1
|
Wiese W, Galita G, Siwecka N, Rozpędek-Kamińska W, Slupianek A, Majsterek I. Endoplasmic Reticulum Stress in Acute Myeloid Leukemia: Pathogenesis, Prognostic Implications, and Therapeutic Strategies. Int J Mol Sci 2025; 26:3092. [PMID: 40243748 DOI: 10.3390/ijms26073092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that poses a significant therapeutic challenge due to its high recurrence rate and demanding treatment regimens. Increasing evidence suggests that endoplasmic reticulum (ER) stress and downstream activation of the unfolded protein response (UPR) pathway play a key role in the pathogenesis of AML. ER stress is triggered by the accumulation of misfolded or unfolded proteins within the ER. This causes activation of the UPR to restore cellular homeostasis. However, the UPR can shift from promoting survival to inducing apoptosis under prolonged or excessive stress conditions. AML cells can manipulate the UPR pathway to evade apoptosis, promoting tumor progression and resistance against various therapeutic strategies. This review provides the current knowledge on ER stress in AML and its prognostic and therapeutic implications.
Collapse
MESH Headings
- Humans
- Endoplasmic Reticulum Stress
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/diagnosis
- Unfolded Protein Response
- Prognosis
- Apoptosis
- Animals
- Signal Transduction
Collapse
Affiliation(s)
- Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Artur Slupianek
- Office of the Vice President for Research, Temple University, Philadelphia, PA 19140, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Fei L, Wenjie L, Yanan C, Hao X. Identification of a novel unfolded protein response related signature for predicting the prognosis of acute myeloid leukemia. Sci Rep 2025; 15:6705. [PMID: 40000874 PMCID: PMC11861913 DOI: 10.1038/s41598-025-91524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
The unfolded protein response (UPR) plays a pivotal role in the pathogenesis and progression of acute myeloid leukemia (AML). This study aims to investigate the prognostic value of UPR-related genes (URGs) and establish a UPR-related gene signature (URGsig) to enhance prognosis prediction and guide therapeutic decision-making in AML. Gene expression profiles of AML patients were obtained from the GDC and GEO databases. Cox regression and LASSO regression analyses were applied to identify key genes for the construction of URGsig. Comprehensive bioinformatics analyses were conducted to elucidate the biological and clinical implications of URGsig. A nomogram integrating URGs and clinical prognostic features was developed to predict survival probability for AML patients. Additionally, the differential expression of core genes within the URGsig was validated in clinical samples. Notably, two distinct UPR-related subtypes were identified, and they displayed significant heterogeneity in clinical outcomes and tumor microenvironment (TME). The URGsig, comprising six URGs, showed a strong correlation with survival outcomes and exhibited robust predictive capabilities. Importantly, patients categorized into the high-risk subgroup based on URGsig were predicted to show lower chemosensitivity but a better response to immunotherapy. The nomogram performed well in prognosis prediction, with an area under the curve (AUC) of 0.912 for 5-year overall survival. In summary, our findings highlight the URGsig as a promising prognostic biomarker and provide novel insights into the mechanism by which UPR influences the immune landscape of AML. This paradigm may lay a foundation for the development of personalized treatment strategies for AML patients.
Collapse
Affiliation(s)
- Long Fei
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan, 430016, China
| | - Lu Wenjie
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan, 430016, China
| | - Chu Yanan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiong Hao
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan, 430016, China.
| |
Collapse
|
3
|
Ji Q, Tu Z, Liu J, Zhou Z, Li F, Zhu X, Huang K. RUNX1-PDIA5 Axis Promotes Malignant Progression of Glioblastoma by Regulating CCAR1 Protein Expression. Int J Biol Sci 2024; 20:4364-4381. [PMID: 39247813 PMCID: PMC11379074 DOI: 10.7150/ijbs.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
PDIA5 is responsible for modification of disulfide bonds of proteins. However, its impact on the malignant progression of glioblastoma multiforme (GBM) remains unknown. We analyzed the expression and prognostic significance of PDIA5 in cohorts of GBM and clinical samples. The PDIA5 protein was significantly overexpressed in GBM tissues, and higher expression of PDIA5 was statistically associated with a worse prognosis in patients with GBM. Transcriptional data from PDIA5 knockdown GBM cells revealed that downstream regulatory genes of PDIA5 were enriched in malignant regulatory pathways and PDIA5 enhanced the proliferative and invasive abilities of GBM cells. By constructing a PDIA5 CXXC motif mutant plasmid, we found CCAR1 was the vital downstream factor of PDIA5 in regulating GBM malignancy in vitro and in vivo. Additionally, RUNX1 bound to the promoter region of PDIA5 and regulated gene transcription, leading to activation of the PDIA5/CCAR1 regulatory axis in GBM. The RUNX1/PDIA5/CCAR1 axis significantly influenced the malignant behavior of GBM cells. In conclusion, this study comprehensively elucidates the crucial role of PDIA5 in the malignant progression of GBM. Downregulating PDIA5 can mitigate the malignant biological behavior of GBM both in vitro and in vivo, potentially improving the efficacy of treatment for clinical patients with GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P. R. China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Zhihong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Fengze Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
4
|
Ellsworth PN, Herring JA, Leifer AH, Ray JD, Elison WS, Poulson PD, Crabtree JE, Van Ry PM, Tessem JS. CEBPA Overexpression Enhances β-Cell Proliferation and Survival. BIOLOGY 2024; 13:110. [PMID: 38392328 PMCID: PMC10887016 DOI: 10.3390/biology13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A commonality between type 1 and type 2 diabetes is the decline in functional β-cell mass. The transcription factor Nkx6.1 regulates β-cell development and is integral for proper β-cell function. We have previously demonstrated that Nkx6.1 depends on c-Fos mediated upregulation and the nuclear hormone receptors Nr4a1 and Nr4a3 to increase β-cell insulin secretion, survival, and replication. Here, we demonstrate that Nkx6.1 overexpression results in upregulation of the bZip transcription factor CEBPA and that CEBPA expression is independent of c-Fos regulation. In turn, CEBPA overexpression is sufficient to enhance INS-1 832/13 β-cell and primary rat islet proliferation. CEBPA overexpression also increases the survival of β-cells treated with thapsigargin. We demonstrate that increased survival in response to ER stress corresponds with changes in expression of various genes involved in the unfolded protein response, including decreased Ire1a expression. These data show that CEBPA is sufficient to enhance functional β-cell mass by increasing β-cell proliferation and modulating the unfolded protein response.
Collapse
Affiliation(s)
- Peter N Ellsworth
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Herring
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Aaron H Leifer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jason D Ray
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Peter Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Śniegocka M, Liccardo F, Fazi F, Masciarelli S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist Updat 2022; 64:100853. [PMID: 35870226 DOI: 10.1016/j.drup.2022.100853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
7
|
3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia. Leukemia 2022; 36:100-110. [PMID: 34373586 PMCID: PMC8732298 DOI: 10.1038/s41375-021-01378-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their metabolic pathways have been implicated in disease development and therapeutic response; however, the detailed mechanisms remain unclear. Using a sphingolipid network focused CRISPR/Cas9 library screen, we identified an endoplasmic reticulum (ER) enzyme, 3-Ketodihydrosphingosine reductase (KDSR), to be essential for leukemia cell maintenance. Loss of KDSR led to apoptosis, cell cycle arrest, and aberrant ER structure. Transcriptomic analysis revealed the indispensable role of KDSR in maintaining the unfolded protein response (UPR) in ER. High-density CRISPR tiling scan and sphingolipid mass spectrometry pinpointed the critical role of KDSR's catalytic function in leukemia. Mechanistically, depletion of KDSR resulted in accumulated 3-ketodihydrosphingosine (KDS) and dysregulated UPR checkpoint proteins PERK, ATF6, and ATF4. Finally, our study revealed the synergism between KDSR suppression and pharmacologically induced ER-stress, underscoring a therapeutic potential of combinatorial targeting sphingolipid metabolism and ER homeostasis in leukemia treatment.
Collapse
|
8
|
Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC PLANT BIOLOGY 2021; 21:557. [PMID: 34814838 PMCID: PMC8609882 DOI: 10.1186/s12870-021-03325-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. RESULTS In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. CONCLUSION Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- Institute of Shandong River Wetlands, Jinan, Shandong, 271100, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhou Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Mengyu Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
9
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts. Cancers (Basel) 2021; 13:cancers13163941. [PMID: 34439096 PMCID: PMC8393688 DOI: 10.3390/cancers13163941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagulant activity. Downregulation of the TF protein was mainly restricted to its non-coagulant, cryptic pool and was at least partially regulated on the mRNA level in LPS-stimulated monocytes. Collectively, our study indicates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with the most abundant PDI being a promising therapeutic target in the management of AML-associated coagulopathies. Abstract Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.
Collapse
|
11
|
Hossin AY, Inafuku M, Takara K, Nugara RN, Oku H. Syringin: A Phenylpropanoid Glycoside Compound in Cirsium brevicaule A. GRAY Root Modulates Adipogenesis. Molecules 2021; 26:molecules26061531. [PMID: 33799634 PMCID: PMC7999402 DOI: 10.3390/molecules26061531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cirsium brevicaule A. GRAY is a wild perennial herb, and its roots (CbR) have traditionally been used as both food and medicine on the Japanese islands of Okinawa and Amami. The present study evaluated the antiadipogenic effect of CbR using mouse embryonic fibroblast cell line 3T3-L1 from JCRB cell bank. Dried CbR powder was serially extracted with solvents of various polarities, and these crude extracts were tested for antiadipogenic activity. Treatment with the methanol extract of CbR showed a significant suppression of lipid accumulation in 3T3-L1 cells. Methanol extract of CbR was then fractionated and subjected to further activity analyses. The phenylpropanoid glycosidic molecule syringin was identified as an active compound. Syringin dose dependently suppressed lipid accumulation of 3T3-L1 cells without cytotoxicity, and significantly reduced the expressions of peroxisome proliferator-activated receptor gamma, the master regulator of adipogenesis, and other differentiation markers. It was demonstrated that syringin effectively enhanced the phosphorylation of the AMP-activated protein kinase and acetyl-CoA carboxylase. These results indicate that syringin attenuates adipocyte differentiation, adipogenesis, and promotes lipid metabolism; thus, syringin may potentially serve as a therapeutic candidate for treatment of obesity.
Collapse
Affiliation(s)
- Abu Yousuf Hossin
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
| | - Masashi Inafuku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8978; Fax: +81-98895-8944
| | - Kensaku Takara
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Ruwani N. Nugara
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
- Faculty of Technology, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Hirosuke Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (A.Y.H.); (K.T.); (H.O.)
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
| |
Collapse
|
12
|
Wang XT, Zhou L, Cai XY, Xu FX, Xu ZH, Li XY, Shen Y. Deletion of Mea6 in Cerebellar Granule Cells Impairs Synaptic Development and Motor Performance. Front Cell Dev Biol 2021; 8:627146. [PMID: 33718348 PMCID: PMC7946997 DOI: 10.3389/fcell.2020.627146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
The cerebellum is conceptualized as a processor of complex movements. Many diseases with gene-targeted mutations, including Fahr's disease associated with the loss-of-function mutation of meningioma expressed antigen 6 (Mea6), exhibit cerebellar malformations, and abnormal motor behaviors. We previously reported that the defects in cerebellar development and motor performance of Nestin-Cre;Mea6 F/F mice are severer than those of Purkinje cell-targeted pCP2-Cre;Mea6 F/F mice, suggesting that Mea6 acts on other types of cerebellar cells. Hence, we investigated the function of Mea6 in cerebellar granule cells. We found that mutant mice with the specific deletion of Mea6 in granule cells displayed abnormal posture, balance, and motor learning, as indicated in footprint, head inclination, balanced beam, and rotarod tests. We further showed that Math1-Cre;Mea6 F/F mice exhibited disrupted migration of granule cell progenitors and damaged parallel fiber-Purkinje cell synapses, which may be related to impaired intracellular transport of vesicular glutamate transporter 1 and brain-derived neurotrophic factor. The present findings extend our previous work and may help to better understand the pathogenesis of Fahr's disease.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Yu Cai
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Xiao Xu
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Heng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yao Li
- Department of Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Tandon A, Birkenhagen J, Nagalla D, Kölker S, Sauer SW. ADP-dependent glucokinase as a novel onco-target for haematological malignancies. Sci Rep 2020; 10:13584. [PMID: 32788680 PMCID: PMC7423609 DOI: 10.1038/s41598-020-70014-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
Warburg effect or aerobic glycolysis provides selective growth advantage to aggressive cancers. However, targeting oncogenic regulators of Warburg effect has always been challenging owing to the wide spectrum of roles of these molecules in multitude of cells. In this study, we present ADP-dependent glucokinase (ADPGK) as a novel glucose sensor and a potential onco-target in specifically high-proliferating cells in Burkitt’s lymphoma (BL). Previously, we had shown ADPGK to play a major role in T-cell activation and induction of Warburg effect. We now report ADPGK knock-out Ramos BL cells display abated in vitro and in vivo tumour aggressiveness, via tumour-macrophage co-culture, migration and Zebrafish xenograft studies. We observed perturbed glycolysis and visibly reduced markers of Warburg effect in ADPGK knock-out cells, finally leading to apoptosis. We found repression of MYC proto-oncogene, and up to four-fold reduction in accumulated mutations in translocated MYC in knock-out cells, signifying a successful targeting of the malignancy. Further, the activation induced differentiation capability of knock-out cells was impaired, owing to the inability to cope up with increased energy demands. The effects amplified greatly upon stimulation-based proliferation, thus providing a novel Burkitt’s lymphoma targeting mechanism originating from metabolic catastrophe induced in the cells by removal of ADPGK.
Collapse
Affiliation(s)
- Amol Tandon
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Jana Birkenhagen
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Deepthi Nagalla
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven Wolfgang Sauer
- Division of Child Neurology and Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
15
|
Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers (Basel) 2020; 12:cancers12020333. [PMID: 32024211 PMCID: PMC7072709 DOI: 10.3390/cancers12020333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-1580
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
16
|
Wang XT, Cai XY, Xu FX, Zhou L, Zheng R, Ma KY, Xu ZH, Shen Y. MEA6 Deficiency Impairs Cerebellar Development and Motor Performance by Tethering Protein Trafficking. Front Cell Neurosci 2019; 13:250. [PMID: 31244610 PMCID: PMC6580151 DOI: 10.3389/fncel.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Meningioma expressed antigen 6 (MEA6), also called cutaneous T cell lymphoma-associated antigen 5 (cTAGE5), was initially found in tumor tissues. MEA6 is located in endoplasmic reticulum (ER) exit sites and regulates the transport of collagen, very low density lipoprotein, and insulin. It is also reported that MEA6 might be related to Fahr's syndrome, which comprises neurological, movement, and neuropsychiatric disorders. Here, we show that MEA6 is critical to cerebellar development and motor performance. Mice with conditional knockout of MEA6 (Nestin-Cre;MEA6F/F) display smaller sizes of body and brain compared to control animals, and survive maximal 28 days after birth. Immunohistochemical and behavioral studies demonstrate that these mutant mice have defects in cerebellar development and motor performance. In contrast, PC deletion of MEA6 (pCP2-Cre;MEA6F/F) causes milder phenotypes in cerebellar morphology and motor behaviors. While pCP2-Cre;MEA6F/F mice have normal lobular formation and gait, they present the extensive self-crossing of PC dendrites and damaged motor learning. Interestingly, the expression of key molecules that participates in cerebellar development, including Slit2 and brain derived neurotrophic factor (BDNF), is significantly increased in ER, suggesting that MEA6 ablation impairs ER function and thus these proteins are arrested in ER. Our study provides insight into the roles of MEA6 in the brain and the pathogenesis of Fahr's syndrome.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Yu Cai
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang-Xiao Xu
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Zheng
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuang-Yi Ma
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Heng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Sun J, Mu H, Yu J, Li L, Yan H, Li G, Tan H, Yang N, Yang X, Yi L. Diallyl disulfide down-regulates calreticulin and promotes C/EBPα expression in differentiation of human leukaemia cells. J Cell Mol Med 2018; 23:194-204. [PMID: 30394654 PMCID: PMC6307788 DOI: 10.1111/jcmm.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL-60 cell differentiation involves down-regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS-induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein-α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL-60 cells resulted in down-regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL-60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS-mediated down-regulation of CRT and up-regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG-rich element in the 3' untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS-induced leukaemic cell differentiation.
Collapse
Affiliation(s)
- Jing Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hongxiang Mu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Jia Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hongxia Yan
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Guoqing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hui Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Nanyang Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Lan Yi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Carlsten M, Namazi A, Reger R, Levy E, Berg M, St Hilaire C, Childs RW. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. Oncoimmunology 2018; 8:e1534664. [PMID: 30713790 PMCID: PMC6343814 DOI: 10.1080/2162402x.2018.1534664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/16/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Although the proteasome inhibitor bortezomib has significantly improved the survival of patients with multiple myeloma (MM), the disease remains fatal as most patients eventually develop progressive disease. Recent data indicate that MM cells can evade bortezomib-induced cell death by undergoing autophagy as a consequence of endoplasmatic reticulum (ER)-stress induced by proteasome inhibition. Here we show that bortezomib sensitizes MM cells to NK cell killing via two distinct mechanisms: a) upregulation of the TRAIL death receptor DR5 on the surface of MM cells and b) ER-stress induced reduction of cell surface HLA-E. The latter mechanism is completely novel and was found to be exclusively controlled by the inhibitory receptor NKG2A, with NKG2A single-positive (NKG2ASP) NK cells developing a selective augmentation in tumor killing as a consequence of bortezomib-induced loss of HLA-E on the non-apoptotic MM cells. In contrast, the expression of classical HLA class I molecules remained unchanged following bortezomib exposure, diminishing the augmentation of MM killing by NK cells expressing KIR. Further, we found that feeder cell-based ex vivo expansion of NK cells increased both NK cell TRAIL surface expression and the percentage of NKG2ASP NK cells compared to unexpanded controls, substantially augmenting their capacity to kill bortezomib-treated MM cells. Based on these findings, we hypothesize that infusion of ex vivo expanded NK cells following treatment with bortezomib could eradicate MM cells that would normally evade killing through proteasome inhibition alone, potentially improving long-term survival among MM patients.
Collapse
Affiliation(s)
- Mattias Carlsten
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Ali Namazi
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Robert Reger
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Emily Levy
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Maria Berg
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Cynthia St Hilaire
- Laboratory of Cardiovascular Regenerative Medicine, Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
19
|
Koczian F, Nagło O, Vomacka J, Vick B, Servatius P, Zisis T, Hettich B, Kazmaier U, Sieber SA, Jeremias I, Zahler S, Braig S. Targeting the endoplasmic reticulum-mitochondria interface sensitizes leukemia cells to cytostatics. Haematologica 2018; 104:546-555. [PMID: 30309851 PMCID: PMC6395311 DOI: 10.3324/haematol.2018.197368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Combination chemotherapy has proven to be a favorable strategy to treat acute leukemia. However, the introduction of novel compounds remains challenging and is hindered by a lack of understanding of their mechanistic interactions with established drugs. In the present study, we demonstrate a highly increased response of various acute leukemia cell lines, drug-resistant cells and patient-derived xenograft cells by combining the recently introduced protein disulfide isomerase inhibitor PS89 with cytostatics. In leukemic cells, a proteomics-based target fishing approach revealed that PS89 affects a whole network of endoplasmic reticulum homeostasis proteins. We elucidate that the strong induction of apoptosis in combination with cytostatics is orchestrated by the PS89 target B-cell receptor-associated protein 31, which transduces apoptosis signals at the endoplasmic reticulum -mitochondria interface. Activation of caspase-8 and cleavage of B-cell receptor-associated protein 31 stimulate a pro-apoptotic crosstalk including release of calcium from the endoplasmic reticulum and an increase in the levels of reactive oxygen species resulting in amplification of mitochondrial apoptosis. The findings of this study promote PS89 as a novel chemosensitizing agent for the treatment of acute leukemia and uncovers that targeting the endoplasmic reticulum - mitochondrial network of cell death is a promising approach in combination therapy.
Collapse
Affiliation(s)
- Fabian Koczian
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Olga Nagło
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Jan Vomacka
- Department of Chemistry, Technical University of Munich, Garching
| | - Binje Vick
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health, Munich
| | - Phil Servatius
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Themistoklis Zisis
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Britta Hettich
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich, Garching
| | - Irmela Jeremias
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health, Munich
| | - Stefan Zahler
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| | - Simone Braig
- Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich
| |
Collapse
|
20
|
Chlebowska-Tuz J, Sokolowska O, Gaj P, Lazniewski M, Firczuk M, Borowiec K, Sas-Nowosielska H, Bajor M, Malinowska A, Muchowicz A, Ramji K, Stawinski P, Sobczak M, Pilch Z, Rodziewicz-Lurzynska A, Zajac M, Giannopoulos K, Juszczynski P, Basak GW, Plewczynski D, Ploski R, Golab J, Nowis D. Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells. Haematologica 2018; 103:1843-1852. [PMID: 30002127 PMCID: PMC6278960 DOI: 10.3324/haematol.2018.190231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.
Collapse
Affiliation(s)
- Justyna Chlebowska-Tuz
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw
| | - Olga Sokolowska
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Postgraduate School of Molecular Medicine, Medical University of Warsaw
| | - Pawel Gaj
- Department of Immunology, Medical University of Warsaw.,Laboratory of Human Cancer Genetics, Center of New Technologies, University of Warsaw
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw
| | | | | | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw
| | | | - Agata Malinowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw
| | - Piotr Stawinski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Mateusz Sobczak
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw
| | | | - Malgorzata Zajac
- Department of Experimental Hematooncology, Medical University of Lublin
| | | | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Grzegorz W Basak
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw
| | - Rafal Ploski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw .,Center for Preclinical Research and Technology, Medical University of Warsaw
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw .,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Genomic Medicine, Medical University of Warsaw, Poland
| |
Collapse
|
21
|
Masciarelli S, Capuano E, Ottone T, Divona M, De Panfilis S, Banella C, Noguera NI, Picardi A, Fontemaggi G, Blandino G, Lo-Coco F, Fazi F. Retinoic acid and arsenic trioxide sensitize acute promyelocytic leukemia cells to ER stress. Leukemia 2017; 32:285-294. [PMID: 28776567 PMCID: PMC5808088 DOI: 10.1038/leu.2017.231] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/10/2017] [Accepted: 06/20/2017] [Indexed: 01/03/2023]
Abstract
Retinoic acid (RA) in association with chemotherapy or with arsenic trioxide (ATO) results in high cure rates of acute promyelocytic leukemia (APL). We show that RA-induced differentiation of human leukemic cell lines and primary blasts dramatically increases their sensitivity to endoplasmic reticulum (ER) stress-inducing drugs at doses that are not toxic in the absence of RA. In addition, we demonstrate that the PERK pathway, triggered in response to ER stress, has a major protective role. Moreover, low amounts of pharmacologically induced ER stress are sufficient to strongly increase ATO toxicity. Indeed, in the presence of ER stress, ATO efficiently induced apoptosis in RA-sensitive and RA-resistant APL cell lines, at doses ineffective in the absence of ER stress. Our findings identify the ER stress-related pathways as potential targets in the search for novel therapeutic strategies in AML.
Collapse
Affiliation(s)
- S Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - E Capuano
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - T Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - S De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - C Banella
- Laboratory of Neuro-Oncohematology Unit, Santa Lucia Foundation, Rome, Italy
| | - N I Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuro-Oncohematology Unit, Santa Lucia Foundation, Rome, Italy
| | - A Picardi
- Stem Cell Transplant Unit, Rome Transplant Network, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G Fontemaggi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - G Blandino
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - F Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuro-Oncohematology Unit, Santa Lucia Foundation, Rome, Italy
| | - F Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Marschall R, Tudzynski P. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes. Front Microbiol 2017; 8:960. [PMID: 28611757 PMCID: PMC5447010 DOI: 10.3389/fmicb.2017.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS) and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox) complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s) and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR)-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| |
Collapse
|
23
|
Li ZY, Zhang C, Chen L, Chen BD, Li QZ, Zhang XJ, Li WP. Radicol, a Novel Trinorguaiane-Type Sesquiterpene, Induces Temozolomide-Resistant Glioma Cell Apoptosis via ER Stress and Akt/mTOR Pathway Blockade. Phytother Res 2017; 31:729-739. [PMID: 28240396 DOI: 10.1002/ptr.5793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/29/2016] [Accepted: 02/05/2017] [Indexed: 11/11/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system (CNS) in adults. Multidrug resistance (MDR) results in undesirable prognosis during GBM chemotherapy. In this study, we determined that Radicol (RAD), a novel trinorguaiane-type sesquiterpene originally isolated from the root of Dictamnus radicis Cortex, exhibited potently cytotoxic effect on temozolomide (TMZ)-resistant GBM cell lines in a dose-dependent manner. Radicol-induced apoptosis was confirmed with Hoechst 33342/propidium iodide and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labelling (TUNEL) staining. Studies investigating the mechanism revealed that RAD triggered an attenuation of protein disulphide isomerase (PDI) and induced the unmitigated unfolded protein response (UPR) and lethal endoplasmic reticulum (ER) stress. Simultaneously, we further demonstrated that RAD suppressed the activation of Akt/mTOR/p70S6K phosphorylation by up-regulating the induction of glycogen synthase kinase-3β (GSK-3β). These results established a link between RAD-induced ER stress and inhibition of the Akt/mTOR/p70S6K pathway, and the attenuation of PDI and activation of GSK-3β might be the synergistic target of antineoplastic effects during RAD-induced apoptosis. These findings suggested that RAD, possessing multiple cytotoxicity targets, low molecular weight and high lipid solubility, could be a promising agent for the treatment of malignant gliomas. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zong-Yang Li
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Ce Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Lei Chen
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Xie-Jun Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China.,Shenzhen Key Laboratory of Neurosurgery, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| |
Collapse
|
24
|
Nitroarachidonic acid (NO 2AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines. Biochim Biophys Acta Gen Subj 2017; 1861:1131-1139. [PMID: 28215702 DOI: 10.1016/j.bbagen.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.
Collapse
|
25
|
JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia. Leukemia 2016; 31:1196-1205. [PMID: 27840425 DOI: 10.1038/leu.2016.329] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The transcription factor JUN is frequently overexpressed in multiple genetic subtypes of acute myeloid leukemia (AML); however, the functional role of JUN in AML is not well defined. Here we report that short hairpin RNA (shRNA)-mediated inhibition of JUN decreases AML cell survival and propagation in vivo. By performing RNA sequencing analysis, we discovered that JUN inhibition reduces the transcriptional output of the unfolded protein response (UPR), an intracellular signaling transduction network activated by endoplasmic reticulum (ER) stress. Specifically, we found that JUN is activated by MEK signaling in response to ER stress, and that JUN binds to the promoters of several key UPR effectors, such as XBP1 and ATF4, to activate their transcription and allow AML cells to properly negotiate ER stress. In addition, we observed that shRNA-mediated inhibition of XBP1 or ATF4 induces AML cell apoptosis and significantly extends disease latency in vivo tying the reduced survival mediated by JUN inhibition to the loss of pro-survival UPR signaling. These data uncover a previously unrecognized role of JUN as a regulator of the UPR as well as provide key new insights into the how ER stress responses contribute to AML and identify JUN and the UPR as promising therapeutic targets in this disease.
Collapse
|
26
|
A microRNA-mediated decrease in eukaryotic initiation factor 2α promotes cell survival during PS-341 treatment. Sci Rep 2016; 6:21565. [PMID: 26898246 PMCID: PMC4761930 DOI: 10.1038/srep21565] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) play pivotal roles in carcinogenesis and endoplasmic reticulum (ER) that performs the folding, modification and trafficking of proteins targeted to the secretory pathway. Cancer cells often endure ER stress during tumor progression but use the adaptive ER stress response to gain survival advantage. Here we report: (i) A group of miRs, including miR-30b-5p and miR-30c-5p, are upregulated by proteasome inhibitor PS-341 treatment, in HepG2 and MDA-MB-453 cells. (ii) Two representative PS-341-induced miRs: miR-30b-5p and miR-30c-5p are found to promote cell proliferation and anti-apoptosis in both tumor cells. (iii) eIF2α is confirmed as the congenerous target of miR-30b-5p and miR-30c-5p, essential to the anti-apoptotic function of these miRs. (iv) Upregulation of miR-30b-5p or miR-30c-5p, which occurs latter than the increase of phosphorylated eIF2α (p-eIF2α) in the cell under ER stress, suppresses the p-eIF2α/ATF4/CHOP pro-apoptotic pathway. (v) Inhibition of the miR-30b-5p or miR-30c-5p sensitizes the cancer cells to the cytotoxicity of proteasome inhibition. In conclusion, we unravels a new miRs-based mechanism that helps maintain intracellular proteostasis and promote cell survival during ER stress through upregulation of miR-30b-5p and miR-30c-5p which target eIF2α and thereby inhibit the p-eIF2α/ATF4/CHOP pro-apoptotic pathway, identifying miR-30b-5p and miR-30c-5p as potentially new targets for anti-cancer therapies.
Collapse
|
27
|
Mechanistic Study of the Phytocompound, 2- β -D-Glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne in Human T-Cell Acute Lymphocytic Leukemia Cells by Using Combined Differential Proteomics and Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:475610. [PMID: 26557148 PMCID: PMC4628672 DOI: 10.1155/2015/475610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
Bidens pilosa, a medicinal herb worldwide, is rich in bioactive polyynes. In this study, by using high resolution 2-dimensional gel electrophoresis coupled with mass spectrometry analysis, as many as 2000 protein spots could be detected and those whose expression was specifically up- or downregulated in Jurkat T cells responsive to the treatment with 2-β-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHTT) can be identified. GHTT treatment can upregulate thirteen proteins involved in signal transduction, detoxification, metabolism, energy pathways, and channel transport in Jurkat cells. Nine proteins, that is, thioredoxin-like proteins, BH3 interacting domain death agonist (BID protein involving apoptosis), methylcrotonoyl-CoA carboxylase beta chain, and NADH-ubiquinone oxidoreductase, were downregulated in GHTT-treated Jurkat cells. Further, bioinformatics tool, Ingenuity software, was used to predict signaling pathways based on the data obtained from the differential proteomics approach. Two matched pathways, relevant to mitochondrial dysfunction and apoptosis, in Jurkat cells were inferred from the proteomics data. Biochemical analysis further verified both pathways involving GHTT in Jurkat cells. These findings do not merely prove the feasibility of combining proteomics and bioinformatics methods to identify cellular proteins as key players in response to the phytocompound in Jurkat cells but also establish the pathways of the proteins as the potential therapeutic targets of leukemia.
Collapse
|
28
|
Park S, Huh HJ, Mun YC, Seong CM, Chung WS, Chung HS, Huh J. Calreticulin mRNA expression and clinicopathological characteristics in acute myeloid leukemia. Cancer Genet 2015; 208:630-5. [PMID: 26640226 DOI: 10.1016/j.cancergen.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Calreticulin, encoded by CALR, is a multifunctional protein with roles in calcium homeostasis and chaperoning molecular processes. This study aimed to evaluate calreticulin mRNA expression levels in acute myeloid leukemia (AML) compared with other hematologic malignancies, and to investigate the clinicopathological characteristics associated with expression in AML patients. The study group included 43 patients diagnosed with AML, 57 with other hematologic malignancies, and 21 benign hematologic conditions. CALR mRNA quantification using real-time polymerase chain reaction revealed it to be significantly higher in AML compared with other hematologic malignancies (P < 0.0001). There was no difference in CALR mRNA expression between AML subgroups by karyotype (P = 0.3201). No differences were found in age, white blood cell counts, platelet counts, bone marrow blast percentage, calcium, lactate dehydrogenase or CD34 expression rate between the high and low CALR groups (CALR mRNA ≥ 1.2 fold and <1.2 fold, respectively), although hemoglobin and sex differences were observed. Although statistically not significant, there was a trend that Relapse rate was lower (54.5% vs. 84.6%) (P = 0.1063) and disease-free survival was longer (22 months vs. 7 months) (P = 0.0784) in low CALR group, whereas overall survival was similar between the two groups (11 months and 8 months). The clinical relevance of CALR expression in AML remains to be clarified in a larger cohort.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Calreticulin/analysis
- Calreticulin/genetics
- Calreticulin/metabolism
- Child
- Cytogenetic Analysis
- Female
- Gene Expression Profiling
- Hematologic Diseases/epidemiology
- Hematologic Diseases/genetics
- Hematologic Diseases/metabolism
- Hematologic Diseases/physiopathology
- Humans
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retrospective Studies
- Young Adult
Collapse
Affiliation(s)
- Sholhui Park
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Yeung Chul Mun
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Chu-Myong Seong
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Wha Soon Chung
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hae-Sun Chung
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| | - Jungwon Huh
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
Tommasone S, Talotta C, Gaeta C, Margarucci L, Monti MC, Casapullo A, Macchi B, Prete SP, Ladeira De Araujo A, Neri P. Biomolecular Fishing for Calixarene Partners by a Chemoproteomic Approach. Angew Chem Int Ed Engl 2015; 54:15405-9. [DOI: 10.1002/anie.201508651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Stefano Tommasone
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Luigi Margarucci
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Maria Chiara Monti
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Agostino Casapullo
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| | - Beatrice Macchi
- Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Roma (Italy)
| | - Salvatore Pasquale Prete
- Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Roma (Italy)
| | - Adriana Ladeira De Araujo
- Department of Pathology, Laboratory of Dermatology and Immunodeficiencies, Medical School, University of Sao Paulo (Brasil)
| | - Placido Neri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno, Italy)
| |
Collapse
|
30
|
Tommasone S, Talotta C, Gaeta C, Margarucci L, Monti MC, Casapullo A, Macchi B, Prete SP, Ladeira De Araujo A, Neri P. Biomolecular Fishing for Calixarene Partners by a Chemoproteomic Approach. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
32
|
Yu H, He K, Wang L, Hu J, Gu J, Zhou C, Lu R, Jin Y. Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins. J Cell Sci 2015; 128:2881-90. [PMID: 26065429 DOI: 10.1242/jcs.170282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023] Open
Abstract
A better understanding of molecular regulation in adipogenesis might help the development of efficient strategies to cope with obesity-related diseases. Here, we report that CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ, two crucial pro-adipogenic transcription factors, are controlled at a translational level by serine/threonine kinase 40 (Stk40). Genetic knockout (KO) or knockdown (KD) of Stk40 leads to increased protein levels of C/EBP proteins and adipocyte differentiation in mouse embryonic fibroblasts (MEFs), fetal liver stromal cells, and mesenchymal stem cells (MSCs). In contrast, overexpression of Stk40 abolishes the enhanced C/EBP protein translation and adipogenesis observed in Stk40-KO and -KD cells. Functionally, knockdown of C/EBPβ eliminates the enhanced adipogenic differentiation in Stk40-KO and -KD cells substantially. Mechanistically, deletion of Stk40 enhances phosphorylation of eIF4E-binding protein 1, leading to increased eIF4E-dependent translation of C/EBPβ and C/EBPδ. Knockdown of eIF4E in MSCs decreases translation of C/EBP proteins. Moreover, Stk40-KO fetal livers display an increased adipogenic program and aberrant lipid and steroid metabolism. Collectively, our study uncovers a new repressor of C/EBP protein translation as well as adipogenesis and provides new insights into the molecular mechanism underpinning the adipogenic program.
Collapse
Affiliation(s)
- Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenlin Zhou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Lu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
33
|
Quantitative analysis of the erythrocyte membrane proteins in polycythemia vera patients treated with hydroxycarbamide. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res 2014; 768:16-21. [PMID: 25847384 DOI: 10.1016/j.mrfmmm.2014.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming "regression" of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish "neo-endo-parasites" that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of cancer cells and propose that this compound might be a potent addition to the current chemotherapeutic strategy against cancer.
Collapse
|
35
|
Grek C, Townsend D. Protein Disulfide Isomerase Superfamily in Disease and the Regulation of Apoptosis. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:4-17. [PMID: 25309899 PMCID: PMC4192724 DOI: 10.2478/ersc-2013-0001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis requires the balance of a multitude of signaling cascades that are contingent upon the essential proteins being properly synthesized, folded and delivered to appropriate subcellular locations. In eukaryotic cells the endoplasmic reticulum (ER) is a specialized organelle that is the central site of synthesis and folding of secretory, membrane and a number of organelletargeted proteins. The integrity of protein folding is enabled by the presence of ATP, Ca++, molecular chaperones, as well as an oxidizing redox environment. The imbalance between the load and capacity of protein folding results in a cellular condition known as ER stress. Failure of these pathways to restore ER homeostasis results in the activation of apoptotic pathways. Protein disulfide isomerases (PDI) compose a superfamily of oxidoreductases that have diverse sequences and are localized in the ER, nucleus, cytosol, mitochondria and cell membrane. The PDI superfamily has multiple functions including, acting as molecular chaperones, protein-binding partners, and hormone reservoirs. Recently, PDI family members have been implicated in the regulation of apoptotic signaling events. The complexities underlying the molecular mechanisms that define the switch from pro-survival to pro-death response are evidenced by recent studies that reveal the roles of specific chaperone proteins as integration points in signaling pathways that determine cell fate. The following review discusses the dual role of PDI in cell death and survival during ER stress.
Collapse
Affiliation(s)
- C. Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - D.M. Townsend
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
36
|
Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res 2013; 38:383-92. [PMID: 24418752 DOI: 10.1016/j.leukres.2013.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 11/25/2013] [Accepted: 12/14/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Protein metabolism is an innovative potential therapeutic target for AML. Proteotoxic stress (PS) sensitizes malignant cells for proteasome inhibitor treatment. Some HIV protease inhibitors (HIV-PI) induce PS and may therefore be combined with proteasome inhibitors to achieve PS-targeted therapy of AML. METHODS We investigated the effects of all nine approved HIV-PI alone and in combination with proteasome inhibitors on AML cell lines and primary cells in vitro. RESULTS Ritonavir induced cytotoxicity and PS at clinically achievable concentrations, and induced synergistic PS-triggered apoptosis with bortezomib. Saquinavir, nelfinavir and lopinavir were likewise cytotoxic against primary AML cells, triggered PS-induced apoptosis, inhibited AKT-phosphorylation and showed synergistic cytotoxicity with bortezomib and carfilzomib at low micromolar concentrations. Exclusively nelfinavir inhibited intracellular proteasome activity, including the β2 proteasome activity that is not targeted by bortezomib/carfilzomib. CONCLUSIONS Of the nine currently approved HIV-PI, ritonavir, saquinavir, nelfinavir and lopinavir can sensitize AML primary cells for proteasome inhibitor treatment at low micromolar concentrations and may therefore be tested clinically toward a proteotoxic stress targeted therapy of AML.
Collapse
|
37
|
Ge J, Zhang CJ, Li L, Chong LM, Wu X, Hao P, Sze SK, Yao SQ. Small molecule probe suitable for in situ profiling and inhibition of protein disulfide isomerase. ACS Chem Biol 2013; 8:2577-85. [PMID: 24070012 DOI: 10.1021/cb4002602] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper folding of cellular proteins is assisted by protein disulfide isomerases (PDIs) in the endoplasmic reticulum of mammalian cells. Of the at least 21 PDI family members known in humans, the 57-kDa PDI has been found to be a potential therapeutic target for a variety of human diseases including cancer and neurodegenerative diseases. Consequently, small molecule PDI-targeting inhibitors have been actively pursued in recent years, and thus far, compounds possessing moderate inhibitory activities (IC50 between 0.1 and 100 μM against recombinant PDI) have been discovered. In this article, by using in situ proteome profiling experiments in combination with in vitro PDI enzymatic inhibition assays, we have discovered a phenyl vinyl sulfonate-containing small molecule (P1; shown) as a relatively potent and specific inhibitor of endogenous human PDI in several mammalian cancer cells (e.g., GI50 ∼ 4 μM). It also possesses an IC50 value of 1.7 ± 0.4 μM in an in vitro insulin aggregation assay. Our results indicate P1 is indeed a novel, cell-permeable small molecule PDI inhibitor, and the electrophilic vinyl sulfonate scaffold might serve as a starting point for future development of next-generation PDI inhibitors and probes.
Collapse
Affiliation(s)
- Jingyan Ge
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Chong-Jing Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Lin Li
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Li Min Chong
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Xiaoyuan Wu
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Piliang Hao
- School of Biological
Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- School of Biological
Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
38
|
Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? Cancers (Basel) 2013; 5:1163-76. [PMID: 24202339 PMCID: PMC3795384 DOI: 10.3390/cancers5031163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023] Open
Abstract
Among gynecological malignancies epithelial ovarian cancer (EOC) is the leading cause of death. Despite improvements in conventional chemotherapy combinations, the overall cure rate has remained mostly stable over the years, and only 10%–15% of patients maintain a complete response following first-line therapy. To improve the efficacy of ovarian cancer chemotherapy it is essential to develop drugs with new mechanisms of action. Compared to normal tissues, protein disulfide isomerase (PDI) is overexpressed in ovarian tumors. PDI is a cellular enzyme in the lumen of the endoplasmic reticulum (ER) of eukaryotes or the periplasmic region of prokaryotes. This protein catalyzes the formation and breakage of disulphide bonds between cysteine residues in proteins, which affects protein folding. Selective inhibition of PDI activity has been exhibited both in vitro and in vivo anticancer activity in human ovarian cancer models. PDI inhibition caused accumulation of unfolded or misfolded proteins, which led to ER stress and the unfolded protein response (UPR), and in turn resulted in cell death. Nitazoxanide [NTZ: 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide] is a thiazolide antiparasitic agent with excellent activity against a wide variety of protozoa and helminths. In this article, we propose that NTZ, acting as PDI inhibitor, may be a new and potent addition to the chemotherapeutic strategy against ovarian cancer.
Collapse
|
39
|
Elkis Y, Bel S, Lerer-Goldstein T, Nyska A, Creasy DM, Shpungin S, Nir U. Testosterone deficiency accompanied by testicular and epididymal abnormalities in TMF(-/-) mice. Mol Cell Endocrinol 2013; 365:52-63. [PMID: 23000399 DOI: 10.1016/j.mce.2012.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/01/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
TMF/ARA160 is a Golgi-associated protein, which is essential for spermiogenesis. In this study, we show that lack of TMF/ARA160 leads to defects in both the testis and the epididymis. In the testis, spermatid retention and extensive proliferation of Leydig cells were observed. Concomitantly, the serum levels of luteinizing hormone (LH), a stimulator of Leydig cell proliferation, were significantly increased in TMF(-/-) mice. Structural and functional defects were also seen in the epididymis. These included apoptosis of epithelial epididymal cells and sperm stasis in the cauda. Notably, the serum testosterone levels of TMF(-/-) mice were significantly lower than those of wt mice, and external testosterone administration decreased the number of apoptotic epithelial epididymal cells in TMF(-/-) animals. In summary, we show here for the first time that TMF/ARA160 participates in the control of serum testosterone levels in males, and its absence results in major testicular and epididymal defects.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. Proc Natl Acad Sci U S A 2012; 109:16348-53. [PMID: 22988091 DOI: 10.1073/pnas.1205226109] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerase (PDI), an endoplasmic reticulum chaperone protein, catalyzes disulfide bond breakage, formation, and rearrangement. The effect of PDI inhibition on ovarian cancer progression is not yet clear, and there is a need for potent, selective, and safe small-molecule inhibitors of PDI. Here, we report a class of propynoic acid carbamoyl methyl amides (PACMAs) that are active against a panel of human ovarian cancer cell lines. Using fluorescent derivatives, 2D gel electrophoresis, and MS, we established that PACMA 31, one of the most active analogs, acts as an irreversible small-molecule inhibitor of PDI, forming a covalent bond with the active site cysteines of PDI. We also showed that PDI activity is essential for the survival and proliferation of human ovarian cancer cells. In vivo, PACMA 31 showed tumor targeting ability and significantly suppressed ovarian tumor growth without causing toxicity to normal tissues. These irreversible small-molecule PDI inhibitors represent an important approach for the development of targeted anticancer agents for ovarian cancer therapy, and they can also serve as useful probes for investigating the biology of PDI-implicated pathways.
Collapse
|
41
|
The angiogenesis inhibitor vasostatin is regulated by neutrophil elastase-dependent cleavage of calreticulin in AML patients. Blood 2012; 120:2690-9. [PMID: 22915645 DOI: 10.1182/blood-2012-02-412759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.
Collapse
|
42
|
Pescatore LA, Bonatto D, Forti FL, Sadok A, Kovacic H, Laurindo FRM. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. J Biol Chem 2012; 287:29290-300. [PMID: 22773830 DOI: 10.1074/jbc.m112.394551] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Collapse
Affiliation(s)
- Luciana A Pescatore
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil 05403-000
| | | | | | | | | | | |
Collapse
|
43
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
44
|
The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2012; 32:805-18. [PMID: 22508478 DOI: 10.1038/onc.2012.130] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer progression is characterized by rapidly proliferating cancer cells that are in need of increased protein synthesis. Therefore, enhanced endoplasmic reticulum (ER) activity is required to facilitate the folding, assembly and transportation of membrane and secretory proteins. These functions are carried out by ER chaperones. It is now becoming clear that the ER chaperones have critical functions outside of simply facilitating protein folding. For example, cancer progression requires glucose regulated protein (GRP) 78 for cancer cell survival and proliferation, as well as angiogenesis in the microenvironment. GRP78 can translocate to the cell surface acting as a receptor regulating oncogenic signaling and cell viability. Calreticulin, another ER chaperone, can translocate to the cell surface of apoptotic cancer cells and induce immunogenic cancer cell death and antitumor responses in vivo. Tumor-secreted GRP94 has been shown to elicit antitumor immune responses when used as antitumor vaccines. Protein disulfide isomerase is another ER chaperone that demonstrates pro-oncogenic and pro-survival functions. Because of intrinsic alterations of cellular metabolism and extrinsic factors in the tumor microenvironment, cancer cells are under ER stress, and they respond to this stress by activating the unfolded protein response (UPR). Depending on the severity and duration of ER stress, the signaling branches of the UPR can activate adaptive and pro-survival signals, or induce apoptotic cell death. The protein kinase RNA-like ER kinase signaling branch of the UPR has a dual role in cancer proliferation and survival, and is also required for ER stress-induced autophagy. The activation of the inositol-requiring kinase 1α branch promotes tumorigenesis, cancer cell survival and regulates tumor invasion. In summary, perturbance of ER homeostasis has critical roles in tumorigenesis, and therapeutic modulation of ER chaperones and/or UPR components presents potential antitumor treatments.
Collapse
|
45
|
Requirements for mouse mammary tumor virus Rem signal peptide processing and function. J Virol 2011; 86:214-25. [PMID: 22072771 DOI: 10.1128/jvi.06197-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.
Collapse
|