1
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Koga T. Understanding the pathogenic significance of altered calcium-calmodulin signaling in T cells in autoimmune diseases. Clin Immunol 2024; 262:110177. [PMID: 38460894 DOI: 10.1016/j.clim.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) serves as a pivotal mediator in the regulation of gene expression, influencing the activity of transcription factors within a variety of immune cells, including T cells. Altered CaMK4 signaling is implicated in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, which are characterized by dysregulated immune responses and clinical complexity. These conditions share common disturbances in immune cell functionality, cytokine production, and autoantibody generation, all of which are associated with disrupted calcium-calmodulin signaling. This review underscores the consequences of dysregulated CaMK4 signaling across these diseases, with an emphasis on its impact on Th17 differentiation and T cell metabolism-processes central to maintaining immune homeostasis. A comprehensive understanding of roles of CaMK4 in gene regulation across various autoimmune disorders holds promise for the development of targeted therapies, particularly for diseases driven by Th17 cell dysregulation.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
3
|
Kim JA, Kim SH, Kim JJ, Noh H, Lee SB, Jeong H, Kim J, Jeon D, Seo JS, On D, Yoon S, Lee SG, Lee YW, Jang HJ, Park IH, Oh J, Seok SH, Lee YJ, Hong SM, An SH, Bae JY, Choi JA, Kim SY, Kim YB, Hwang JY, Lee HJ, Kim HB, Jeong DG, Song D, Song M, Park MS, Choi KS, Park JW, Yun JW, Shin JS, Lee HY, Kwon HK, Seo JY, Nam KT, Gee HY, Seong JK. Immune Cells Are Differentially Affected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice. Immune Netw 2024; 24:e7. [PMID: 38725670 PMCID: PMC11076298 DOI: 10.4110/in.2024.24.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.
Collapse
Affiliation(s)
- Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
| | - Su-bin Lee
- Department of Microbiology and Immunology and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Donghun Jeon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Seon Seo
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dain On
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Suhyeon Yoon
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
| | - Sang Gyu Lee
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Korea
| | - In Ho Park
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Korea
| | - Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine, Seoul 02842, Korea
| | - Jung-ah Choi
- Science Unit, International Vaccine Institute, Seoul 08826, Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam 23620, Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 23620, Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34242, Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine, Seoul 02842, Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Korea
- Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul 03080, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Korea
- BIO-MAX Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Gicobi JK, Mao Z, DeFranco G, Hirdler JB, Li Y, Vianzon VV, Dellacecca ER, Hsu MA, Barham W, Yan Y, Mansfield AS, Lin Y, Wu X, Hitosugi T, Owen D, Grams MP, Orme JJ, Lucien F, Zeng H, Park SS, Dong H. Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8 + T cells via ME1 up-regulation. SCIENCE ADVANCES 2023; 9:eadi2414. [PMID: 37967193 PMCID: PMC10651128 DOI: 10.1126/sciadv.adi2414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.
Collapse
Affiliation(s)
- Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zhiming Mao
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Vianca V. Vianzon
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emilia R. Dellacecca
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Michelle A. Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yi Lin
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xiaosheng Wu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael P. Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jacob J. Orme
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Du X, Zhao D, Wang Y, Sun Z, Yu Q, Jiang H, Wang L. Low Serum Calcium Concentration in Patients With Systemic Lupus Erythematosus Accompanied by the Enhanced Peripheral Cellular Immunity. Front Immunol 2022; 13:901854. [PMID: 35757710 PMCID: PMC9226677 DOI: 10.3389/fimmu.2022.901854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Objective This study aims to explore the relationship between serum calcium concentration and peripheral lymphocyte status/Th1/Th2 cytokine levels in SLE patients, and the effect of glucocorticoids (GCs) on the calcium concentration and immune cell activation. Methods The peripheral blood TBNK lymphocyte subsets and Th1/Th2 cytokines in SLE patients with low or normal serum calcium concentration and healthy people were analyzed and compared retrospectively. Peripheral white blood cells (PWBCs) from SLE patients or healthy people were stimulated with PMA or GCs in vitro to test their extracellular calcium concentration and CD8+ T cell activation. Results The percentages of CD8+ T in SLE patients increased, but the increase of the number of CD8+ T cells only occurred in the SLE patients with low serum calcium concentration, and the number of CD45hiCD8+ T cells also increased, suggesting that SLE patients with hypocalcemia tend to possess an enhanced cellular immunity. The results of Th1/Th2 cytokines in peripheral blood showed that the levels of serum IL-2, IL-10, IL-6 and IFN-γ in SLE patients with hypocalcemia were significantly increased. Although the serum levels of TNF-α in SLE patients were –similar to that in healthy people, it was significantly higher than that in SLE patients with normal serum calcium. When comparing the results of Th1/Th2 cytokines in two times of one patient, the serum levels of TNF-α in SLE patients increased while serum calcium levels decreased. The in vitro experiments showed that the decrease of serum calcium concentration in SLE patients was affected by the immune cell activation and the application of GCs, but GCs did not promote the immune cell activation. Conclusions Low serum calcium may make SLE patients in an enhanced cellular immune status and GCs aggravates the decrease of serum calcium levels but has no role on the immune cell activation. It suggests that hypocalcemia possibly promotes the disease activity of SLE patient, which should be paid attention to clinically.
Collapse
Affiliation(s)
- Xue Du
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhengyi Sun
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Qiuyang Yu
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhong B, Zheng J, Wen H, Liao X, Chen X, Rao Y, Yuan P. NEDD4L suppresses PD-L1 expression and enhances anti-tumor immune response in A549 cells. Genes Genomics 2022; 44:1071-1079. [PMID: 35353342 DOI: 10.1007/s13258-022-01238-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) poses a salient threat to public health. E3 ubiquitin ligase commonly functions as an anti-tumor role. OBJECTIVE This study probed the effect of E3 ligase NEDD4L on A549 cells. METHODS NEDD4L expression in NSCLC and its correlation with NSCLC patient's prognosis were predicted and verified. PD-L1 protein level was measured, and the correlation between NEDD4L and PD-L1 was analyzed. The effects of NEDD4L overexpression on the binding of NEDD4L to PD-L1 and ubiquitination level of PD-L1 were examined. Xenograft tumor model was established in mice. The volume and weight of xenograft tumors were recorded. The proportion of CD8+ T cells and contents of IL-2 and INF-γ were detected. RESULTS NEDD4L expression was downregulated in NSCLC tissues and A549 cells, and correlated with poor prognosis of NSCLC patients. PD-L1 was upregulated in NSCLC and negatively correlated with NEDD4L. Overexpression of NEDD4L upregulated ubiquitination level of PD-L1 and reduced protein level of PD-L1. Overexpression of NEDD4L decreased tumor volume and weight and enhanced proportion of CD8+ T cells and contents of IL-2 and INF-γ. CONCLUSIONS Collectively, overexpression of NEDD4L suppressed PD-L1 protein level through ubiquitination, thereby enhancing anti-tumor immune response and retarding NSCLC progression.
Collapse
Affiliation(s)
- Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Huilan Wen
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Xinhui Liao
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Xingxiang Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Yunwei Rao
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Ping Yuan
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
7
|
Gudd CLC, Au L, Triantafyllou E, Shum B, Liu T, Nathwani R, Kumar N, Mukherjee S, Dhar A, Woollard KJ, Yone Y, Pinato DJ, Thursz MR, Goldin RD, Gore ME, Larkin J, Khamri W, Antoniades CG, Turajlic S, Possamai LA. Activation and transcriptional profile of monocytes and CD8 + T cells are altered in checkpoint inhibitor-related hepatitis. J Hepatol 2021; 75:177-189. [PMID: 33631227 DOI: 10.1016/j.jhep.2021.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Checkpoint inhibitor-related hepatitis (CPI-Hep) is an emerging clinical challenge. We aimed to gain insights into the immunopathology of CPI-Hep by comprehensively characterising myeloid and lymphoid subsets. METHODS CPI-treated patients with or without related hepatitis (CPI-Hep; n = 22 and CPI-noHep; n = 7) were recruited. Phenotypic and transcriptional profiling of peripheral immune subsets was performed and compared with 19 healthy controls (HCs). In vitro monocyte-derived macrophages (MoMFs) were assessed for activation and cytokine production. CD163, CCR2, CD68, CD3, CD8 and granzyme B expression was assessed using immunohistochemistry/immunofluorescence (n = 4). RESULTS A significant total monocyte depletion was observed in CPI-Hep compared with HCs (p = 0.04), along with a proportionate increase in the classical monocyte population (p = 0.0002) and significant upregulation of CCR2, CD163 and downregulation of CCR7. Soluble CD163 levels were significantly elevated in CPI-Hep compared with HCs (p <0.0001). In vitro MoMFs from CPI-Hep showed enhanced production of pro-inflammatory cytokines. CD8+ T cells demonstrated increased perforin, granzyme B, ICOS and HLA-DR expression in CPI-Hep. Transcriptional profiling indicated the presence of activated monocyte and enhanced effector CD8+ T cell populations in CPI-Hep. Immunohistochemistry demonstrated co-localisation of CD8+/granzyme B+ T cells with CD68+CCR2+/CD68+CD163+ macrophages in CPI-Hep liver tissue. CONCLUSIONS CPI-Hep is associated with activation of peripheral monocytes and an enhanced cytotoxic, effector CD8+ T cell phenotype. These changes were reflected by liver inflammation composed of CD163+/CCR2+ macrophages and CD8+ T cells. LAY SUMMARY Some patients who receive immunotherapy for cancer develop liver inflammation, which requires cessation of cancer treatment. Herein, we describe ways in which the white blood cells of patients who develop liver inflammation differ from those of patients who receive the same immunotherapy but do not experience liver-related side effects. Targeting some of the pathways we identify may help to prevent or manage this side effect and facilitate cancer treatment.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Lewis Au
- Renal and Skin Units, The Royal Marsden Hospital National Health Service Foundation Trust, London, UK
| | | | - Benjamin Shum
- Renal and Skin Units, The Royal Marsden Hospital National Health Service Foundation Trust, London, UK
| | - Tong Liu
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Rooshi Nathwani
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Naveenta Kumar
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Sujit Mukherjee
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Ameet Dhar
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Kevin J Woollard
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - You Yone
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - David J Pinato
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Robert D Goldin
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Martin E Gore
- Renal and Skin Units, The Royal Marsden Hospital National Health Service Foundation Trust, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden Hospital National Health Service Foundation Trust, London, UK
| | - Wafa Khamri
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | | | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden Hospital National Health Service Foundation Trust, London, UK
| | - Lucia A Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Kasakovski D, Zeng X, Lai J, Yu Z, Yao D, Chen S, Zha X, Li Y, Xu L. Characterization of
KIR
+
NKG2A
+ Eomes−
NK
‐like
CD8
+ T cells and their decline with age in healthy individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:467-475. [PMID: 32830898 DOI: 10.1002/cyto.b.21945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dimitri Kasakovski
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Zhi Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
- The Clinical Medicine Postdoctoral Research StationJinan University Guangzhou China
| |
Collapse
|
9
|
Li N, Jilisihan B, Wang W, Tang Y, Keyoumu S. Soluble LAG3 acts as a potential prognostic marker of gastric cancer and its positive correlation with CD8+T cell frequency and secretion of IL-12 and INF-γ in peripheral blood. Cancer Biomark 2019; 23:341-351. [PMID: 30223387 DOI: 10.3233/cbm-181278] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is the second most common lethal cancer worldwide and lymphocyte-activation gene 3 (LAG3) as a therapeutic target for cancers has been investigated. Herein, our study is to clarify the value of peripheral blood (PB) soluble LAG-3 (sLAG3) in GC. METHODS Peripheral serum samples of GC patients and healthy people were collected for the measurement of serum levels of sLAG3, carcinoembryonic antigen (CEA), IL-12 and IFN-γ. Additionally, ROC and Kaplan-Meier curves were adopted to identify the diagnostic and prognostic values of sLAG-3 in patients with GC. Then, GC-bearing mice were treated with recombinant sLAG3. The tumor volume was measured, and CD8+T cell frequency was detected in PB and tumor-ininfiltrating area. Additionally, the expression of IL-12 and IFN-γ in T cells was assayed and the overall survival of mice was analyzed. RESULTS sLAG3 in PB was poorly expressed and its expression was positively correlated with IL-12 and IFN-γ expression in GC patients. sLAG3 was proved to have a higher diagnostic value than CEA in GC. Moreover, high sLAG-3 expression is found in relation to a better prognosis in GC. The in vivo experiments indicated that sLAG-3 might inhibit the tumor growth, and promote the secretion of CD8+T cells, IL-12 and IFN-γ. Furthermore, sLAG-3 was able to prolong overall survival and increase survival rate of GC-bearing mice. CONCLUSION Based on these findings, we conclude that sLAG3 positively regulates CD8+T cells, IL-12 and IFN-γ, and function as a prognostic marker for GC, which might be a potential target in the treatment of GC.
Collapse
|
10
|
Dias J, Boulouis C, Sobkowiak MJ, Lal KG, Emgård J, Buggert M, Parrot T, Gorin JB, Leeansyah E, Sandberg JK. Factors Influencing Functional Heterogeneity in Human Mucosa-Associated Invariant T Cells. Front Immunol 2018; 9:1602. [PMID: 30050537 PMCID: PMC6052907 DOI: 10.3389/fimmu.2018.01602] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the monomorphic MHC class I-related (MR1) molecule. Despite the high level of evolutionary conservation of MR1 and the limited diversity of known antigens, human MAIT cells and their responses may not be as homogeneous as previously thought. Here, we review recent findings indicating that MAIT cells display microbe-specific response patterns with multiple layers of heterogeneity. The natural killer cell receptor CD56 marks a MAIT cell subset with distinct response profile, and the T cell receptor β-chain diversity influences responsiveness at the single cell level. The MAIT cell tissue localization also influences their response profiles with higher IL-17 in tissue-resident MAIT cells. Furthermore, there is emerging evidence that the type of antigen-presenting cells, and innate cytokines produced by such cells, influence the quality of the ensuing MAIT cell response. On the microbial side, the expression patterns of MR1-presented antigenic and non-antigenic compounds, expression of other bioactive microbial products, and of innate pattern recognition ligands all influence downstream MAIT cell responses. These recent findings deepen our understanding of MAIT cell functional diversity and adaptation to the type and location of microbial challenge.
Collapse
Affiliation(s)
- Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michał J Sobkowiak
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kerri G Lal
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
11
|
Zhang Q, Yang K, Huang Y, He J, Yu S, Cui Y. Distribution of T-cell markers CD4 and CD8α in lymphoid organs of healthy newborn, juvenile, and adult highland-plateau yaks. Am J Vet Res 2017; 78:609-617. [DOI: 10.2460/ajvr.78.5.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Flow Cytometry, a Versatile Tool for Diagnosis and Monitoring of Primary Immunodeficiencies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:254-71. [PMID: 26912782 DOI: 10.1128/cvi.00001-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic defects of the immune system are referred to as primary immunodeficiencies (PIDs). These immunodeficiencies are clinically and immunologically heterogeneous and, therefore, pose a challenge not only for the clinician but also for the diagnostic immunologist. There are several methodological tools available for evaluation and monitoring of patients with PIDs, and of these tools, flow cytometry has gained prominence, both for phenotyping and functional assays. Flow cytometry allows real-time analysis of cellular composition, cell signaling, and other relevant immunological pathways, providing an accessible tool for rapid diagnostic and prognostic assessment. This minireview provides an overview of the use of flow cytometry in disease-specific diagnosis of PIDs, in addition to other broader applications, which include immune phenotyping and cellular functional measurements.
Collapse
|
13
|
Glück J, Rymarczyk B, Rogala B. Chemokine receptors expression on CD3+ blood cells in bronchial asthma. Adv Med Sci 2016; 61:11-7. [PMID: 26342671 DOI: 10.1016/j.advms.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Chemokines and their receptors participate in pathomechanism of bronchial asthma. The aim of the study was to analyze the pattern of chemokine receptor expression on T cells in severe asthmatics and to compare to mild-to-moderate patients and controls. MATERIAL/METHODS Flow cytometric analysis of CXCR1, CXCR2, CXCR3, CCR3, CCR4, CCR5, CCR7, CCR8 expression on CD3(+)CD8(-) and CD3(+)CD8(+) cells was performed in patients with different severity of chronic asthma and in controls. RESULTS Percentages of CD3(+)CD8(+) cells expressing CXCR1 were significantly lower in severe asthmatic than in mild-to-moderate asthmatics and in controls. Percentages of CD3(+)CD8(+) cells expressing CCR7 were significantly lower in the severe asthma group than in control group. Percentages of CD3(+)CD8(-) cells expressing CXCR1, CXCR2 and CCR8 were significantly lower in the severe asthma group than in mild-to-moderate asthmatics and in controls. The number of cells CD3(+)CD8(-) and CD3(+)CD8(+) expressing of CXCR1 was significantly lower in the group of patients using more than 800μg of budesonide daily than in the group of patients using less than 400μg of budesonide. Percentages of CD3(+)CD8(-) cells expressing CXCR3, CCR4 and CCR5 were visibly higher (not significantly) in chronic mild-to-moderate asthma than in healthy controls and severe asthmatics. CONCLUSIONS These results may indicate impairment of some chemokine expression on T cells in severe asthma patients. Moreover participation of both chemokine receptors related to Th1 and Th2 responses in mild-to-moderate asthma and attenuation of these responses in severe asthma has been suggested.
Collapse
|
14
|
Haurogné K, Pavlovic M, Rogniaux H, Bach JM, Lieubeau B. Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes. PLoS One 2015; 10:e0134365. [PMID: 26230114 PMCID: PMC4521788 DOI: 10.1371/journal.pone.0134365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/08/2015] [Indexed: 01/09/2023] Open
Abstract
In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD) mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- Karine Haurogné
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| | | | | | - Jean-Marie Bach
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| | - Blandine Lieubeau
- INRA USC1383, IECM, Nantes, France
- LUNAM Université, Oniris, EA4644, Nantes, France
| |
Collapse
|
15
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Chiu YL, Shan L, Huang H, Haupt C, Bessell C, Canaday DH, Zhang H, Ho YC, Powell JD, Oelke M, Margolick JB, Blankson JN, Griffin DE, Schneck JP. Sprouty-2 regulates HIV-specific T cell polyfunctionality. J Clin Invest 2014; 124:198-208. [PMID: 24292711 DOI: 10.1172/jci70510] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023] Open
Abstract
The ability of individual T cells to perform multiple effector functions is crucial for protective immunity against viruses and cancer. This polyfunctionality is frequently lost during chronic infections; however, the molecular mechanisms driving T cell polyfunctionality are poorly understood. We found that human T cells stimulated by a high concentration of antigen lacked polyfunctionality and expressed a transcription profile similar to that of exhausted T cells. One specific pathway implicated by the transcription profile in control of T cell polyfunctionality was the MAPK/ERK pathway. This pathway was altered in response to different antigen concentrations, and polyfunctionality correlated with upregulation of phosphorylated ERK. T cells that were stimulated with a high concentration of antigen upregulated sprouty-2 (SPRY2), a negative regulator of the MAPK/ERK pathway. The clinical relevance of SPRY2 was confirmed by examining SPRY2 expression in HIV-specific T cells, where high levels of SPRY2 were seen in HIV-specific T cells and inhibition of SPRY2 expression enhanced the HIV-specific polyfunctional response independently of the PD-1 pathway. Our findings indicate that increased SPRY2 expression during chronic viral infection reduces T cell polyfunctionality and identify SPRY2 as a potential target for immunotherapy.
Collapse
|
17
|
van Aalderen MC, Remmerswaal EBM, ten Berge IJM, van Lier RAW. Blood and beyond: properties of circulating and tissue-resident human virus-specific αβ CD8(+) T cells. Eur J Immunol 2014; 44:934-44. [PMID: 24448915 DOI: 10.1002/eji.201344269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 01/11/2023]
Abstract
CD8(+) αβ T-cell responses form an essential line of defence against viral infections. An important part of the mechanisms that control the generation and maintenance of these responses have been elucidated in experimental mouse models. In recent years it has become clear that CD8(+) T-cell responses in humans not only show similarities, but also display differences to those occurring in mice. Furthermore, while several viral infections occur primarily in specialised organ systems, for obvious reasons, most human CD8(+) T-cell investigations were performed on cells deriving from the circulation. Indeed, several lines of evidence now point to essential functional differences between virus-specific CD8(+) memory T cells found in the circulation and those providing protection in organ systems, such as the lungs. In this review, we will focus on summarising recent insights into human CD8(+) T-cell differentiation in response to several viruses and emphasise that for a complete understanding of anti-viral immunity, it is pivotal to scrutinize such responses in both blood and tissue.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Lee JJ, Yeh CY, Jung CJ, Chen CW, Du MK, Yu HM, Yang CJ, Lin HY, Sun A, Ko JY, Cheng SJ, Chang YL, Chia JS. Skewed distribution of IL-7 receptor-α-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PLoS One 2014; 9:e85521. [PMID: 24465587 PMCID: PMC3900423 DOI: 10.1371/journal.pone.0085521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
CD8+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7−CD45RA−CD8+ T cells and CCR7− CD45RA+CD8+ T cells negatively correlated with each other. A significantly higher frequency of CD127lo CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells among total CD8+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127hi CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127lo CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7−CD45RA+CD8+ T cells to CCR7−CD45RA−CD8+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127lo CCR7−CD45RA−CD8+ T cells and CCR7−CD45RA+CD8+ T cells are functionally similar CD8+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8+ effector memory balance toward CCR7−CD45RA+CD8+ T cells is associated with OSCC progression.
Collapse
Affiliation(s)
- Jang-Jaer Lee
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chiou-Yueh Yeh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chiau-Jing Jung
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ching-Wen Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mao-Kuang Du
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ming Yu
- Genomic Research Center, Academic Sinica, Taipei, Taiwan, ROC
| | - Chia-Ju Yang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Andy Sun
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shih Jung Cheng
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yen-Liang Chang
- Fu Jen Catholic University, School of Medicine, and Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan, ROC
| | - Jean-San Chia
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
19
|
Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 2013; 25:484-94. [PMID: 23999316 DOI: 10.1016/j.coi.2013.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
Mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with panels of up to 45 antibodies. Each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the lanthanide series of the periodic table. Antibody panels recognize surface markers to delineate cell types simultaneously with intracellular signaling molecules to measure biological functions, such as metabolism, survival, DNA damage, cell cycle and apoptosis, to provide an overall determination of the network state of an individual cell. This review will cover the basics of mass cytometry as well as outline assays developed for the platform that enhance the immunologist's analytical arsenal.
Collapse
Affiliation(s)
- Zach B Bjornson
- Stanford University School of Medicine, Department of Microbiology & Immunology, Baxter Laboratory for Stem Cell Biology, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | | | | |
Collapse
|
20
|
Nikolic T, Roep BO. Regulatory multitasking of tolerogenic dendritic cells - lessons taken from vitamin d3-treated tolerogenic dendritic cells. Front Immunol 2013; 4:113. [PMID: 23717310 PMCID: PMC3653108 DOI: 10.3389/fimmu.2013.00113] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023] Open
Abstract
Tolerogenic dendritic cells (DCs) work through silencing of differentiated antigen-specific T cells, activation and expansion of naturally occurring T regulatory cells (Tregs), transfer of regulatory properties to T cells, and the differentiation of naïve T cells into Tregs. Due to an operational definition based on T cell activation assays, the identity of tolerogenic DCs has been a matter of debate and it need not represent a specialized DC subset. Human tolerogenic DCs generated in vitro using inhibitory cytokines, growth factors, natural immunomodulators, or genetic manipulation have been effective and several of these tolerogenic DCs are currently being tested for clinical use. Ex vivo generated tolerogenic DCs reduce activation of naïve T cells using various means, promote a variety of regulatory T cells and most importantly, frequently show stable inhibitory phenotypes upon repetitive maturation with inflammatory factors. Yet, tolerogenic DCs differ with respect to the phenotype or the number of regulatory mechanisms they employ to modulate the immune system. In our experience, tolerogenic DCs generated using the biologically active form of vitamin D (VD3-DCs), alone, or combined with dexamethasone are proficient in their immunoregulatory functions. These tolerogenic DCs show a stable maturation-resistant semi-mature phenotype with low expression of activating co-stimulatory molecules, no production of the IL-12 family of cytokines and high expression of inhibitory molecules and IL-10. VD3-DCs induce increased apoptosis of effector T cells and induce antigen-specific regulatory T cells, which work through linked suppression ensuring infectious tolerance. Lessons learned on VD3-DCs help understanding the contribution of different pattern-recognition receptors (PRRs) and secondary signals to the tolerogenic function and how a cross-talk between DCs and T cells translates into immune regulation.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands
| | | |
Collapse
|