in human erythropoiesis and erythroid-related diseases.
Collapse
Affiliation(s)
- Yuanliang Peng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Li Tang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jianhui Song
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Zhizhou Zhong
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Yifei Yang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Min Li
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Long Liang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital of Central South University, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| |
Collapse
|
12
|
Winkelmann F, Rabes A, Reinholdt C, Koslowski N, Koczan D, Reisinger EC, Sombetzki M. Sex-Specific Modulation of the Host Transcriptome in the Spleen of Schistosoma mansoni-Infected Mice. Front Cell Infect Microbiol 2022; 12:893632. [PMID: 35865813 PMCID: PMC9294737 DOI: 10.3389/fcimb.2022.893632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Schistosomiasis is a severe parasitic disease that is primarily driven by the host’s immune response to schistosome eggs trapped in tissue and by the granulomatous inflammatory and fibrotic reaction they cause. Despite significant progress in understanding the complex immunological processes involved in the relationship between schistosomes and their host, neither an effective vaccine against the infection nor anti-fibrotic drugs currently exists, making the search for new targets for schistosome drugs and vaccine candidates even more important. In order to identify new molecular targets for defense against or elimination of the parasite, we investigate herein the interplay between the host and male or female schistosomes, clearly separating this from the action of the parasite eggs. Methods For this purpose, we infected 6–8-week-old female NMRI mice with 100 male (M), female (F), or both (MF) S. mansoni cercariae and performed a comparative transcriptomic and flow cytometric analysis of their spleens. Results Principal component analysis of a total of 22,207 transcripts showed a clear clustering of the experimental groups. We identified a total of 1,293 genes in group M, 512 genes in group F, and 4,062 genes in group MF that were differentially expressed compared to naive controls. The highest percentage of regulated genes (2,972; 65.9%) was found in group MF alone, but there was a large overlap between groups M and MF (798; 17.7%) and a small overlap between groups F and MF (91; 2.0%). Only 4.5% of genes (201) were revealed to be regulated in all experimental groups (M/F/MF). In addition, we were able to show that both worm sexes trigger immune responses in an egg-independent manner (non-polarized Th1 and Th2 response), with female worms exerting less regulatory influence than males. Conclusion Our data show that adult schistosomes trigger sex-specific, egg-independent immune responses. The lists of genes regulated by adult female or male worms presented here may be useful in deciphering host–parasite interactions to identify targets for schistosome elimination.
Collapse
Affiliation(s)
- Franziska Winkelmann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Cindy Reinholdt
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nicole Koslowski
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Emil C. Reisinger
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Martina Sombetzki,
| |
Collapse
|
13
|
Long H, Jia Q, Wang L, Fang W, Wang Z, Jiang T, Zhou F, Jin Z, Huang J, Zhou L, Hu C, Wang X, Zhang J, Ba Y, Gong Y, Zeng X, Zeng D, Su X, Alexander PB, Wang L, Wang L, Wan YY, Wang XF, Zhang L, Li QJ, Zhu B. Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy. Cancer Cell 2022; 40:674-693.e7. [PMID: 35594863 DOI: 10.1016/j.ccell.2022.04.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
Despite the unprecedented success of immune checkpoint inhibitors (ICIs) as anti-cancer therapy, it remains a prevailing clinical need to identify additional mechanisms underlying ICI therapeutic efficacy and potential drug resistance. Here, using lineage tracking in cancer patients and tumor-bearing mice, we demonstrate that erythroid progenitor cells lose their developmental potential and switch to the myeloid lineage. Single-cell transcriptome analyses reveal that, notwithstanding quantitative differences in erythroid gene expression, erythroid differentiated myeloid cells (EDMCs) are transcriptionally indistinguishable from their myeloid-originated counterparts. EDMCs possess multifaceted machinery to curtail T cell-mediated anti-tumor responses. Consequently, EDMC content within tumor tissues is negatively associated with T cell inflammation for the majority of solid cancers; moreover, EDMC enrichment, in accordance with anemia manifestation, is predictive of poor prognosis in various cohorts of patients undergoing ICI therapy. Together, our findings reveal a feedforward mechanism by which tumors exploit anemia-triggered erythropoiesis for myeloid transdifferentiation and immunosuppression.
Collapse
Affiliation(s)
- Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Jin Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yujie Ba
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; School of Life Science, Chongqing University, Chongqing, China
| | - Yujie Gong
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xianghua Zeng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Dong Zeng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xingxing Su
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | | | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Limei Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Y Wan
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Li Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Immunotherapy, Chongqing, China.
| |
Collapse
|
14
|
Yang F, Ruan H, Li S, Hou W, Qiu Y, Deng L, Su S, Chen P, Pang L, Lai K. Analysis of circRNAs and circRNA-associated competing endogenous RNA networks in β-thalassemia. Sci Rep 2022; 12:8071. [PMID: 35577924 PMCID: PMC9110710 DOI: 10.1038/s41598-022-12002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
The involvement of circRNAs in β-thalassemia and their actions on fetal hemoglobin (HbF) is unclear. Here, the circRNAs in β-thalassemia carriers with high HbF levels were comprehensively analyzed and compared with those of healthy individuals. Differential expression of 2183 circRNAs was observed and their correlations with hematological parameters were investigated. Down-regulated hsa-circRNA-100466 had a strong negative correlation with HbF and HbA2. Bioinformatics was employed to construct a hsa-circRNA-100466‑associated competing endogenous RNA (ceRNA) network to identify hub genes and associated miRNAs. The hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified using both present and previously published data. The ceRNA network was verified by qRT-PCR analysis of β-thalassemia samples, RNA immunoprecipitation of K562 cell lysates, and dual-luciferase reporter analysis. qRT-PCR confirmed that hsa-circRNA-100466 and SOX6 were significantly down-regulated, while miR-19b-3p was up-regulated. Hsa-circRNA-100466, miR-19b-3p, and SOX6 were co-immunoprecipitated by anti-argonaute antibodies, indicating involvement with HbF induction. A further dual-luciferase reporter assay verified that miR-19b-3p interacted directly with hsa-circRNA-100466 and SOX6. Furthermore, spearman correlation coefficients revealed their significant correlations with HbF. In conclusion, a novel hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified, providing insight into HbF induction and suggesting targets β-thalassemia treatment.
Collapse
Affiliation(s)
- Fang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Heyun Ruan
- Department of Obstetrics and Gynecology, Minzu Hospital of Guangxi, Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuquan Li
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Hou
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Qiu
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingjie Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sha Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Chen
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Lihong Pang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Ketong Lai
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat Ecol Evol 2022; 6:630-643. [PMID: 35332281 PMCID: PMC9090980 DOI: 10.1038/s41559-022-01703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Primates have adapted to numerous environments and lifestyles, but very few species are native to high elevations. Here, we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of hematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared to baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult hemoglobin but found that gelada hemoglobin does not exhibit markedly altered oxygenation properties compared to lowland primates. We also found that geladas at high altitude do not exhibit elevated blood hemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.
Collapse
|
16
|
Jie Q, Lei S, Qu C, Wu H, Liu Y, Huang P, Teng S. 利用CRISPR/Cas9基因编辑技术治疗β-地中海贫血的最新进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Huang H, Han Q, Zheng H, Liu M, Shi S, Zhang T, Yang X, Li Z, Xu Q, Guo H, Lu F, Wang J. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13:13. [PMID: 34930918 PMCID: PMC8688448 DOI: 10.1038/s41419-021-04474-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022]
Abstract
There are nearly 40% of cervical cancer patients showing poor response to neoadjuvant chemotherapy that can be induced by autophagy, however, the underlying mechanism has not yet been fully clarified. We previously found that Sex-determining region of Y-related high-mobility-group box 6 (SOX6), a tumor suppressor gene or oncogene in several cancers, could induce autophagy in cervical cancer. Accordingly, this study aims to investigate the mechanism of SOX6-induced autophagy and its potential significance in the platinum-based chemotherapy of cervical cancer. Firstly, we found that SOX6 could promote autophagy in cervical cancer cells depending on its HMG domain. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) gene was identified as the direct target gene of SOX6, which was transcriptionally upregulated by binding the HMG domain of SOX6 protein to its double-binding sites within MAP4K4 gene promoter. MAP4K4 mediated the SOX6-induced autophagy through inhibiting PI3K-Akt-mTOR pathway and activating MAPK/ERK pathway. Further, the sensitivity of cervical cancer cells to cisplatin chemotherapy could be reduced by the SOX6-induced autophagy in vitro and in vivo, while such a phenomenon could be turned over by autophagy-specific inhibitor and MAP4K4 inhibitor, respectively. Moreover, cisplatin itself could promote the expression of endogenous SOX6 and subsequently the MAP4K4-mediated autophagy in cervical cancer cells, which might in turn reduce the sensitivity of these cells to cisplatin treatment. These findings uncovered the underlying mechanism and potential significance of SOX6-induced autophagy, and shed new light on the usage of MAP4K4 inhibitor or autophagy-specific inhibitor for sensitizing cervical cancer cells to the platinum-based chemotherapy.
Collapse
Affiliation(s)
- Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Han
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China
| | - Han Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingchen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongqing Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Xu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Guo
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
18
|
Barbarani G, Łabedz A, Ronchi AE. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Front Genome Ed 2021; 2:571239. [PMID: 34713219 PMCID: PMC8525389 DOI: 10.3389/fgeed.2020.571239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing a heme group that reversibly binds oxygen. The composition of hemoglobin changes during development in order to fulfill the need of the growing organism, stably maintaining a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF) is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative defects in β-globin production cause two of the most common monogenic-inherited disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases and the relative accessibility of hematopoietic stem cells make them an ideal candidate for therapeutic interventions based on genome editing. These strategies move in two directions: the correction of the disease-causing mutation and the reactivation of the expression of HbF in adult cells, in the attempt to recreate the effect of hereditary persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far on the regulatory mechanisms controlling the differential expression of globin genes during development.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Agata Łabedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
19
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
20
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
21
|
Zhou M, Zhang X, Liu C, Nie D, Li S, Lai P, Jin Y. Targeting protein lysine methyltransferase G9A impairs self-renewal of chronic myelogenous leukemia stem cells via upregulation of SOX6. Oncogene 2021; 40:3564-3577. [PMID: 33931742 DOI: 10.1038/s41388-021-01799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/23/2023]
Abstract
The application of tyrosine kinase inhibitors (TKIs) in clinic has revolutionized chronic myelogenous leukemia (CML) treatment, but fails to eliminate leukemia stem cells (LSCs), which are considered as roots of drug resistance and disease relapse. Thus, eradication of LSCs may be a promising strategy for curing CML. In this study, we found that protein lysine methyltransferase G9A was overexpressed in CML LSCs. The upregulation of G9A by BCR-ABL was independent on its tyrosine kinase activity. Knockdown of G9A by shRNAs or pharmacological inhibition of G9A by UNC0642 significantly suppressed survival and impaired self-renewal capacity of CML LSCs. Inhibition of G9a eradicated LSCs in CML mice driven by BCR-ABL gene and dramatically prolonged survival of the mice. Ex vivo treatment with G9A inhibitor inhibited long-term engraftment of CML CD34+ cells in immunodeficient mice. Mechanically, tumor suppressor SOX6 was identified as a direct target of G9A in CML LSCs by RNA-seq analysis. Silencing Sox6 at least partially rescued G9a knockdown-mediated LSCs elimination in vivo. Our findings improve the understanding of LSC regulation network and validate G9A as a therapeutic target in CML LSCs. Targeting G9A may be considered as an additional strategy for the treatment of patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuli Zhang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Li
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Miah M, Goh I, Haniffa M. Prenatal Development and Function of Human Mononuclear Phagocytes. Front Cell Dev Biol 2021; 9:649937. [PMID: 33898444 PMCID: PMC8060508 DOI: 10.3389/fcell.2021.649937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
The human mononuclear phagocyte (MP) system, which includes dendritic cells, monocytes, and macrophages, is a critical regulator of innate and adaptive immune responses. During embryonic development, MPs derive sequentially in yolk sac progenitors, fetal liver, and bone marrow haematopoietic stem cells. MPs maintain tissue homeostasis and confer protective immunity in post-natal life. Recent evidence - primarily in animal models - highlight their critical role in coordinating the remodeling, maturation, and repair of target organs during embryonic and fetal development. However, the molecular regulation governing chemotaxis, homeostasis, and functional diversification of resident MP cells in their respective organ systems during development remains elusive. In this review, we summarize the current understanding of the development and functional contribution of tissue MPs during human organ development and morphogenesis and its relevance to regenerative medicine. We outline how single-cell multi-omic approaches and next-generation ex-vivo organ-on-chip models provide new experimental platforms to study the role of human MPs during development and disease.
Collapse
Affiliation(s)
- Mohi Miah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
23
|
Barbarani G, Labedz A, Stucchi S, Abbiati A, Ronchi AE. Physiological and Aberrant γ-Globin Transcription During Development. Front Cell Dev Biol 2021; 9:640060. [PMID: 33869190 PMCID: PMC8047207 DOI: 10.3389/fcell.2021.640060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The expression of the fetal Gγ- and Aγ-globin genes in normal development is confined to the fetal period, where two γ-globin chains assemble with two α-globin chains to form α2γ2 tetramers (HbF). HbF sustains oxygen delivery to tissues until birth, when β-globin replaces γ-globin, leading to the formation of α2β2 tetramers (HbA). However, in different benign and pathological conditions, HbF is expressed in adult cells, as it happens in the hereditary persistence of fetal hemoglobin, in anemias and in some leukemias. The molecular basis of γ-globin differential expression in the fetus and of its inappropriate activation in adult cells is largely unknown, although in recent years, a few transcription factors involved in this process have been identified. The recent discovery that fetal cells can persist to adulthood and contribute to disease raises the possibility that postnatal γ-globin expression could, in some cases, represent the signature of the fetal cellular origin.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Agata Labedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sarah Stucchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Alessia Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
24
|
Genetic Correction of IL-10RB Deficiency Reconstitutes Anti-Inflammatory Regulation in iPSC-Derived Macrophages. J Pers Med 2021; 11:jpm11030221. [PMID: 33804706 PMCID: PMC8003874 DOI: 10.3390/jpm11030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Patient material from rare diseases such as very early-onset inflammatory bowel disease (VEO-IBD) is often limited. The use of patient-derived induced pluripotent stem cells (iPSCs) for disease modeling is a promising approach to investigate disease pathomechanisms and therapeutic strategies. We successfully developed VEO-IBD patient-derived iPSC lines harboring a mutation in the IL-10 receptor β-chain (IL-10RB) associated with defective IL-10 signaling. To characterize the disease phenotype, healthy control and VEO-IBD iPSCs were differentiated into macrophages. IL-10 stimulation induced characteristic signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) downstream signaling and anti-inflammatory regulation of lipopolysaccharide (LPS)-mediated cytokine secretion in healthy control iPSC-derived macrophages. In contrast, IL-10 stimulation of macrophages derived from patient iPSCs did not result in STAT3 phosphorylation and subsequent SOCS3 expression, recapitulating the phenotype of cells from patients with IL-10RB deficiency. In line with this, LPS-induced cytokine secretion (e.g., IL-6 and tumor necrosis factor-α (TNF-α)) could not be downregulated by exogenous IL-10 stimulation in VEO-IBD iPSC-derived macrophages. Correction of the IL-10RB defect via lentiviral gene therapy or genome editing in the adeno-associated virus integration site 1 (AAVS1) safe harbor locus led to reconstitution of the anti-inflammatory response. Corrected cells showed IL-10RB expression, IL-10-inducible phosphorylation of STAT3, and subsequent SOCS3 expression. Furthermore, LPS-mediated TNF-α secretion could be modulated by IL-10 stimulation in gene-edited VEO-IBD iPSC-derived macrophages. Our established disease models provide the opportunity to identify and validate new curative molecular therapies and to investigate phenotypes and consequences of additional individual IL-10 signaling pathway-dependent VEO-IBD mutations.
Collapse
|
25
|
Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:153-183. [PMID: 34175041 DOI: 10.1016/bs.pmbts.2021.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-hemoglobinopathies are the most common monogenic disorders worldwide and are caused by mutations in the β-globin locus altering the production of adult hemoglobin (HbA). Transplantation of autologous hematopoietic stem cells (HSCs) corrected by lentiviral vector-mediated addition of a functional β-like globin raised new hopes to treat sickle cell disease and β-thalassemia patients; however, the low expression of the therapeutic gene per vector copy is often not sufficient to fully correct the patients with a severe clinical phenotype. Recent advances in the genome editing field brought new possibilities to cure β-hemoglobinopathies by allowing the direct modification of specific endogenous loci. Double-strand breaks (DSBs)-inducing nucleases (i.e., ZFNs, TALENs and CRISPR-Cas9) or DSB-free tools (i.e., base and prime editing) have been used to directly correct the disease-causing mutations, restoring HbA expression, or to reactivate the expression of the fetal hemoglobin (HbF), which is known to alleviate clinical symptoms of β-hemoglobinopathy patients. Here, we describe the different genome editing tools, their application to develop therapeutic approaches to β-hemoglobinopathies and ongoing clinical trials using genome editing strategies.
Collapse
Affiliation(s)
- Mégane Brusson
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| |
Collapse
|
26
|
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science 2020; 370:370/6518/eaba7721. [PMID: 33184181 DOI: 10.1126/science.aba7721] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
27
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Park JW, Kang JY, Hahm JY, Kim HJ, Seo SB. Proteosomal degradation of NSD2 by BRCA1 promotes leukemia cell differentiation. Commun Biol 2020; 3:462. [PMID: 32826945 PMCID: PMC7443147 DOI: 10.1038/s42003-020-01186-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/30/2020] [Indexed: 11/12/2022] Open
Abstract
The human myelogenous leukemic cell line, K562 undergoes erythroid differentiation by exposure to hemin. Here, we uncovered NSD2 as an innate erythroid differentiation-related factor through a genome-wide CRISPR library screen and explored the regulatory role of NSD2 during myeloid leukemia cell differentiation. We found that NSD2 stability was disrupted by poly-ubiquitination in differentiated K562 cells. Proteomic analysis revealed an interaction between NSD2 and an E3 ubiquitin ligase, BRCA1, which ubiquitylates NSD on K292. Depletion of BRCA1 stabilized NSD2 protein and suppressed K562 cell differentiation. Furthermore, BRCA1 protein level was decreased in bone marrow tumor, while NSD2 level was elevated. Surprisingly, among BRCA1 mutation(s) discovered in lymphoma patients, BRCA1 K1183R prevented its translocation into the nucleus, failed to reduce NSD2 protein levels in hemin-treated K562 cells and eventually disrupted cell differentiation. Our results indicate the regulation of NSD2 stability by BRCA1-mediated ubiquitination as a potential therapeutic target process in multiple myeloma. Park et al. identify Multiple Myeloma SET domain (MMSET/NSD2) in a large-scale CRISPR screen of genes whose depletion regulates hematopoietic differentiation and found it to interact with BRCA1. Thus regulation of MMSET/NSD2 stability BRCA1-mediated ubiquitination could be explored for potential therapeutic interventions in multiple myeloma.
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Hyun Jeong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
29
|
Chen L, Xie Y, Ma X, Zhang Y, Li X, Zhang F, Gao Y, Fan Y, Gu L, Wang L, Zhang X, Fu B. SOX6 represses tumor growth of clear cell renal cell carcinoma by HMG domain-dependent regulation of Wnt/β-catenin signaling. Mol Carcinog 2020; 59:1159-1173. [PMID: 32794610 DOI: 10.1002/mc.23246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023]
Abstract
Sex-determining region Y box (SOXs) are expressed in various cells and control cell fate and differentiation in a multitude of physiologic processes. SOX6, a main representative of SOXs, is involved in the regulation of carcinogenesis in various human malignancies. However, the role of SOX6 in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, SOX6 expression in ccRCC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism of SOX6 in ccRCC. We confirmed that SOX6 was frequently downregulated in ccRCC tissues and cell lines. Besides, downregulation of SOX6 was significantly associated with larger tumor sizes, advanced tumor stage, higher Fuhrman grades, and its expression could act as an independent prognostic factor for ccRCC (hazards ratio = 0.590, P = .026). Gain/loss-of-function experiments demonstrated that SOX6 could remarkably inhibit tumor cell growth and foci formation in vitro and xenograft tumorigenesis in vivo, respectively. Mechanistically, SOX6 could influence cell cycle by regulating the G1/the S phase transition and had an inhibitory effect on Wnt/β-catenin signaling as well as its target genes, c-Myc and cyclin D1. Interesting, the tumor-suppressive function of SOX6 was proved to be dependent on its specific high-mobility-group (HMG) domain. In general, our findings indicated that SOX6 was a novel tumor suppressor and prognostic biomarker in ccRCC. SOX6 could inhibit tumor growth by negatively regulating the Wnt/β-catenin signaling pathway in an HMG domain-dependent manner in ccRCC, which might provide a novel therapeutic approach for ccRCC.
Collapse
Affiliation(s)
- Luyao Chen
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongpeng Xie
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xintao Li
- Department of Urology, Chinese PLA Air Force General Hospital, Beijing, China
| | - Fan Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Bin Fu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells. Proc Natl Acad Sci U S A 2020; 117:12868-12876. [PMID: 32457162 DOI: 10.1073/pnas.1915085117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fine-resolution differentiation trajectories of adult human hematopoietic stem cells (HSCs) involved in the generation of red cells is critical for understanding dynamic developmental changes that accompany human erythropoiesis. Using single-cell RNA sequencing (scRNA-seq) of primary human terminal erythroid cells (CD34-CD235a+) isolated directly from adult bone marrow (BM) and umbilical cord blood (UCB), we documented the transcriptome of terminally differentiated human erythroblasts at unprecedented resolution. The insights enabled us to distinguish polychromatic erythroblasts (PolyEs) at the early and late stages of development as well as the different development stages of orthochromatic erythroblasts (OrthoEs). We further identified a set of putative regulators of terminal erythroid differentiation and functionally validated three of the identified genes, AKAP8L, TERF2IP, and RNF10, by monitoring cell differentiation and apoptosis. We documented that knockdown of AKAP8L suppressed the commitment of HSCs to erythroid lineage and cell proliferation and delayed differentiation of colony-forming unit-erythroid (CFU-E) to the proerythroblast stage (ProE). In contrast, the knockdown of TERF2IP and RNF10 delayed differentiation of PolyE to OrthoE stage. Taken together, the convergence and divergence of the transcriptional continuums at single-cell resolution underscore the transcriptional regulatory networks that underlie human fetal and adult terminal erythroid differentiation.
Collapse
|
31
|
López-Huertas MR, Morín M, Madrid-Elena N, Gutiérrez C, Jiménez-Tormo L, Santoyo J, Sanz-Rodríguez F, Moreno Pelayo MÁ, Bermejo LG, Moreno S. Selective miRNA Modulation Fails to Activate HIV Replication in In Vitro Latency Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:323-336. [PMID: 31288207 PMCID: PMC6614709 DOI: 10.1016/j.omtn.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed. We explored the role of microRNAs (miRNAs) in latency maintenance and their modulation as a potential anti-latency strategy. Latency models based on treating resting CD4 T cells with chemokine (C-C motif) ligand 19 (CCL19) or interleukin-7 (IL7) before HIV infection and next-generation sequencing were used to identify the miRNAs involved in HIV latency. We detected four upregulated miRNAs (miRNA-98, miRNA-4516, miRNA-4488, and miRNA-7974). Individual or combined inhibition of these miRNAs was performed by transfection into cells latently infected with HIV. Viral replication, assessed 72 h after transfection, did not increase after miRNA modulation, despite miRNA inhibition and lack of toxicity. Furthermore, the combined modulation of five miRNAs previously associated with HIV latency was not effective in these models. Our results do not support the modulation of miRNAs as a useful strategy for the reversal of HIV latency. As shown with other drugs, the potential of miRNA modulation as an HIV reactivation strategy could be dependent on the latency model used.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Matías Morín
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Santoyo
- Edinburgh Genomics, The Roslin Institute, University of Edinburgh, Scotland, UK
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Ángel Moreno Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Laura García Bermejo
- Grupo de Biomarcadores y Dianas Terapéuticas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
32
|
The Transcription Factor Deaf1 Modulates Engrailed-1 Expression to Regulate Skin Appendage Fate. J Invest Dermatol 2019; 139:2378-2381.e4. [PMID: 31145909 DOI: 10.1016/j.jid.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
|
33
|
SOX6 blocks the proliferation of BCR-ABL1 + and JAK2V617F + leukemic cells. Sci Rep 2019; 9:3388. [PMID: 30833651 PMCID: PMC6399316 DOI: 10.1038/s41598-019-39926-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
SOX6 is a HMG-box transcription factor expressed in a wide range of tissues. Recent data show that SOX6 expression is altered in different cancers, in the majority of cases being downregulated. To date, no data are available about SOX6 role in hematological malignancies. Here we demonstrate that SOX6 overexpressing BCR-ABL1+ B-ALL cells are unable to promote leukemia in a mouse model. Starting from this observation, we extended our study to a panel of human leukemic cells carrying genetic lesions distinctive of different types of leukemias and myeloproliferative disorders (the BCR-ABL1 translocation and the JAK2V617F amino acid substitution) to dissect the cellular events induced by SOX6. The inhibition of proliferation is the invariant outcome of SOX6 overexpression but it is achieved via two different cellular responses: terminal differentiation in erythroid-biased cells, irrespectively of their mutation, and apoptosis in megakaryocytic-primed and lymphoid cells. Within this context, cells carrying the highest copy number of the JAK2V617F allele better counteract the SOX6-imposed growth arrest. The interrogation of the GEPIA (Gene Expression Profiling Interactive Analysis) human dataset reveals that SOX6 is downregulated in a cohort of AML patients, uncovering a wide anti-proliferative role of SOX6 in a variety of mutant backgrounds.
Collapse
|
34
|
Shariati L, Rohani F, Heidari Hafshejani N, Kouhpayeh S, Boshtam M, Mirian M, Rahimmanesh I, Hejazi Z, Modarres M, Pieper IL, Khanahmad H. Disruption of
SOX6
gene using CRISPR/Cas9 technology for gamma‐globin reactivation: An approach towards gene therapy of β‐thalassemia. J Cell Biochem 2018; 119:9357-9363. [DOI: 10.1002/jcb.27253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Fattah Rohani
- Department of Clinical Sciences Faculty of Veterinary Medicine, University of Shahrekord Shahrekord Iran
| | - Nahid Heidari Hafshejani
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Shirin Kouhpayeh
- Isfahan Neurosciences Research Center, Alzahra Research Institute Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Ilnaz Rahimmanesh
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Mehran Modarres
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Ina Laura Pieper
- Institute of Life Science, College of Medicine Swansea University Medical School Swansea United Kingdom
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
35
|
Park JW, Cho H, Oh H, Kim JY, Seo SB. AURKA Suppresses Leukemic THP-1 Cell Differentiation through Inhibition of the KDM6B Pathway. Mol Cells 2018; 41:444-453. [PMID: 29477140 PMCID: PMC5974621 DOI: 10.14348/molcells.2018.2311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrations in histone modifications are being studied in mixed-lineage leukemia (MLL)-AF9-driven acute myeloid leukemia (AML). In this study, we focused on the regulation of the differentiation of the MLL-AF9 type AML cell line THP-1. We observed that, upon phorbol 12-myristate 13-acetate (PMA) treatment, THP-1 cells differentiated into monocytes by down-regulating Aurora kinase A (AURKA), resulting in a reduction in H3S10 phosphorylation. We revealed that the AURKA inhibitor alisertib accelerates the expression of the H3K27 demethylase KDM6B, thereby dissociating AURKA and YY1 from the KDM6B promoter region. Using Flow cytometry, we found that alisertib induces THP-1 differentiation into monocytes. Furthermore, we found that treatment with the KDM6B inhibitor GSK-J4 perturbed the PMA-mediated differentiation of THP-1 cells. Thus, we discovered the mechanism of AURKA-KDM6B signaling that controls the differentiation of THP-1 cells, which has implications for biotherapy for leukemia.
Collapse
MESH Headings
- Aurora Kinase A/antagonists & inhibitors
- Aurora Kinase A/physiology
- Azepines/pharmacology
- Benzazepines/pharmacology
- Cell Differentiation/drug effects
- Chromatin Immunoprecipitation
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation, Leukemic
- Genes, Reporter
- HEK293 Cells
- Histones/metabolism
- Humans
- Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors
- Jumonji Domain-Containing Histone Demethylases/physiology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Monocytes/cytology
- Myeloid-Lymphoid Leukemia Protein/physiology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/physiology
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- Protein Processing, Post-Translational/drug effects
- Pyrimidines/pharmacology
- RNA Interference
- RNA, Small Interfering/genetics
- Recombinant Proteins/metabolism
- THP-1 Cells
- Tetradecanoylphorbol Acetate/pharmacology
- YY1 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Hyein Oh
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| |
Collapse
|
36
|
Nagase R, Inoue D, Pastore A, Fujino T, Hou HA, Yamasaki N, Goyama S, Saika M, Kanai A, Sera Y, Horikawa S, Ota Y, Asada S, Hayashi Y, Kawabata KC, Takeda R, Tien HF, Honda H, Abdel-Wahab O, Kitamura T. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med 2018; 215:1729-1747. [PMID: 29643185 PMCID: PMC5987913 DOI: 10.1084/jem.20171151] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/24/2017] [Accepted: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Nagase and Inoue et al. generated a novel Asxl1 mutant mouse model to mimic clonal hematopoiesis and myelodysplastic syndromes caused by ASXL1 mutations and elucidated the effects of mutant versus wild-type ASXL1 on hematopoiesis, gene expression, and chromatin state. Additional sex combs like 1 (ASXL1) is frequently mutated in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP). Although loss of ASXL1 promotes hematopoietic transformation, there is growing evidence that ASXL1 mutations might confer an alteration of function. In this study, we identify that physiological expression of a C-terminal truncated Asxl1 mutant in vivo using conditional knock-in (KI) results in myeloid skewing, age-dependent anemia, thrombocytosis, and morphological dysplasia. Although expression of mutant Asxl1 altered the functions of hematopoietic stem cells (HSCs), it maintained their survival in competitive transplantation assays and increased susceptibility to leukemic transformation by co-occurring RUNX1 mutation or viral insertional mutagenesis. KI mice displayed substantial reductions in H3K4me3 and H2AK119Ub without significant reductions in H3K27me3, distinct from the effects of Asxl1 loss. Chromatin immunoprecipitation followed by next-generation sequencing analysis demonstrated opposing effects of wild-type and mutant Asxl1 on H3K4me3. These findings reveal that ASXL1 mutations confer HSCs with an altered epigenome and increase susceptibility for leukemic transformation, presenting a novel model for CHIP.
Collapse
Affiliation(s)
- Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan .,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Norimasa Yamasaki
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Saika
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Sera
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Wang Z, Li J, Li K, Xu J. SOX6 is downregulated in osteosarcoma and suppresses the migration, invasion and epithelial-mesenchymal transition via TWIST1 regulation. Mol Med Rep 2018; 17:6803-6811. [PMID: 29512775 DOI: 10.3892/mmr.2018.8681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
Transcription factor SOX6 (SOX6) has been reported to serve essential roles in numerous types of cancers. However, the expression and functions of SOX6 in osteosarcoma (OS) have not been analyzed. In the present study, the patterns of SOX6 expression in OS cell lines and tissues were investigated by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results of the present study revealed that SOX6 was notably downregulated in OS tissues and cell lines. Subsequently, gain‑ and loss‑of‑function studies demonstrated that SOX6 inhibited OS cell migration and invasion. In addition, SOX6 may have suppressed epithelial‑mesenchymal transition via twist‑related protein 1 (TWIST1) modulation. Chromatin immunoprecipitation (ChIP), quantitative ChIP and dual luciferase activity assays were used to confirm the binding of SOX6 to the promoter region of TWIST1. Additionally, colony formation assays and Cell Counting Kit‑8 assays demonstrated that SOX6 suppressed cell proliferation. The findings of the present study indicated that SOX6 serves as a tumor suppressor in OS and may be a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Junjie Li
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Kun Li
- Department of Oncology and Hematology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Jianjun Xu
- Department of Hand and Foot Surgery, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| |
Collapse
|
38
|
Modares Sadeghi M, Shariati L, Hejazi Z, Shahbazi M, Tabatabaiefar MA, Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. J Cell Biochem 2017; 119:2512-2519. [PMID: 28941328 DOI: 10.1002/jcb.26412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia.
Collapse
Affiliation(s)
- Mehran Modares Sadeghi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoureh Shahbazi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis. Sci Rep 2017; 7:14088. [PMID: 29074889 PMCID: PMC5658338 DOI: 10.1038/s41598-017-14336-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6−/− red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.
Collapse
|
40
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Gao M, Zhao B, Chen M, Liu Y, Xu M, Wang Z, Liu S, Zhang C. Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells. Biomaterials 2017; 130:14-27. [DOI: 10.1016/j.biomaterials.2017.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
|
42
|
Zhang YC, Ye H, Zeng Z, Chin YE, Huang YN, Fu GH. The NF-κB p65/miR-23a-27a-24 cluster is a target for leukemia treatment. Oncotarget 2016; 6:33554-67. [PMID: 26378023 PMCID: PMC4741785 DOI: 10.18632/oncotarget.5591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/23/2015] [Indexed: 11/25/2022] Open
Abstract
p65 is a transcription factor that is involved in many physiological and pathologic processes. Here we report that p65 strongly binds to the miR-23a-27a-24 cluster promoter to up-regulate its expression. As bone marrow-derived cells differentiate into red blood cells in vitro, p65/miR-23a-27a-24 cluster expression increases sharply and then declines before the appearance of red blood cells, suggesting that this cluster is negatively related to erythroid terminal differentiation. Bioinformatic and molecular biology experiments confirmed that the miR-23a-27a-24 cluster inhibited the expression of the erythroid proteome and contributed to erythroleukemia progression. In addition, high level of the p65/miR-23a-27a-24 cluster was found in APL and AML cell lines and in nucleated peripheral blood cells from leukemia patients. Furthermore, anti-leukemia drugs significantly inhibited the expression of the p65/miR-23a-27a-24 cluster in leukemia cells. Administration of the p65 inhibitor parthenolide significantly improved hematology and myelogram indices while prolonging the life span of erythroleukemia mice. Meanwhile, stable overexpression of these three miRNAs in mouse erythroleukemia cells enhanced cell malignancy. Our findings thus connect a novel regulation pathway of the p65/miR-23a-27a-24 cluster with the erythroid proteome and provide an applicable approach for treating leukemia.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ye
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zeng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yu-Ning Huang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Ji EH, Kim J. SoxD Transcription Factors: Multifaceted Players of Neural Development. Int J Stem Cells 2016; 9:3-8. [PMID: 27426080 PMCID: PMC4961098 DOI: 10.15283/ijsc.2016.9.1.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/05/2023] Open
Abstract
SoxD transcription factor subfamily includes three members, Sox5, Sox6, and Sox13. Like other Sox genes, they contain the High-Mobility-Group (HMG) box as the DNA binding domain but in addition feature the subgroup-specific leucine zipper motif. SoxD genes are expressed in diverse cell types in multiple organs during embryogenesis and in adulthood. Among the cells expressing them are those present in the developing nervous system including neural stem (or progenitor) cells as well as differentiating neurons and oligodendrocytes. SoxD transcription factors do not contain distinct activator or repressor domain, and they are believed to function in modulation of other transcription factors in promoter-specific manners. This brief review article will attempt to summarize the latest studies on the function of SoxD genes in embryogenesis with a particular emphasis on the regulation of neural development.
Collapse
Affiliation(s)
- Eun Hye Ji
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
44
|
A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds. PLoS One 2015; 10:e0141083. [PMID: 26509275 PMCID: PMC4624791 DOI: 10.1371/journal.pone.0141083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS) aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562) to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat) and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX) greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs) to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies.
Collapse
|
45
|
Yan Y, Shi Y, Wang C, Guo P, Wang J, Zhang CY, Zhang C. Influence of a high-altitude hypoxic environment on human plasma microRNA profiles. Sci Rep 2015; 5:15156. [PMID: 26468998 PMCID: PMC4606833 DOI: 10.1038/srep15156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022] Open
Abstract
Circulating microRNAs (miRNAs) are promising disease biomarkers. However, the influence of high-altitude hypoxic environments on plasma miRNA profiles remains unknown. This study included a total of 509 plasma samples from 278 native Tibetans and 80 newly arrived migrant Han Chinese (Tibet Han) residing at 3560 m and 151 Han Chinese residing at 8.9 m (Nanjing Han). The levels of 754 miRNAs were initially determined using a TaqMan Low Density Array (TLDA) in two pooled samples from 50 Tibet Han and 50 Nanjing Han individuals. Some markedly altered miRNAs in Tibet Han were subsequently measured in all 509 plasma samples by individual qRT-PCR. Compared with the Nanjing Han, 172 miRNAs were differentially expressed in the Tibet Han (105 upregulated and 67 downregulated). The correlation coefficient for the two groups was 0.72. Several upregulated miRNAs were randomly selected for analysis by qRT-PCR, and the results were consistent with those identified by TLDA. These miRNAs were also significantly increased in the Tibetans compared with the Nanjing Han. Furthermore, these altered miRNAs showed strong positive correlations with red blood cell counts and hemoglobin values. These data are the first to provide clear evidence that a high-altitude hypoxic environment significantly affects human plasma miRNA profiles.
Collapse
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, Nanjing, China
| | - Pengtao Guo
- Department of Clinical Laboratory, the Forty-First Hospital of PLA, Nêdong, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Liu YX, Dong X, Gong F, Su N, Li SB, Zhang HT, Liu JL, Xue JH, Ji SP, Zhang Z. Promotion of Erythropoietic Differentiation in Hematopoietic Stem Cells by SOCS3 Knock-Down. PLoS One 2015; 10:e0135259. [PMID: 26252772 PMCID: PMC4529111 DOI: 10.1371/journal.pone.0135259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) plays an important role in mice fetal liver erythropoiesis, but the roles of SOCS3 in human hematopoietic stem cells (HSCs) have not been well investigated. In the present study, lentiviral small interference RNA expression vectors (shRNA) of SOCS3 were constructed and stably transferred into HSCs. We found that SOCS3 knockdown induced erythroid expansion in HSCs. Conversely, Ectopic expression of SOCS3 in progenitor cells blocked erythroid expansion and erythroid colony formation of HSCs. To further explore the involved mechanism, we compared gene expression profiles of SOCS3-shRNA tranduced HSCs with that of control HSCs by whole genome microarrays. The results indicated that cell developmental process related genes, especially hematopoietic lineage-specific genes, associated with the responses to SOCS3 in HSCs.Downexpression of SOCS3 in HSCs or differentiated erythroid progenitor cells induced a transcriptional program enriched for erythroid development relative genes. Our results proved that SOCS3 down-expression induced lineage commitment towards erythroid progenitor cell fate by activation of erythroid-specific gene in HSCs and provided new insight into the mechanism of erythropoietic development.
Collapse
Affiliation(s)
- Yu-xiao Liu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xing Dong
- Third Military Medical University, Chongqing, China
- General Hospital of Beijing Military Command, Beijing, China
| | - Feng Gong
- Beijing Institution of Transfusion Medicine, Beijing, China
| | - Ning Su
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Su-bo Li
- Beijing Institution of Transfusion Medicine, Beijing, China
| | - Hai-tao Zhang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jia-ling Liu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jing-hui Xue
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| | - Shou-ping Ji
- Beijing Institution of Transfusion Medicine, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| | - Zhi–wen Zhang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| |
Collapse
|
47
|
Wang J, Ding S, Duan Z, Xie Q, Zhang T, Zhang X, Wang Y, Chen X, Zhuang H, Lu F. Role of p14ARF-HDM2-p53 axis in SOX6-mediated tumor suppression. Oncogene 2015; 35:1692-702. [PMID: 26119940 PMCID: PMC4820682 DOI: 10.1038/onc.2015.234] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
Sex-determining region Y box 6 (SOX6) has been described as a tumor-suppressor gene in several cancers. Our previous work has suggested that SOX6 upregulated p21Waf1/Cip1(p21) expression in a p53-dependent manner; however, the underlying mechanism has remained elusive. In this study, we confirmed that SOX6 can suppress cell proliferation in vitro and in vivo by stabilizing p53 protein and subsequently upregulating p21. Co-immunoprecipitation and immunocytofluorescence assays demonstrated that SOX6 can promote formation of the p14ARF-HDM2-p53 ternary complex by promoting translocation of p14ARF (p14 alternate reading frame tumor suppressor) to the nucleoplasm, thereby inhibiting HDM2-mediated p53 nuclear export and degradation. Chromatin immunoprecipitation combined with PCR assay proved that SOX6 can bind to a potential binding site in the regulatory region of the c-Myc gene. Furthermore, we confirmed that SOX6 can downregulate the expression of c-Myc, as well as its direct target gene nucleophosmin 1 (NPM1), and that the SOX6-induced downregulation of NPM1 is linked to translocation of p14ARF to the nucleoplasm. Finally, we showed that the highly conserved high-mobility group (HMG) domain of SOX6 is required for SOX6-mediated p53 stabilization and tumor inhibitory activity. Collectively, these results reveal a new mechanism of SOX6-mediated tumor suppression involving p21 upregulation via the p14ARF-HDM2-p53 axis in an HMG domain-dependent manner.
Collapse
Affiliation(s)
- J Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - S Ding
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - Z Duan
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - Q Xie
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - T Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - X Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - Y Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - X Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - H Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - F Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
48
|
ZNF16 (HZF1) promotes erythropoiesis and megakaryocytopoiesis via regulation of the c-KIT gene. Biochem J 2014; 458:171-83. [PMID: 24180487 DOI: 10.1042/bj20130628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously characterized the zinc finger protein gene HZF1 [also known as ZNF16 (zinc finger protein 16)] and demonstrated its important roles in erythroid and megakaryocytic differentiation of K562 cells. In the present study, we investigated its effect on erythroid and megakaryocytic differentiation of HSPCs (haemopoietic stem/progenitor cells). We observed up-regulation of ZNF16 during erythroid and megakaryocytic differentiation of the CD34+ HSPCs, and demonstrated that ZNF16 promotes erythroid and megakaryocytic differentiation by gain-of-function and loss-of-function experiments. Using a luciferase reporter and ChIP assays ZNF16 was demonstrated to bind to the c-KIT gene promoter and inhibit its expression in K562 cells. Enforced expression and knockdown of ZNF16 down-regulated and up-regulated the expression of the c-KIT gene in K562 cells and HSPCs respectively. Significantly decreased levels of the c-Kit protein were observed following erythroid and megakaryocytic differentiation of K562 and CD34+ cells. The knockdown of c-KIT partially rescued the differentiation inhibition caused by ZNF16 knockdown. The knockdown of c-KIT also blocked the activity of the c-Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK/c-Jun signal pathway and reduced further the level of HEY1 (hes-related family bHLH transcription factor with YRPW motif 1), a repressor of GATA1 (GATA-binding protein 1) transcription, which finally up-regulated the expression of GATA1, a central regulator of erythroid and megakaryocytic differentiation. In conclusion the results of the present study demonstrate that ZNF16 plays an important role in erythropoiesis and megakaryocytopoiesis via its regulation of the c-Kit/c-Raf/MEK/ERK/c-Jun/HEY1/GATA1 cascade.
Collapse
|
49
|
Chen C, Lodish HF. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis. Exp Hematol 2014; 42:464-76.e5. [PMID: 24607859 DOI: 10.1016/j.exphem.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 11/20/2022]
Abstract
Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.
Collapse
Affiliation(s)
- Cynthia Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
Ronchi A, Ottolenghi S. To respond or not to respond to hydroxyurea in thalassemia: a matter of stress adaptation? Haematologica 2013; 98:657-9. [PMID: 23633538 DOI: 10.3324/haematol.2013.084392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|