1
|
Roessner PM, Seufert I, Chapaprieta V, Jayabalan R, Briesch H, Massoni-Badosa R, Boskovic P, Benckendorff J, Roider T, Arseni L, Coelho M, Chakraborty S, Vaca AM, Sivina M, Muckenhuber M, Rodriguez-Rodriguez S, Bonato A, Herbst SA, Zapatka M, Sun C, Kretzmer H, Naake T, Bruch PM, Czernilofsky F, ten Hacken E, Schneider M, Helm D, Yosifov DY, Kauer J, Danilov AV, Bewarder M, Heyne K, Schneider C, Stilgenbauer S, Wiestner A, Mallm JP, Burger JA, Efremov DG, Lichter P, Dietrich S, Martin-Subero JI, Rippe K, Seiffert M. T-bet suppresses proliferation of malignant B cells in chronic lymphocytic leukemia. Blood 2024; 144:510-524. [PMID: 38684038 PMCID: PMC11307267 DOI: 10.1182/blood.2023021990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the microenvironment, triggered T-bet expression, which affected promoter-proximal and distal chromatin coaccessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling and negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of patients with CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling, which has implications for the stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in the inflammatory signaling pathways in CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Animals
- Humans
- Cell Proliferation
- Mice
- B-Lymphocytes/pathology
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Mice, Knockout
- Gene Expression Regulation, Leukemic
- NF-kappa B/metabolism
Collapse
Affiliation(s)
- Philipp M. Roessner
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Ruparoshni Jayabalan
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Hannah Briesch
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ramon Massoni-Badosa
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Single Cell Genomics, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Tobias Roider
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Mariana Coelho
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alicia M. Vaca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Markus Muckenhuber
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | | | - Alice Bonato
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sophie A. Herbst
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Naake
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | | | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Deyan Y. Yosifov
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Joseph Kauer
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Alexey V. Danilov
- Department of Hematology, City of Hope National Medical Center, Duarte, CA
| | - Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Kristina Heyne
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Christof Schneider
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Jan A. Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - José I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
2
|
White AM, Best OG, Hotinski AK, Kuss BJ, Thurgood LA. The Role of Cholesterol in Chronic Lymphocytic Leukemia Development and Pathogenesis. Metabolites 2023; 13:799. [PMID: 37512506 PMCID: PMC10385576 DOI: 10.3390/metabo13070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cholesterol has many critical functions in cells. It is a key component of membranes and cell-signalling processes, and it functions as a chemical precursor in several biochemical pathways, such as Vitamin D and steroid synthesis. Cholesterol has also been implicated in the development and progression of various cancers, in which it is thought to promote cell proliferation, migration, and invasion. Chronic lymphocytic leukemia (CLL) is an example of a lipid-avid cancer that relies on lipid metabolism, rather than glycolysis, to fuel cell proliferation. However, data regarding the role of cholesterol in CLL are conflicting. Studies have shown that dyslipidaemia is more common among CLL patients than age-matched healthy controls, and that CLL patients who take cholesterol-lowering drugs, such as statins, appear to have improved survival rates. Therefore, defining the roles of cholesterol in CLL may highlight the importance of monitoring and managing hyperlipidaemia as part of the routine management of patients with CLL. In this review, we discuss the roles of cholesterol in the context of CLL by examining the literature concerning the trafficking, uptake, endogenous synthesis, and intracellular handling of this lipid. Data from clinical trials investigating various classes of cholesterol and lipid-lowering drugs in CLL are also discussed.
Collapse
Affiliation(s)
- Alana M White
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Anya K Hotinski
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Bryone J Kuss
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Chen Y, Shao X, Yang H, Ren L, Cui Y, Zhang W, Macip S, Meng X. Interferon gamma regulates a complex pro-survival signal network in chronic lymphocytic leukemia. Eur J Haematol 2023; 110:435-443. [PMID: 36576398 DOI: 10.1111/ejh.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND It is known that the microenvironmental cytokine interferon gamma (IFN-γ) provides a survival advantage for chronic lymphocytic leukemia (CLL) cells. However, the mechanisms involved in this effect have not been properly investigated. METHODS Herein, we conducted a comprehensive screening of the effects of IFN-γ on signaling pathways and gene expression profiles in CLL cells by using western blotting, real-time quantitative reverse transcription (RT-qPCR) and high-throughput RNA sequencing (RNA-seq). RESULTS We found that IFN-γ not only activated the pro-survival signal transducer and activator of transcription 3 (STAT3), but also activated the protein kinase B and extracellular signal-regulated kinase signaling pathways. RNA-seq analysis showed that IFN-γ stimulation changed the expression profiles of more than 500 genes, with 391 being up-regulated and 123 down-regulated. These genes are involved in numerous biological processes, including anti-apoptosis, cell migration, and proliferation. IFN-γ significantly up-regulated the expression of CD38, BCL6, CXCL9, BCL2A1, SCOS3, IL-10, HGF, EGFR, THBS-1, FN1, and MUC1, which encode proteins potentially associated with disease progression, worse prognosis or poor response to treatment. Blocking janus kinases1/2 (JAK1/2) or STAT3 signal by specific inhibitors affected the expression of most genes, suggesting a pivotal role of the JAK1/2-STAT3 pathway in IFN-γ pro-survival effects in CLL. CONCLUSIONS Our data demonstrate that IFN-γ regulates a complex pro-survival signal network in CLL through JAK1/2-STAT3, which provides a rational explanation for IFN-γ promoting CLL cells survival and drug resistance.
Collapse
Affiliation(s)
- Yixiang Chen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Luoyang, China
| | - Xiaoya Shao
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Haiping Yang
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Leiying Ren
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Ying Cui
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Wenlu Zhang
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Xueqiong Meng
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Mackelprang RD, Filali-Mouhim A, Richardson B, Lefebvre F, Katabira E, Ronald A, Gray G, Cohen KW, Klatt NR, Pecor T, Celum C, McElrath MJ, Hughes SM, Hladik F, Cameron MJ, Lingappa JR. Upregulation of IFN-stimulated genes persists beyond the transitory broad immunologic changes of acute HIV-1 infection. iScience 2023; 26:106454. [PMID: 37020953 PMCID: PMC10067744 DOI: 10.1016/j.isci.2023.106454] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic immune activation during HIV-1 infection contributes to morbidity and mortality in people living with HIV. To elucidate the underlying biological pathways, we evaluated whole blood gene expression trajectories from before, through acute, and into chronic HIV-1 infection. Interferon-stimulated genes, including MX1, IFI27 and ISG15, were upregulated during acute infection, remained elevated into chronic infection, and were strongly correlated with plasma HIV-1 RNA as well as TNF-α and CXCL10 cytokine levels. In contrast, genes involved in cellular immune responses, such as CD8A, were upregulated during acute infection before reaching a peak and returning to near pre-infection levels in chronic infection. Our results indicate that chronic immune activation during HIV-1 infection is characterized by persistent elevation of a narrow set of interferon-stimulated genes and innate cytokines. These findings raise the prospect of devising a targeted intervention to restore healthy immune homeostasis in people living with HIV-1.
Collapse
|
5
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
6
|
Shao X, Meng X, Yang H, Wang X, Qin L, Shen G, Xi X, Zhao H, Macip S, Chen Y. IFN-γ enhances CLL cell resistance to ABT-199 by regulating MCL-1 and BCL-2 expression via the JAK-STAT3 signaling pathway. Leuk Lymphoma 2023; 64:71-78. [PMID: 36222521 DOI: 10.1080/10428194.2022.2131408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although clinical outcomes of CLL have improved with the use of BCL-2 inhibitor, ABT-199, acquired resistance eventually occurs in many cases, which leads to CLL disease progression. Thus, understanding the mechanisms that mediate this relapse is important to design improved therapies. Herein, we report that cytokine IFN-γ, secreted by dysfunctional T cells, enhanced CLL cells resistance to ABT-199. IFN-γ stimulation significantly increased the expression of BCL-2, MCL-1 and BCL-xL. Blocking JAK1/2-STAT3 signaling pathway impaired the expression of these anti-apoptotic proteins after IFN-γ stimulation. The combination of ABT-199 with JAK1/2 inhibitor Ruxolitinib or STAT3 inhibitors Stattic and C188-9 increased malignant B cell death. In summary, we show that IFN-γ enhanced CLL cells resistance to ABT-199 at least in part by up-regulating BCL-2, MCL-1 and BCL-xL expression via JAK1/2-STAT3 pathway, and thus blocking this pathway with inhibitors increased ABT-199 efficiency to induce CLL cell apoptosis, suggesting a potential therapeutically relevant combination to overcome ABT-199 resistance.
Collapse
Affiliation(s)
- Xiaoya Shao
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Thrombosis and Hemostasis, Luoyang, China
| | - Xueqiong Meng
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Haiping Yang
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Xinxin Wang
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Guomin Shen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Thrombosis and Hemostasis, Luoyang, China
| | - Xiaoping Xi
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Huijuan Zhao
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Yixiang Chen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Thrombosis and Hemostasis, Luoyang, China
| |
Collapse
|
7
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Avsec D, Škrlj Miklavčič M, Burnik T, Kandušer M, Bizjak M, Podgornik H, Mlinarič-Raščan I. Inhibition of p38 MAPK or immunoproteasome overcomes resistance of chronic lymphocytic leukemia cells to Bcl-2 antagonist venetoclax. Cell Death Dis 2022; 13:860. [PMID: 36209148 PMCID: PMC9547871 DOI: 10.1038/s41419-022-05287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological neoplasm of CD19-positive mature-appearing B lymphocytes. Despite the clinical success of targeted therapies in CLL, the development of resistance diminishes their therapeutic activity. This is also true for the Bcl-2 antagonist venetoclax. We investigated the molecular mechanisms that drive venetoclax resistance in CLL, with a clear focus to provide new strategies to successfully combat it. Activation of CLL cells with IFNγ, PMA/ionomycin, and sCD40L diminished the cytotoxicity of venetoclax. We demonstrated that the metabolic activity of cells treated with 1 nM venetoclax alone was 48% of untreated cells, and was higher for cells co-treated with IFNγ (110%), PMA/ionomycin (78%), and sCD40L (62%). As of molecular mechanism, we showed that PMA/ionomycin and sCD40L triggered translocation of NFκB in primary CLL cells, while IFNγ activated p38 MAPK, suppressed spontaneous and venetoclax-induced apoptosis and induced formation of the immunoproteasome. Inhibition of immunoproteasome with ONX-0914 suppressed activity of immunoproteasome and synergized with venetoclax against primary CLL cells. On the other hand, inhibition of p38 MAPK abolished cytoprotective effects of IFNγ. We demonstrated that venetoclax-resistant (MEC-1 VER) cells overexpressed p38 MAPK and p-Bcl-2 (Ser70), and underexpressed Mcl-1, Bax, and Bak. Inhibition of p38 MAPK or immunoproteasome triggered apoptosis in CLL cells and overcame the resistance to venetoclax of MEC-1 VER cells and venetoclax-insensitive primary CLL cells. In conclusion, the p38 MAPK pathway and immunoproteasome represent novel targets to combat venetoclax resistance in CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Marja Škrlj Miklavčič
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Tilen Burnik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maša Kandušer
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maruša Bizjak
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Helena Podgornik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia ,grid.29524.380000 0004 0571 7705University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv 2021; 5:1259-1272. [PMID: 33651101 DOI: 10.1182/bloodadvances.2020002949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.
Collapse
|
11
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway. Biomedicines 2021; 9:biomedicines9020188. [PMID: 33668421 PMCID: PMC7918075 DOI: 10.3390/biomedicines9020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Besides their antiviral and immunomodulatory functions, type I (α/β) and II (γ) interferons (IFNs) exhibit either beneficial or detrimental effects on tumor progression. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of abnormal CD5+ B lymphocytes that escape death. Drug resistance and disease relapse still occur in CLL. The triggering of IFN receptors is believed to be involved in the survival of CLL cells, but the underlying molecular mechanisms are not yet characterized. We show here that both type I and II IFNs promote the survival of primary CLL cells by counteracting the mitochondrial (intrinsic) apoptosis pathway. The survival process was associated with the upregulation of signal transducer and activator of transcription-3 (STAT3) and its target anti-apoptotic Mcl-1. Furthermore, the blockade of the STAT3/Mcl-1 pathway by pharmacological inhibitors against STAT3, TYK2 (for type I IFN) or JAK2 (for type II IFN) markedly reduced IFN-mediated CLL cell survival. Similarly, the selective Src family kinase inhibitor PP2 notably blocked IFN-mediated CLL cell survival by downregulating the protein levels of STAT3 and Mcl-1. Our work reveals a novel mechanism of resistance to apoptosis promoted by IFNs in CLL cells, whereby JAKs (TYK2, JAK2) and Src kinases activate in concert a STAT3/Mcl-1 signaling pathway. In view of current clinical developments of potent STAT3 and Mcl-1 inhibitors, a combination of conventional treatments with these inhibitors might thus constitute a new therapeutic strategy in CLL.
Collapse
|
13
|
Shao DD, Meng FZ, Liu Y, Xu XQ, Wang X, Hu WH, Hou W, Ho WZ. Poly(dA:dT) Suppresses HSV-2 Infection of Human Cervical Epithelial Cells Through RIG-I Activation. Front Immunol 2021; 11:598884. [PMID: 33664729 PMCID: PMC7923882 DOI: 10.3389/fimmu.2020.598884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Epithelial cells of the female reproductive tract (FRT) participate in the initial innate immunity against viral infections. Poly(dA:dT) is a synthetic analog of B form double-stranded (ds) DNA which can activate the interferon (IFN) signaling pathway-mediated antiviral immunity through DNA-dependent RNA Polymerase III. Here we investigated whether poly(dA:dT) could inhibit herpes simplex virus type 2 (HSV-2) infection of human cervical epithelial cells (End1/E6E7). We demonstrated that poly(dA:dT) treatment of End1/E6E7 cells could significantly inhibit HSV-2 infection. Mechanistically, poly(dA:dT) treatment of the cells induced the expression of the intracellular IFNs and the multiple antiviral IFN-stimulated genes (ISGs), including IFN-stimulated gene 15 (ISG15), IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 2 (OAS2), myxovirus resistance protein A (MxA), myxovirus resistance protein B (MxB), virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin), and guanylate binding protein 5 (GBP5). Further investigation showed that the activation of RIG-I was largely responsible for poly(dA:dT)-mediated HSV-2 inhibition and IFN/ISGs induction in the cervical epithelial cells, as RIG-I knockout abolished the poly(dA:dT) actions. These observations demonstrate the importance for design and development of AT-rich dsDNA-based intervention strategies to control HSV-2 mucosal transmission in FRT.
Collapse
Affiliation(s)
- Dan-Dan Shao
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng-Zhen Meng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Xia M, Luo TY, Shi Y, Wang G, Tsui H, Harari D, Spaner DE. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2629-2639. [PMID: 33067379 DOI: 10.4049/jimmunol.2000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has profound activity in chronic lymphocytic leukemia (CLL) but limited curative potential by itself. Residual signaling pathways that maintain survival of CLL cells might be targeted to improve ibrutinib's therapeutic activity, but the nature of these pathways is unclear. Ongoing activation of IFN receptors in patients on ibrutinib was suggested by the presence of type I and II IFN in blood together with the cycling behavior of IFN-stimulated gene (ISG) products when IFN signaling was blocked intermittently with the JAK inhibitor ruxolitinib. IFN signaling in CLL cells from human patients was not prevented by ibrutinib in vitro or in vivo, but ISG expression was significantly attenuated in vitro. ISGs such as CXCL10 that require concomitant activation of NF-κB were decreased when this pathway was inhibited by ibrutinib. Other ISGs, exemplified by LAG3, were decreased as a result of inhibited protein translation. Effects of IFN on survival remained intact as type I and II IFN-protected CLL cells from ibrutinib in vitro, which could be prevented by ruxolitinib and IFNR blocking Abs. These observations suggest that IFNs may help CLL cells persist and specific targeting of IFN signaling might deepen clinical responses of patients on ibrutinib.
Collapse
Affiliation(s)
- Meihui Xia
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Gynecology and Obstetrics, First Hospital, Jilin University, 130021 Changchun, Jilin, China.,Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 130021 Changchun, Jilin, China
| | - Tina Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Ontario M4C 3E7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
15
|
Tsai MH, Pai LM, Lee CK. Fine-Tuning of Type I Interferon Response by STAT3. Front Immunol 2019; 10:1448. [PMID: 31293595 PMCID: PMC6606715 DOI: 10.3389/fimmu.2019.01448] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Type I interferon (IFN-I) is induced during innate immune response and is required for initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates antiviral response. However, the role of STAT3 remains to be characterized. Here, we review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against viral infections and IFN-I-associated diseases.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Spaner DE, McCaw L, Wang G, Tsui H, Shi Y. Persistent janus kinase-signaling in chronic lymphocytic leukemia patients on ibrutinib: Results of a phase I trial. Cancer Med 2019; 8:1540-1550. [PMID: 30843659 PMCID: PMC6488147 DOI: 10.1002/cam4.2042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Methods to deepen clinical responses to ibrutinib are needed to improve outcomes for patients with chronic lymphocytic leukemia (CLL). This study aimed to determine the safety and efficacy of combining a janus kinase (JAK)‐inhibitor with ibrutinib because JAK‐mediated cytokine‐signals support CLL cells and may not be inhibited by ibrutinib. The JAK1/2 inhibitor ruxolitinib was prescribed to 12 CLL patients with abnormal serum beta‐2 microglobulin levels after 6 months or persistent lymphadenopathy or splenomegaly after 12 months on ibrutinib using a 3 + 3 phase 1 trial design (NCT02912754). Ibrutinib was continued at 420 mg daily and ruxolitinib was added at 5, 10, 15, or 20 mg BID for 3 weeks out of five for seven cycles. The break was mandated to avoid anemia and thrombocytopenia observed with ruxolitinib as a single agent in CLL. The combination was well‐tolerated without dose‐limiting toxicities. Cyclic changes in platelets, lymphocytes, and associated chemokines and thrombopoietic factors were observed and partial response criteria were met in 2 of 12 patients. The results suggest that JAK‐signaling helps CLL cells persist in the presence of ibrutinib and ruxolitinib with ibrutinib is well‐tolerated and may be a useful regiment to use in combination therapies for CLL.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Odette Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
17
|
Ibrutinib reprograms the glucocorticoid receptor in chronic lymphocytic leukemia cells. Leukemia 2019; 33:1650-1662. [PMID: 30696950 DOI: 10.1038/s41375-019-0381-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Glucocorticoid (GC) receptor (GR) phosphorylation and signature genes were studied in chronic lymphocytic leukemia (CLL) cells to help place GCs within modern treatment algorithms. In contrast to normal B and T cells, transcription of GC-regulated genes was not rhythmic and the synthetic GC dexamethasone (DEX) could not inhibit toll-like receptor (TLR)-responses in CLL cells. This intrinsic GC-resistance was associated with aberrant GR-phosphorylation on activating Ser211 and inhibitory Ser226 sites. Ibrutinib increased transcription of the GR-signature gene GILZ in circulating CLL cells along with GR(pS211)/GR(pS226) ratios and lytic sensitivity to DEX that were not reversed by the competitive antagonist mifepristone in vitro. However, ibrutinib could not improve GR-responses in circulating CLL cells activated with IL2 and TLR7/8 agonists to mimic conditions in pseudofollicle microenvironments. Addition of the janus kinase inhibitor ruxolitinib to block ibrutinib-insensitive signals increased GILZ transcription in pseudofollicle conditions in vitro and in a clinical trial (NCT02912754), and also increased GR(S211)/GR(S226) ratios and DEX-mediated killing in patient samples in vitro. These observations suggest that intrinsic resistance to endogenous GCs is characteristic of CLL cells and ibrutinib may help increase the therapeutic activity of GCs by non-canonical activation of GR.
Collapse
|
18
|
Spaner DE, Venema R, Huang J, Norris P, Lazarus A, Wang G, Shi Y. Association of blood IgG with tumor necrosis factor-alpha and clinical course of chronic lymphocytic leukemia. EBioMedicine 2018; 35:222-232. [PMID: 30174282 PMCID: PMC6156707 DOI: 10.1016/j.ebiom.2018.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The intrinsic humoral immunodeficiency of chronic lymphocytic leukemia (CLL) is often managed with immunoglobulin replacement therapy (IgRT) to maintain IgG levels in the low-normal range (6–8 g/L) but optimal targets for IgG and timing to commence IgRT are unclear. IgG levels fell near 6 g/L at rates of −0.85±0.14 g/L/year in 51 patients who required treatment for CLL within 4.5±0.4 years from initial diagnosis and − 0.27±0.04 g/L/year in 40 patients with progressive disease who remained untreated after 8.5±0.5 years. In contrast, endogenous IgG levels remained above 8 g/L in patients with highly indolent disease (n = 25) and TNFα and beta-2-microglobulin (β2M) in blood decreased when IgRT was used to increase IgG levels over 9 g/L. At 15 g/L but not 5 g/L, the IgRT product Hizentra® inhibited B cell receptor (BCR)-activation, TNFα production, and survival in vitro, particularly of CLL cells that spontaneously made little TNFα. These findings suggest deterioration of the humoral immune system is associated with progressive CLL and altering the dosing of IgRT to achieve higher than conventional IgG target levels may have therapeutic activity. Immunoglobulin levels decline at rates that reflect the clinical course of CLL. IgG levels over 10 g/L achieved with replacement therapy are associated with evidence of disease control in vivo and inhibition of BCR-mediated activation of CLL cells in vitro. Monitoring rates of decline of Ig levels in CLL patients gives biological information on disease severity. Appropriate IgG target levels for immunoglobulin replacement therapy in CLL may be much higher than for patients with other immunodeficiencies.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Dept. of Immunology, University of Toronto, Toronto M5S 1A8, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada; Sunnybrook Odette Cancer Center, Toronto M4N 3M5, Canada; Dept. of Medicine, University of Toronto, Toronto M5G 2C4, Canada.
| | - Robertson Venema
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Justin Huang
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Peter Norris
- Keenan Research Center, St. Michael's Hospital, Toronto M5B 1T8, Canada; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, M5S 1A1, Canada
| | - Alan Lazarus
- Keenan Research Center, St. Michael's Hospital, Toronto M5B 1T8, Canada; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, M5S 1A1, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| |
Collapse
|
19
|
Oppermann S, Lam AJ, Tung S, Shi Y, McCaw L, Wang G, Ylanko J, Leber B, Andrews D, Spaner DE. Janus and PI3-kinases mediate glucocorticoid resistance in activated chronic leukemia cells. Oncotarget 2018; 7:72608-72621. [PMID: 27579615 PMCID: PMC5341931 DOI: 10.18632/oncotarget.11618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
Glucorticoids (GCs) such as dexamethasone (DEX) remain important treatments for Chronic Lymphocytic Leukemia (CLL) but the mechanisms are poorly understood and resistance is inevitable. Proliferation centers (PC) in lymph nodes and bone marrow offer protection against many cytotoxic drugs and circulating CLL cells were found to acquire resistance to DEX-mediated killing in conditions encountered in PCs including stimulation by toll-like receptor agonists and interactions with stromal cells. The resistant state was associated with impaired glucocorticoid receptor-mediated gene expression, autocrine activation of STAT3 through Janus Kinases (JAKs), and increased glycolysis. The JAK1/2 inhibitor ruxolitinib blocked STAT3-phosphorylation and partially improved DEX-mediated killing of stimulated CLL cells in vitro but not in CLL patients in vivo. An automated microscopy-based screen of a kinase inhibitor library implicated an additional protective role for the PI3K/AKT/FOXO pathway. Blocking this pathway with the glycolysis inhibitor 2-deoxyglucose (2-DG) or the PI3K-inhibitors idelalisib and buparlisib increased DEX-mediated killing but did not block STAT3-phosphorylation. Combining idelalisib or buparlisib with ruxolitinib greatly increased killing by DEX. These observations suggest that glucocorticoid resistance in CLL cells may be overcome by combining JAK and PI3K inhibitors.
Collapse
Affiliation(s)
- Sina Oppermann
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Avery J Lam
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Stephanie Tung
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jarkko Ylanko
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Andrews
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia 2017; 32:184-193. [PMID: 28555083 DOI: 10.1038/leu.2017.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
A deeper understanding of the mechanisms that underlie aberrant signal transduction in B-cell cancers such as chronic lymphocytic leukemia (CLL) may reveal new treatment strategies. The lipid-activated nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) accounts for a number of properties of aggressive cancers and was found to enhance Janus kinase (JAK)-mediated phosphorylation of signal transducer and activator of transcription (STAT) proteins in B lymphoma cell lines and primary CLL cells. Autocrine production of cytokines such as IL10 and interferon-beta was not increased by PPARδ but signaling responses to these cytokines were amplified and associated with increased cholesterol biosynthesis and plasma membrane levels. Plasmalemmal cholesterol and STAT phosphorylation from type 1 interferons (IFNs) were increased by PPARδ agonists, transgenes and exogenous cholesterol, and decreased by cyclodextrin, PPARD deletion and chemical PPARδ inhibitors. Functional consequences of PPARδ-mediated perturbation of IFN signaling included impaired upregulation of co-stimulatory molecules. These observations suggest PPARδ modulates signaling processes in malignant B cells in part by altering cholesterol metabolism and changes the outcomes of signaling from cytokines such as IFNs. PPARδ antagonists may have therapeutic activity as anti-leukemic signal transduction modulators.
Collapse
|
21
|
PPAR-delta promotes survival of chronic lymphocytic leukemia cells in energetically unfavorable conditions. Leukemia 2017; 31:1905-1914. [PMID: 28050012 DOI: 10.1038/leu.2016.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
Abstract
Targeting the mechanisms that allow chronic lymphocytic leukemia (CLL) cells to survive in harsh cancer microenvironments should improve patient outcomes. The nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) sustains other cancers, and in silico analysis showed higher PPARD expression in CLL cells than normal lymphocytes and other hematologic cancers. A direct association was found between PPARδ protein levels in CLL cells and clinical score. Transgenic expression of PPARδ increased the growth and survival of CD5+ Daudi cells and primary CLL cells in stressful conditions including exhausted tissue culture media, low extracellular glucose, hypoxia and exposure to cytotoxic drugs. Glucocorticoids and synthetic PPARδ agonists up-regulated PPARD expression and also protected Daudi and primary CLL cells from metabolic stressors. Survival in low glucose was related to increased antioxidant expression, substrate utilization and mitochondrial performance, and was reversed by genetic deletion and synthetic PPARδ antagonists. These findings suggest PPARδ conditions CLL cells to survive in harsh microenvironmental conditions by reducing oxidative stress and increasing metabolic efficiency. Targeting PPARδ may be beneficial in the treatment of CLL.
Collapse
|
22
|
McCaw L, Shi Y, Wang G, Li YJ, Spaner DE. Low Density Lipoproteins Amplify Cytokine-signaling in Chronic Lymphocytic Leukemia Cells. EBioMedicine 2016; 15:24-35. [PMID: 27932296 PMCID: PMC5233814 DOI: 10.1016/j.ebiom.2016.11.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest there is a high incidence of elevated low-density lipoprotein (LDL) levels in Chronic Lymphocytic Leukemia (CLL) patients and a survival benefit from cholesterol-lowering statin drugs. The mechanisms of these observations and the kinds of patients they apply to are unclear. Using an in vitro model of the pseudofollicles where CLL cells originate, LDLs were found to increase plasma membrane cholesterol, signaling molecules such as tyrosine-phosphorylated STAT3, and activated CLL cell numbers. The signaling effects of LDLs were not seen in normal lymphocytes or glycolytic lymphoma cell-lines but were restored by transduction with the nuclear receptor PPARδ, which mediates metabolic activity in CLL cells. Breakdown of LDLs in lysosomes was required for the amplification effect, which correlated with down-regulation of HMGCR expression and long lymphocyte doubling times (LDTs) of 53.6 ± 10.4 months. Cholesterol content of circulating CLL cells correlated directly with blood LDL levels in a subgroup of patients. These observations suggest LDLs may enhance proliferative responses of CLL cells to inflammatory signals. Prospective clinical trials are needed to confirm the therapeutic potential of lowering LDL concentrations in CLL, particularly in patients with indolent disease in the “watch-and-wait” phase of management. Slow-growing CLL cells use lysosomal lipase to break low density lipoproteins (LDLs) into free fatty acids and cholesterol. LdL degradation products increase survival of proliferating CLL cells. LDLs decrease oxidative stress and increase plasma membrane cholesterol. LDLs amplify signaling responses to cytokines but not antigens in proliferating CLL cells. Rapidly growing CLL cells, acute leukemia cells, and normal lymphocytes do not exhibit this dependence on LDLs.
Collapse
Affiliation(s)
- Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - You-Jun Li
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada; Sunnybrook Odette Cancer Center, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
23
|
Dal Bo M, D'Agaro T, Gobessi S, Zucchetto A, Dereani S, Rossi D, Zaja F, Pozzato G, Di Raimondo F, Gaidano G, Laurenti L, Del Poeta G, Efremov DG, Gattei V, Bomben R. The SIRT1/TP53 axis is activated upon B-cell receptor triggering via miR-132 up-regulation in chronic lymphocytic leukemia cells. Oncotarget 2016; 6:19102-17. [PMID: 26036258 PMCID: PMC4662478 DOI: 10.18632/oncotarget.3905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
The B-cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). By global microRNA profiling of CLL cells stimulated or not stimulated by anti-IgM, significant up-regulation of microRNAs from the miR-132~212 cluster was observed both in IGHV gene unmutated (UM) and mutated (M) CLL cells. Parallel gene expression profiling identified SIRT1, a deacetylase targeting several proteins including TP53, among the top-ranked miR-132 target genes down-regulated upon anti-IgM exposure. The direct regulation of SIRT1 expression by miR-132 was demonstrated using luciferase assays. The reduction of SIRT1 mRNA and protein (P = 0.001) upon anti-IgM stimulation was associated with an increase in TP53 acetylation (P = 0.007), and the parallel up-regulation of the TP53 target gene CDKN1A. Consistently, miR-132 transfections of CLL-like cells resulted in down-regulation of SIRT1 and an induction of a TP53-dependent apoptosis. Finally, in a series of 134 CLL samples, miR-132, when expressed above the median value, associated with prolonged time-to-first-treatment in patients with M CLL (HR = 0.41; P = 0.02). Collectively, the miR-132/SIRT1/TP53 axis was identified as a novel pathway triggered by BCR engagement that further increases the complexity of the interactions between tumor microenvironments and CLL cells.
Collapse
Affiliation(s)
- Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Tiziana D'Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Stefania Gobessi
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Sara Dereani
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Francesco Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Gabriele Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | | | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Luca Laurenti
- Department of Hematology, Catholic University Hospital A. Gemelli, Rome, Italy
| | - Giovanni Del Poeta
- Division of Hematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Dimitar G Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| |
Collapse
|
24
|
Rendeiro AF, Schmidl C, Strefford JC, Walewska R, Davis Z, Farlik M, Oscier D, Bock C. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks. Nat Commun 2016; 7:11938. [PMID: 27346425 PMCID: PMC5494194 DOI: 10.1038/ncomms11938] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterized by substantial clinical heterogeneity, despite relatively few genetic alterations. To provide a basis for studying epigenome deregulation in CLL, here we present genome-wide chromatin accessibility maps for 88 CLL samples from 55 patients measured by the ATAC-seq assay. We also performed ChIPmentation and RNA-seq profiling for ten representative samples. Based on the resulting data set, we devised and applied a bioinformatic method that links chromatin profiles to clinical annotations. Our analysis identified sample-specific variation on top of a shared core of CLL regulatory regions. IGHV mutation status-which distinguishes the two major subtypes of CLL-was accurately predicted by the chromatin profiles and gene regulatory networks inferred for IGHV-mutated versus IGHV-unmutated samples identified characteristic differences between these two disease subtypes. In summary, we discovered widespread heterogeneity in the chromatin landscape of CLL, established a community resource for studying epigenome deregulation in leukaemia and demonstrated the feasibility of large-scale chromatin accessibility mapping in cancer cohorts and clinical research.
Collapse
Affiliation(s)
- André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jonathan C. Strefford
- Faculty of Medicine, Cancer Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Renata Walewska
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Zadie Davis
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - David Oscier
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Wang X, Wang G, Shi Y, Sun L, Gorczynski R, Li YJ, Xu Z, Spaner DE. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis 2016; 5:e232. [PMID: 27270614 PMCID: PMC4945742 DOI: 10.1038/oncsis.2016.41] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer.
Collapse
Affiliation(s)
- X Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - G Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Y Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - L Sun
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - R Gorczynski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Transplant Research Division, Toronto General Hospital, Toronto, Ontario, Canada
| | - Y-J Li
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Z Xu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - D E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Spaner DE, Wang G, McCaw L, Li Y, Disperati P, Cussen MA, Shi Y. Activity of the Janus kinase inhibitor ruxolitinib in chronic lymphocytic leukemia: results of a phase II trial. Haematologica 2016; 101:e192-5. [PMID: 26819050 DOI: 10.3324/haematol.2015.135418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto Dept. of Medical Biophysics, University of Toronto, Toronto Sunnybrook Odette Cancer Center, Toronto Dept. of Medicine, University of Toronto, Canada Dept. of Immunology, University of Toronto, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto
| | - Yanmei Li
- Biology Platform, Sunnybrook Research Institute, Toronto
| | | | | | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto
| |
Collapse
|
27
|
Podhorecka M, Macheta A, Chocholska S, Bojarska-Junak A, Szymczyk A, Goracy A, Dmoszynska A, Hus M. Danazol induces apoptosis and cytotoxicity of leukemic cells alone and in combination with purine nucleoside analogs in chronic lymphocytic leukemia. Ann Hematol 2015; 95:425-35. [PMID: 26692089 PMCID: PMC4742499 DOI: 10.1007/s00277-015-2579-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 01/26/2023]
Abstract
Recently, great progress has been achieved in the treatment of chronic lymphocytic leukemia (CLL). However, some patients, particularly older patients with comorbidities or with relapsed/refractory leukemia, still have limited therapeutic options. There is an urgent need to discover less toxic and more effective drugs for CLL patients. Applying new modalities or substances that are widely used for the treatment of other diseases has been reported to improve results in CLL treatment. This study aimed to assess the non-chemotherapeutic drug danazol for its potential to destroy leukemic cells. Leukemic cells, obtained from the peripheral blood and bone marrow of 23 CLL patients, were cultured in the presence of danazol and its combination with the purine nucleoside analogs fludarabine and cladribine and bendamustine. After 24 h of incubation, the rate of apoptosis indicated by active caspase-3 expression, and cytotoxicity indicated by forward light scatter and light scatter analysis, was assessed by flow cytometry. We also measured expression of apoptosis-regulating proteins of BCL family and active caspase 9 and active caspase 8 expressions in leukemic cells. Danazol had a caspase-dependent pro-apoptotic and cytotoxic effect on leukemic cells in a tumor-specific manner. The mechanisms of its action appear to be complex and should be precisely established; however, induction of apoptosis involving both mitochondrial and receptor cascades appears to be most probable. Danazol showed a synergic effect with cladribine, an additive effect with fludarabine, and an infra-additive effect with bendamustine. The rate of danazol-induced apoptosis and cytotoxicity did not differ between patients with better and worse prognostic markers. Our results indicate that danazol may be a potential therapeutic agent for CLL patients alone and in combination with purine analogs.
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland.
| | - Arkadiusz Macheta
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| | | | - Agnieszka Szymczyk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| | - Aneta Goracy
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| | - Anna Dmoszynska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| | - Marek Hus
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081, Lublin, Poland
| |
Collapse
|
28
|
Chow S, Buckstein R, Spaner DE. A link between hypercholesterolemia and chronic lymphocytic leukemia. Leuk Lymphoma 2015; 57:797-802. [PMID: 26325342 DOI: 10.3109/10428194.2015.1088651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The incidence of hypercholesterolemia and its possible relationship with clinical course were determined by reviewing the records of 231 consecutive patients presenting to a specialized Chronic Lymphocytic Leukemia (CLL) clinic. Evidence for elevated cholesterol was found in up to 174/231 patients (75%) based on existing use of statins (107 patients) or non-fasting low-density lipoprotein cholesterol levels greater than 2.5 mM. Excluding patients with 17p deletions, time to first treatment (TFT) was prolonged if patients were taking cholesterol-lowering statins (57.5 (IQR = 32, 77) vs 36 (IQR = 11, 100) months, p < 0.02). If patients were prescribed statins after being diagnosed with CLL, TFT was longer than if they were taking statins before the diagnosis. These observations suggest there is a high incidence of hypercholesterolemia in CLL patients and cholesterol-lowering may impact the disease course.
Collapse
Affiliation(s)
- Signy Chow
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and
| | - Rena Buckstein
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and
| | - David E Spaner
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and.,c Division of Molecular and Cellular Biology , Sunnybrook Research Institute, University of Toronto , Toronto , ON , Canada
| |
Collapse
|
29
|
Microenvironmental interleukin-6 suppresses toll-like receptor signaling in human leukemia cells through miR-17/19A. Blood 2015; 126:766-78. [PMID: 26041742 DOI: 10.1182/blood-2014-12-618678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/30/2015] [Indexed: 12/21/2022] Open
Abstract
The regulation of toll-like receptor (TLR) signaling in a tumor microenvironment is poorly understood despite its importance in cancer biology. To address this problem, TLR7-responses of chronic lymphocytic leukemia (CLL) cells were studied in the presence and absence of a human stromal cell-line derived from a leukemic spleen. CLL cells alone produced high levels of tumor necrosis factor (TNF)-α and proliferated in response to TLR7-agonists. A signal transducer and activator of transcription 3 -activating stromal factor, identified as interleukin (IL)-6, was found to upregulate microRNA (miR)-17 and miR-19a, target TLR7 and TNFA messenger RNA, and induce a state of tolerance to TLR7-agonists in CLL cells. Overexpression of the miR-17-92 cluster tolerized CLL cells directly and miR-17 and miR-19a antagomiRs restored TLR7-signaling. Inhibition of IL-6 signaling with antibodies or small-molecule Janus kinase inhibitors reversed tolerization and increased TLR7-stimulated CLL cell numbers in vitro and in NOD-SCIDγc (null) mice. These results suggest IL-6 can act as tumor suppressor in CLL by inhibiting TLR-signaling.
Collapse
|
30
|
Linley A, Valle-Argos B, Steele AJ, Stevenson FK, Forconi F, Packham G. Higher levels of reactive oxygen species are associated with anergy in chronic lymphocytic leukemia. Haematologica 2015; 100:e265-8. [PMID: 25749826 DOI: 10.3324/haematol.2014.120824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adam Linley
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK
| | - Andrew J Steele
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK Department of Haematology, University Hospital Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, University Hospital Southampton, UK
| |
Collapse
|
31
|
|
32
|
Christensen S, Gillessen A. Response to peginterferon plus ribavirin and subsequent retreatment with telaprevir-based triple therapy in a patient with chronic lymphocytic leukaemia and chronic HCV genotype 1b infection. Infect Agent Cancer 2014; 9:10. [PMID: 24650206 PMCID: PMC3994472 DOI: 10.1186/1750-9378-9-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Background Case-controlled studies have clearly demonstrated a link between chronic hepatitis C infection (CHC) and B cell non-Hodgkin lymphoma (NHL). To our knowledge, this is the first case report of outcome in a patient with CLL and chronic HCV infection treated with PEG-IFN/RBV and subsequent retreated with triple therapy. Findings We report the case of a 54-year old, caucasian woman with a history of elevated liver enzymes diagnosed with chronic lymphocytic leukaemia (CLL) detected during investigation for hepatitis C (HCV) infection. The patient showed a haematological response following initially successful anti-HCV therapy with peginterferon plus ribavirin (PEG-IFN/RBV), with normalization of leukocyte and lymphocyte counts. She subsequently showed a late virological relapse at week 24, and was successfully retreated with telaprevir-based triple therapy. Despite an increase in leucocyte and lymphocyte count compared to baseline following triple therapy, to date there is no evidence of progression of CLL and the patient remains asymptomatic. Conclusion Patients with CLL may experience haematological response following successful anti-HCV therapy using IFN-based regimens. Re-treatment with triple therapy including telaprevir following late virological relapse was successful, was not associated with any unexpected safety issues, and did not adversely affect CLL status.
Collapse
Affiliation(s)
- Stefan Christensen
- Infektiologische Praxisgemeinschaft, Salzstrasse 58, D-48143 Münster, Germany.
| | | |
Collapse
|
33
|
A role for oleoylethanolamide in chronic lymphocytic leukemia. Leukemia 2014; 28:1381-7. [PMID: 24413323 DOI: 10.1038/leu.2014.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 01/22/2023]
Abstract
Oleoylethanolamide (OEA) is a bioactive lipid that stimulates nuclear and G protein-coupled receptors and regulates appetite and fat metabolism. It has not previously been shown to have a role in cancer. However, a mass spectrometry-based lipidomics platform revealed the presence of high amounts of OEA in the plasma of chronic lymphocytic leukemia (CLL) patients compared with normal donors. CLL cells produced OEA and the magnitude of plasma OEA levels was related directly to the circulating leukemic cell number. OEA from CLL cells was increased by URB-597, an inhibitor of fatty acid amide hydrolase (FAAH), and decreased by inflammatory mediators that downregulate expression of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD). These enzymes degrade and synthesize OEA, respectively. Nonphysiologic doses of OEA prevented spontaneous apoptosis of CLL cells in a receptor-independent manner that was mimicked by its free fatty acid (FFA) derivative oleate. However, OEA-containing supernatants from CLL cells induced lipolysis in adipocytes, lipid products from adipocytes protected CLL cells from cytotoxic chemotherapy, and increased levels of FFAs were found in CLL plasma that correlated with OEA. We suggest OEA is a lipolytic factor produced by CLL cells to fuel their growth with a potential role in drug resistance and cancer cachexia.
Collapse
|
34
|
Primary macrophages rely on histone deacetylase 1 and 2 expression to induce type I interferon in response to gammaherpesvirus infection. J Virol 2013; 88:2268-78. [PMID: 24335310 DOI: 10.1128/jvi.03278-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type I interferon is induced shortly following viral infection and represents a first line of host defense against a majority of viral pathogens. Not surprisingly, both replication and latency of gammaherpesviruses, ubiquitous cancer-associated pathogens, are attenuated by type I interferon, although the mechanism of attenuation remains poorly characterized. Gammaherpesviruses also target histone deacetylases (HDACs), a family of pleiotropic enzymes that modify gene expression and several cell signaling pathways. Specifically, we have previously shown that a conserved gammaherpesvirus protein kinase interacts with HDAC1 and -2 to promote gammaherpesvirus replication in primary macrophages. In the current study, we have used genetic approaches to show that expression of HDAC1 and -2 is critical for induction of a type I interferon response following gammaherpesvirus infection of primary macrophages. Specifically, expression of HDAC1 and -2 was required for phosphorylation of interferon regulatory factor 3 (IRF3) and accumulation of IRF3 at the beta interferon promoter in gammaherpesvirus-infected primary macrophages. To our knowledge, this is the first demonstration of a specific role for HDAC1 and -2 in the induction of type I interferon responses in primary immune cells following virus infection. Furthermore, because HDAC1 and -2 are overexpressed in several types of cancer, our findings illuminate potential side effects of HDAC1- and -2-specific inhibitors that are currently under development as cancer therapy agents. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of the adult population and are associated with several malignancies. Infected cells counteract gammaherpesvirus infection via innate immune signaling mediated primarily through type I interferon. The induction of type I interferon expression proceeds through several stages using molecular mechanisms that are still incompletely characterized. In this study, we show that expression of HDAC1 and -2 by macrophages is required to mount a type I interferon response to incoming gammaherpesvirus. The involvement of HDAC1 and -2 in the type I interferon response highlights the pleiotropic roles of these enzymes in cellular signaling. Interestingly, HDAC1 and -2 are deregulated in cancer and are attractive targets of new cancer therapies. Due to the ubiquitous and chronic nature of gammaherpesvirus infection, the role of HDAC1 and -2 in the induction of type I interferon responses should be considered during the clinical development of HDAC1- and -2-specific inhibitors.
Collapse
|
35
|
Tung S, Shi Y, Wong K, Zhu F, Gorczynski R, Laister RC, Minden M, Blechert AK, Genzel Y, Reichl U, Spaner DE. PPARα and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood 2013; 122:969-80. [PMID: 23814018 DOI: 10.1182/blood-2013-03-489468] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-dose glucocorticoids (GCs) can be a useful treatment for aggressive forms of chronic lymphocytic leukemia (CLL). However, their mechanism of action is not well understood, and resistance to GCs is inevitable. In a minimal, serum-free culture system, the synthetic GC dexamethasone (DEX) was found to decrease the metabolic activity of CLL cells, indicated by down-regulation of pyruvate kinase M2 (PKM2) expression and activity, decreased levels of pyruvate and its metabolites, and loss of mitochondrial membrane potential. This metabolic restriction was associated with decreased size and death of some of the tumor cells in the population. Concomitant plasma membrane damage increased killing of CLL cells by DEX. However, the nuclear receptor peroxisome proliferator activated receptor α (PPARα), which regulates fatty acid oxidation, was also increased by DEX, and adipocyte-derived lipids, lipoproteins, and propionic acid protected CLL cells from DEX. PPARα and fatty acid oxidation enzyme inhibitors increased DEX-mediated killing of CLL cells in vitro and clearance of CLL xenografts in vivo. These findings suggest that GCs prevent tumor cells from generating the energy needed to repair membrane damage, fatty acid oxidation is a mechanism of resistance to GC-mediated cytotoxicity, and PPARα inhibition is a strategy to improve the therapeutic efficacy of GCs.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Membrane/metabolism
- Culture Media, Conditioned
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm
- Fatty Acids/metabolism
- Gene Expression Regulation, Leukemic
- Glucocorticoids/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lipid Metabolism
- Membrane Potential, Mitochondrial
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Oxygen/metabolism
- PPAR alpha/metabolism
- Phosphorylation
- Propionates/chemistry
- Thyroid Hormones/metabolism
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tomic J, McCaw L, Li Y, Hough MR, Ben-David Y, Moffat J, Spaner DE. Resveratrol has anti-leukemic activity associated with decreased O-GlcNAcylated proteins. Exp Hematol 2013; 41:675-86. [DOI: 10.1016/j.exphem.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/05/2023]
|
37
|
Wood BM, Mboko WP, Mounce BC, Tarakanova VL. Mouse gammaherpesvirus-68 infection acts as a rheostat to set the level of type I interferon signaling in primary macrophages. Virology 2013; 443:123-33. [PMID: 23706314 DOI: 10.1016/j.virol.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Type I interferon (IFN) is a critical antiviral response of the host. We found that Interferon Regulatory Factor 3 (IRF-3) was responsible for induction of type I IFN following mouse gammaherpesvirus-68 (MHV68) infection of primary macrophages. Intriguingly, type I IFN signaling was maintained throughout the entire MHV68 replication cycle, in spite of several known viral IFN antagonists. However, MHV68-infected primary macrophages displayed attenuated responses to exogenous type I IFN, suggesting that MHV68 controls the level of type I IFN signaling that is allowed to occur during replication. Type I IFN receptor and IRF-3 were necessary to attenuate transcription of MHV68 RTA, an immediate early gene critical for replication. Furthermore, higher constitutive activity of RTA promoters was observed in the absence of type I IFN signaling. Our study suggests that MHV68 has preserved the ability to sense type I IFN status of the host in order to limit lytic replication.
Collapse
Affiliation(s)
- Brittani M Wood
- Department of Microbiology and Molecular Genetics, Cancer Center, Medical College of Wisconsin, USA
| | | | | | | |
Collapse
|
38
|
Samuel S, Beljanski V, Van Grevenynghe J, Richards S, Ben Yebdri F, He Z, Nichols C, Belgnaoui SM, Steel C, Goulet ML, Shamy A, Brown D, Abesada G, Haddad EK, Hiscott J. BCL-2 inhibitors sensitize therapy-resistant chronic lymphocytic leukemia cells to VSV oncolysis. Mol Ther 2013; 21:1413-23. [PMID: 23689597 DOI: 10.1038/mt.2013.91] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/12/2013] [Indexed: 12/19/2022] Open
Abstract
Many primary cancers including chronic lymphocytic leukemia (CLL) are resistant to vesicular stomatitis virus (VSV)-induced oncolysis due to overexpression of the antiapoptotic and antiautophagic members of the B-cell lymphoma-2 (BCL-2) family. In the present study, we investigated the mechanisms of CLL cell death induced as a consequence of VSV infection in the presence of BCL-2 inhibitors, obatoclax, and ABT-737 in primary ex vivo CLL patient samples. Microarray analysis of primary CD19⁺ CD5⁺ CLL cells treated with obatoclax and VSV revealed changes in expression of genes regulating apoptosis, the mechanistic target of rapamycin (mTOR) pathway, and cellular metabolism. A combined therapeutic effect was observed for VSV and BCL-2 inhibitors in cells from untreated patients and from patients unresponsive to standard of care therapy. In addition, combination treatment induced several markers of autophagy--LC3-II accumulation, p62 degradation, and staining of autophagic vacuoles. Inhibition of early stage autophagy using 3-methyladenine (3-MA) led to increased apoptosis in CLL samples. Mechanistically, a combination of BCL-2 inhibitors and VSV disrupted inhibitory interactions of Beclin-1 with BCL-2 and myeloid cell leukemia-1 (MCL-1), thus biasing cells toward autophagy. We propose a mechanism in which changes in cellular metabolism, coupled with pharmacologic disruption of the BCL-2-Beclin-1 interactions, facilitate induction of apoptosis and autophagy to mediate the cytolytic effect of VSV.
Collapse
Affiliation(s)
- Sara Samuel
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Molecular Biomarkers in Chronic Lymphocytic Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:193-214. [DOI: 10.1007/978-1-4614-8051-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
|
41
|
S1P1 expression is controlled by the pro-oxidant activity of p66Shc and is impaired in B-CLL patients with unfavorable prognosis. Blood 2012; 120:4391-9. [PMID: 23033271 DOI: 10.1182/blood-2012-04-425959] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although intrinsic apoptosis defects are causal to the extended survival of chronic lymphocytic leukemia (CLL) B cells, several lines of evidence support a contribution of the peripheral lymphoid organs and BM microenvironment to the extended lifespan of leukemic B cells. Lymphocyte trafficking is controlled by homing signals provided by stromal cell-derived chemokines and egress signals provided by sphingosine-1-phosphate (S1P). In the present study, we show that expression of S1P1, the S1P receptor responsible for lymphocyte egress, is selectively reduced in CLL B cells with unmutated IGHV. Expression of S1P2, which controls B-cell homeostasis, is also impaired in CLL B cells but independently of the IGHV mutational status. We provide evidence herein that p66Shc, a Shc adaptor family member the deficiency of which is implicated in the apoptosis defects of CLL B cells, controls S1P1 expression through its pro-oxidant activity. p66Shc also controls the expression of the homing receptor CCR7, which opposes S1P1 by promoting lymphocyte retention in peripheral lymphoid organs. The results of the present study provide insights into the regulation of S1P1 expression in B cells and suggest that defective egress caused by impaired S1P1 expression contributes to the extended survival of CLL B cells by prolonging their residency in the prosurvival niche of peripheral lymphoid organs.
Collapse
|
42
|
Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, Liu P, Hong M, Miao KR, Liu P, Xu W, Li JY. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 2012; 33:1294-301. [DOI: 10.1093/carcin/bgs179] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Abstract
Oxidative stress and the accumulation of reactive oxygen species (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option. However, studies have shown that ROS increases expression of CXCR4 in cancer and immune cells. CXCR4 expression in tumors strongly correlates to metastasis and poor prognosis. Herein, we discuss an emerging relationship between ROS and CXCR4 in cancer cells.
Collapse
|
44
|
The miR-17∼92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 2012; 26:1584-93. [PMID: 22343732 DOI: 10.1038/leu.2012.44] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells from clinically aggressive cases have a greater capacity to respond to external microenvironmental stimuli, including those transduced through Toll-like-receptor-9 (TLR9). Concomitant microRNA and gene expression profiling in purified CLL cells (n=17) expressing either unmutated (UM) or mutated (M) IGHV genes selected microRNAs from the miR-17∼92 family as significantly upregulated and in part responsible for modifications in the gene expression profile of UM CLL cells stimulated with the TLR9 agonist CpG. Notably, the stable and sustained upregulation of miR-17∼92 microRNAs by CpG was preceded by a transient induction of the proto-oncogene MYC. The enforced expression of miR-17, a major member from this family, reduced the expression of the tumor suppressor genes E2F5, TP53INP1, TRIM8 and ZBTB4, and protected cells from serum-free-induced apoptosis (P ≤ 0.05). Consistently, transfection with miR-17∼92 family antagomiRs reduced Bromo-deoxy-uridine incorporation in CpG-stimulated UM CLL cells. Finally, miR-17 expression levels, evaluated in 83 CLL samples, were significantly higher in UM (P=0.03) and ZAP-70(high) (P=0.02) cases. Altogether, these data reveal a role for microRNAs of the miR-17∼92 family in regulating pro-survival and growth-promoting responses of CLL cells to TLR9 triggering. Overall, targeting of this pathway may represent a novel therapeutic option for management of aggressive CLL.
Collapse
|
45
|
|