1
|
Togashi T, Baatartsogt N, Nagao Y, Kashiwakura Y, Hayakawa M, Hiramoto T, Fujiwara T, Morishita E, Nureki O, Ohmori T. Cure of Congenital Purpura Fulminans via Expression of Engineered Protein C Through Neonatal Genome Editing in Mice. Arterioscler Thromb Vasc Biol 2024; 44:2616-2627. [PMID: 39508105 PMCID: PMC11594008 DOI: 10.1161/atvbaha.123.319460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP (enhanced green fluorescent protein) sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
Collapse
Affiliation(s)
- Tomoki Togashi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Yasumitsu Nagao
- Center for Experimental Medicine (Y.N.), Jichi Medical University, Tochigi, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| | - Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Takayuki Fujiwara
- Division of Cell and Molecular Medicine Center for Molecular Medicine (T.F.), Jichi Medical University, Tochigi, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (T.F.)
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan (O.N.)
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Forgerini M, Zanelli CF, Valentini SR, Mastroianni PDC. Influence of IL-β, IL-1RN, and TNF-α variants on the risk of acetylsalicylic acid-induced upper gastrointestinal bleeding: a case-control study. EINSTEIN-SAO PAULO 2024; 22:eAO0746. [PMID: 39194098 DOI: 10.31744/einstein_journal/2024ao0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE Forgerini et al. investigated the role of seven genetic variants in the risk of upper gastrointestinal bleeding as an adverse drug reaction. In 289 participants (50 cases and 189 controls), the presence of seven variants in the IL-1β, IL-1RN, and TNF-α genes was not associated with susceptibility to acetylsalicylic acid-induced upper gastrointestinal bleeding. The use of acetylsalicylic acid, even in low doses, may be associated with the onset of upper gastrointestinal bleeding as an idiosyncratic response. Considering the role of the genetic background in inter-individual responses to pharmacotherapy, we aimed to investigate the role of seven variants in the TNF-α, IL-β, and IL-1RN genes in association with the risk of upper gastrointestinal bleeding in users of low-dose acetylsalicylic acid for the prevention of cardiovascular events. METHODS A case-control study was conducted in a Brazilian hospital complex. The Case Group comprised patients diagnosed with upper gastrointestinal bleeding who were administered a low dose of acetylsalicylic acid (n=50). Two Control Groups were recruited: 1) low-dose acetylsalicylic acid users without gastrointestinal complaints and under the supervision of a cardiologist (n=50) and 2) healthy controls (n=189). Sociodemographic, clinical, pharmacotherapeutic, and lifestyle data were recorded through face-to-face interviews. Genomic DNA from all participants was genotyped for rs16944 and rs1143634 (IL-β gene), rs4251961 (IL-1RN gene), and rs1799964, rs1799724, rs361525, and rs1800629 (TNF-α gene). RESULTS No significant difference was noted in the genotypic frequencies of TNF-α, IL-β, and IL-1RN variants between the Case and Control Groups of low-dose acetylsalicylic acid users (p>0.05). The frequency of rs1800629 genotypes (TNF-α gene) differed significantly between the Case Group and healthy controls (p=0.003). None of the evaluated variants were associated with a risk of upper gastrointestinal bleeding. CONCLUSION This study aimed to explore pharmacogenomics biomarkers in low-dose acetylsalicylic acid users. Our data suggest that the presence of IL-1β, IL-1RN, and TNF-α variants was not associated with an increased risk of upper gastrointestinal bleeding.
Collapse
Affiliation(s)
- Marcela Forgerini
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, Brazil
| | - Cleslei Fernando Zanelli
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, Brazil
| | - Sandro Roberto Valentini
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, Brazil
| | | |
Collapse
|
3
|
Gitto S, Fiorillo C, Argento FR, Fini E, Borghi S, Falcini M, Roccarina D, La Delfa R, Lillo L, Zurli T, Forte P, Ghinolfi D, De Simone P, Chiesi F, Ingravallo A, Vizzutti F, Aspite S, Laffi G, Lynch E, Petruccelli S, Carrai P, Palladino S, Sofi F, Stefani L, Amedei A, Baldi S, Toscano A, Lau C, Marra F, Becatti M. Oxidative stress-induced fibrinogen modifications in liver transplant recipients: unraveling a novel potential mechanism for cardiovascular risk. Res Pract Thromb Haemost 2024; 8:102555. [PMID: 39309232 PMCID: PMC11416524 DOI: 10.1016/j.rpth.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Cardiovascular events represent a major cause of non-graft-related death after liver transplant. Evidence suggest that chronic inflammation associated with a remarkable oxidative stress in the presence of endothelial dysfunction and procoagulant environment plays a major role in the promotion of thrombosis. However, the underlying molecular mechanisms are not completely understood. Objectives In order to elucidate the mechanisms of posttransplant thrombosis, the aim of the present study was to investigate the role of oxidation-induced structural and functional fibrinogen modifications in liver transplant recipients. Methods A case-control study was conducted on 40 clinically stable liver transplant recipients and 40 age-matched, sex-matched, and risk factor-matched controls. Leukocyte reactive oxygen species (ROS) production, lipid peroxidation, glutathione content, plasma antioxidant capacity, fibrinogen oxidation, and fibrinogen structural and functional features were compared between patients and controls. Results Patients displayed enhanced leukocyte ROS production and an increased plasma lipid peroxidation with a reduced total antioxidant capacity compared with controls. This systemic oxidative stress was associated with fibrinogen oxidation with fibrinogen structural alterations. Thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in patients compared with controls. Moreover, steatotic graft and smoking habit were associated with high fibrin degradation rate. Conclusion ROS-induced fibrinogen structural changes might increase the risk of thrombosis in liver transplant recipients.
Collapse
Affiliation(s)
- Stefano Gitto
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Margherita Falcini
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Roccarina
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosario La Delfa
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ludovica Lillo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Zurli
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesca Chiesi
- Department of Neuroscience, Psychology, Drug, and Child’s Health (NEUROFARBA), Section of Psychology, University of Florence, Florence, Italy
| | - Angelica Ingravallo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Vizzutti
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Aspite
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Laffi
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Lynch
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Stefania Petruccelli
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paola Carrai
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Simona Palladino
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Sofi
- Unit of Clinical Nutrition, Careggi University Hospital, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Stefani
- Sports Medicine Center Clinical and Experimental Medicine Department, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Arianna Toscano
- Division of Internal Medicine, University Hospital of Policlinico G. Martino, Messina, Italy
| | - Chloe Lau
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Fabio Marra
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
4
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions. Int J Mol Sci 2024; 25:7209. [PMID: 39000315 PMCID: PMC11241800 DOI: 10.3390/ijms25137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.
Collapse
Affiliation(s)
- Juan-Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
5
|
Zhou Y, Xu L, Jin P, Li N, Chen X, Yang A, Qi H. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. iScience 2024; 27:109823. [PMID: 38756418 PMCID: PMC11097077 DOI: 10.1016/j.isci.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Pulmonary embolism caused by deep vein thrombosis (DVT) is a major contributor to maternal morbidity and mortality. There is still an unmet need for safe and effective treatment options for DVT during pregnancy. Recent research has shown that neutrophil extracellular trap (NET) formation plays a very vital role in thrombosis. We created nanoparticles surface-modified by neutrophil elastase (NE)-binding peptide that can target activated neutrophils specifically in vitro and in vivo. Prussian blue nanoparticles (PB NPs) designed in the core scavenges abnormally elevated reactive oxygen species (ROS) in the vascular microenvironment and acts as a photothermal agent to mediate photothermal therapy (PTT) to damage fibrin network structure. Based on the data we have included, this noninvasive therapeutic approach is considered safe for both mothers and the fetus. Furthermore, our findings indicate that this therapeutic approach has a significant alleviation effect on intrauterine growth restriction caused by maternal thrombosis.
Collapse
Affiliation(s)
- Yijie Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Pingsong Jin
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anyu Yang
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Yang M, Silverstein RL. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants (Basel) 2024; 13:83. [PMID: 38247507 PMCID: PMC10812781 DOI: 10.3390/antiox13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress increases the risk for clinically significant thrombotic events, yet the mechanisms by which oxidants become prothrombotic are unclear. In this review, we provide an overview of cysteine reactivity and oxidation. We then highlight recent findings on cysteine oxidation events in oxidative stress-related thrombosis. Special emphasis is on the signaling pathway induced by a platelet membrane protein, CD36, in dyslipidemia, and by protein disulfide isomerase (PDI), a member of the thiol oxidoreductase family of proteins. Antioxidative and chemical biology approaches to target cysteine are discussed. Lastly, the knowledge gaps in the field are highlighted as they relate to understanding how oxidative cysteine modification might be targeted to limit thrombosis.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-924, Boston, MA 02115, USA
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Hub 8745, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Xiang M, Wu X, Jing H, Liu L, Wang C, Wang Y, Novakovic VA, Shi J. The impact of platelets on pulmonary microcirculation throughout COVID-19 and its persistent activating factors. Front Immunol 2022; 13:955654. [PMID: 36248790 PMCID: PMC9559186 DOI: 10.3389/fimmu.2022.955654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Chunxu Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi, ;
| |
Collapse
|
8
|
Ryu J, Kang U, Song JW, Kim J, Kim JW, Yoo H, Gweon B. Multimodal microscopy for the simultaneous visualization of five different imaging modalities using a single light source. BIOMEDICAL OPTICS EXPRESS 2021; 12:5452-5469. [PMID: 34692194 PMCID: PMC8515965 DOI: 10.1364/boe.430677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
Optical microscopy has been widely used in biomedical research as it provides photophysical and photochemical information of the target in subcellular spatial resolution without requiring physical contact with the specimen. To obtain a deeper understanding of biological phenomena, several efforts have been expended to combine such optical imaging modalities into a single microscope system. However, the use of multiple light sources and detectors through separated beam paths renders previous systems extremely complicated or slow for in vivo imaging. Herein, we propose a novel high-speed multimodal optical microscope system that simultaneously visualizes five different microscopic contrasts, i.e., two-photon excitation, second-harmonic generation, backscattered light, near-infrared fluorescence, and fluorescence lifetime, using a single femtosecond pulsed laser. Our proposed system can visualize five modal images with a frame rate of 3.7 fps in real-time, thereby providing complementary optical information that enhances both structural and functional contrasts. This highly photon-efficient multimodal microscope system enables various properties of biological tissues to be assessed.
Collapse
Affiliation(s)
- Jiheun Ryu
- Massachusetts General Hospital, Wellman Center for Photomedicine, 55 Fruit Street, Boston, MA 02114, USA
- Contributed equally
| | - Ungyo Kang
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Contributed equally
| | - Joon Woo Song
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Seoul 08308, Republic of Korea
| | - Junyoung Kim
- Massachusetts General Hospital, Wellman Center for Photomedicine, 55 Fruit Street, Boston, MA 02114, USA
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jin Won Kim
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Seoul 08308, Republic of Korea
| | - Hongki Yoo
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Bomi Gweon
- Sejong University, Department of Mechanical Engineering, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. AN ACAD BRAS CIENC 2020; 92:e20200834. [PMID: 32844987 DOI: 10.1590/0001-3765202020200834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 213 countries in a matter of weeks. In this context, several studies correlating hemostatic disorders with the infection dynamics of the new coronavirus have emerged. These studies have shown that a portion of the patients affected by Coronavirus Disease 2019 (COVID-19) have prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), elevated D-dimer levels and other fibrinolytic products, antithrombin (AT) activity reduced and decrease of platelet count. Based on these hallmarks, this review proposes to present possible pathophysiological mechanisms involved in the hemostatic changes observed in the pathological progression of COVID-19. In this analysis, it is pointed the relationship between the downregulation of angiotensin-converting enzyme 2 (ACE2) and storm cytokines action with the onset of hypercoagulability state, other than the clinical events involved in thrombocytopenia and hyperfibrinolysis progression.
Collapse
Affiliation(s)
- PlÍnio C Sathler
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Macrophages fine-tune pupil shape during development. Dev Biol 2020; 464:137-144. [PMID: 32565279 DOI: 10.1016/j.ydbio.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022]
Abstract
Tissue macrophages, which are ubiquitously present innate immune cells, play versatile roles in development and organogenesis. During development, macrophages prune transient or unnecessary synapses in neuronal development, and prune blood vessels in vascular development, facilitating appropriate tissue remodeling. In the present study, we identified that macrophages contributed to the development of pupillary morphology. Csf1op/op mutant mice, in which ocular macrophages are nearly absent, exhibited abnormal pupillary edges, with abnormal protrusions of excess iris tissue into the pupillary space. Macrophages located near the pupillary edge engulfed pigmented debris, which likely consisted of unnecessary iris protrusions that emerge during smoothening of the pupillary edge. Indeed, pupillary edge macrophages phenotypically possessed some features of M2 macrophages, consistent with robust tissue engulfment and remodeling activities. Interestingly, protruding irises in Csf1op/op mice were only detected in gaps between regressing blood vessels. Taken together, our findings uncovered a new role for ocular macrophages, demonstrating that this cell population is important for iris pruning during development.
Collapse
|
11
|
Mayr S, Hauser F, Puthukodan S, Axmann M, Göhring J, Jacak J. Statistical analysis of 3D localisation microscopy images for quantification of membrane protein distributions in a platelet clot model. PLoS Comput Biol 2020; 16:e1007902. [PMID: 32603371 PMCID: PMC7384682 DOI: 10.1371/journal.pcbi.1007902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/27/2020] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
We present the software platform 2CALM that allows for a comparative analysis of 3D localisation microscopy data representing protein distributions in two biological samples. The in-depth statistical analysis reveals differences between samples at the nanoscopic level using parameters such as cluster-density and -curvature. An automatic classification system combines multiplex and multi-level statistical approaches into one comprehensive parameter for similarity testing of the compared samples. We demonstrated the biological importance of 2CALM, comparing the protein distributions of CD41 and CD62p on activated platelets in a 3D artificial clot. Additionally, using 2CALM, we quantified the impact of the inflammatory cytokine interleukin-1β on platelet activation in clots. The platform is applicable to any other cell type and biological system and can provide new insights into biological and medical applications.
Collapse
Affiliation(s)
- Sandra Mayr
- University of Applied Sciences Upper Austria, Linz, Austria
| | - Fabian Hauser
- University of Applied Sciences Upper Austria, Linz, Austria
| | | | - Markus Axmann
- University of Applied Sciences Upper Austria, Linz, Austria
| | - Janett Göhring
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Jaroslaw Jacak
- University of Applied Sciences Upper Austria, Linz, Austria
| |
Collapse
|
12
|
Okano M, Hara T, Nishimori M, Irino Y, Satomi-Kobayashi S, Shinohara M, Toh R, Jaffer FA, Ishida T, Hirata KI. In Vivo Imaging of Venous Thrombus and Pulmonary Embolism Using Novel Murine Venous Thromboembolism Model. ACTA ACUST UNITED AC 2020; 5:344-356. [PMID: 32368694 PMCID: PMC7188875 DOI: 10.1016/j.jacbts.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
We established a novel clinically relevant murine DVT model at femoral/saphenous vein induced by flow restriction and light illumination. Our model newly succeeded in inducing DVT in a valve pocket and enabled spontaneous pulmonary embolism of fibrin-rich thrombus from lower extremity vein, reproducing the clinical VTE scenario. This model is suitable for motion-free in vivo high-resolution imaging of fibrin-rich DVT development and organization using 2-photon microscopy, enabling the real-time imaging of migration of platelets and leukocytes into the erythrocyte-rich DVT.
This work established a new murine venous thromboembolism (VTE) model. This model has multiple novel features representing clinical VTE that include the following: 1) deep venous thrombosis (DVT) was formed and extended in the long axis of femoral/saphenous vein; 2) thrombus was formed in a venous valve pocket; 3) deligation of suture-induced spontaneous pulmonary emboli of fibrin-rich DVT; and 4) cardiac motion-free femoral/saphenous vein allowed high-resolution intravital microscopic imaging of fibrin-rich DVT. This new model requires only commercially available epifluorescence microscopy. Therefore, this model has significant potential for better understanding of VTE pathophysiology.
Collapse
Affiliation(s)
- Mitsumasa Okano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nishimori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seimi Satomi-Kobayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Farouc A Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Abstract
A confluence of technological advances in genetic manipulation and molecular-based fluorescence imaging has led to the widespread adoption of laser injury models to study hemostasis and thrombosis in mice. In all animal models of hemostasis and thrombosis, detailing the nature of experimentally induced vascular injury is paramount in enabling appropriate interpretation of experimental results. A careful appraisal of the literature shows that direct laser-induced injury can result in variable degrees of vascular damage. This review will compare and contrast models of laser injury utilized in the field, with an emphasis on the mechanism and extent of injury, the use of laser injury in different vascular beds and the molecular mechanisms regulating the response to injury. All of these topics will be discussed in the context of how distinct applications of laser injury models may be viewed as representing thrombosis and/or hemostasis.
Collapse
Affiliation(s)
- Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
14
|
Johnston I, Sarkar A, Hayes V, Koma GT, Arepally GM, Chen J, Chung DW, López JA, Cines DB, Rauova L, Poncz M. Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood 2020; 135:1270-1280. [PMID: 32077913 PMCID: PMC7146020 DOI: 10.1182/blood.2018881607] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2020] [Indexed: 01/19/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by complexes between platelet factor 4 (PF4) and heparin or other polyanions, but the risk of thrombosis extends beyond exposure to heparin implicating other PF4 partners. We recently reported that peri-thrombus endothelium is targeted by HIT antibodies, but the binding site(s) has not been identified. We now show that PF4 binds at multiple discrete sites along the surface of extended strings of von Willebrand factor (VWF) released from the endothelium following photochemical injury in an endothelialized microfluidic system under flow. The HIT-like monoclonal antibody KKO and HIT patient antibodies recognize PF4-VWF complexes, promoting platelet adhesion and enlargement of thrombi within the microfluidic channels. Platelet adhesion to the PF4-VWF-HIT antibody complexes is inhibited by antibodies that block FcγRIIA or the glycoprotein Ib-IX complex on platelets. Disruption of PF4-VWF-HIT antibody complexes by drugs that prevent or block VWF oligomerization attenuate thrombus formation in a murine model of HIT. Together, these studies demonstrate assembly of HIT immune complexes along VWF strings released by injured endothelium that might propagate the risk of thrombosis in HIT. Disruption of PF4-VWF complex formation may provide a new therapeutic approach to HIT.
Collapse
Affiliation(s)
- Ian Johnston
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pharmacology and
| | - Amrita Sarkar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Vincent Hayes
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Departments of Pathology and Laboratory Medicine and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gavin T Koma
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Dominic W Chung
- Bloodworks Northwest, Seattle, WA
- Departments of Medicine and Biochemistry, University of Washington, Seattle, WA; and
| | - José A López
- Bloodworks Northwest, Seattle, WA
- Departments of Medicine and Biochemistry, University of Washington, Seattle, WA; and
| | - Douglas B Cines
- Departments of Pathology and Laboratory Medicine and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lubica Rauova
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mortimer Poncz
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Tsuji S, Mukai T, Hirano H, Morita Y. In vivo analysis of thrombus formation in arthritic mice. Mod Rheumatol 2020; 31:498-503. [PMID: 32149538 DOI: 10.1080/14397595.2020.1740401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is characterized by inflammation in multiple joints. In addition to causing joint destruction, the persistent systemic inflammation with RA increases the risk of cardiovascular disease. Although there are in vitro studies showing the prothrombotic effect of inflammatory cytokines, especially TNF, in vivo experimental evidence is lacking due to the complexity of in vivo modeling and observation. In this study, we aimed to model in vivo thrombus formation in arthritic mice and to determine whether the arthritic condition would further promote thrombotic formation. METHODS Human TNF-transgenic mice were used as the arthritis model. Thrombus formation was observed on the testicular arterioles. Thrombus formation was induced by reactive oxygen species generated from hematoporphyrin under laser irradiation. RESULTS Platelet thrombus formation was observed in real-time using a laser confocal microscopy in both wild-type and arthritic mice. Quantitative analyses revealed that no significant differences were observed in thrombus formation, represented by platelet attachment time and vascular obstruction time, in our experimental setting. CONCLUSION Although we confirmed the usefulness of this novel technique for in vivo studies, further investigation is required to conclude the possible mechanism of prothrombotic phenotypes under inflammatory conditions.
Collapse
Affiliation(s)
- Shoko Tsuji
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroyasu Hirano
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
17
|
Xu Y, Hu H, Li Y, Cen R, Yao C, Ma W, Huang M, Yin Y, Gao H, Liu Y, Endler A. Effects of huoxin formula on the arterial functions of patients with coronary heart disease. PHARMACEUTICAL BIOLOGY 2019; 57:13-20. [PMID: 31199705 PMCID: PMC6586089 DOI: 10.1080/13880209.2018.1561726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/03/2018] [Accepted: 12/06/2018] [Indexed: 06/02/2023]
Abstract
Context: Huoxin formula is a Traditional Chinese Medicine for coronary heart disease (CHD) treatment. Objective: To explore the therapeutic mechanism of the Huoxin formula on arterial functions in CHD patients. Materials and methods: Fifty-eight CHD patients receiving cardiovascular drugs including β-receptor blocker, statins, and antiplatelet medications or others were randomized into intervention [additionally 13.5 g Huoxin formula granules dissolved in 150 mL warm water per time, twice a day (n = 30)] and control [only cardiovascular drugs (n = 28)] groups. Serum biomarkers (hs-CRP, IL-18, IL-17, TNF-α, MMP-9), and cardiovascular indicators of the common and internal carotid arteries (ICAs) were monitored before and after the treatments. Results: After 3 months of treatment, the increases of intima-media thicknesses (IMT) of the left and right common carotid arteries (CCAs) as well as of the left and right ICAs and the increases of the left and right cardio-ankle vascular index were all significantly (all p < 0.001) less in the intervention than in control group (all p < 0.001). Serum concentrations reductions of hs-CRP, IL-18, IL-17 and MMP9 (all p < 0.001) levels were higher in the intervention compared to the control group, which correlated with the changes of left ICA (hs-CRP: r = 0.581, p = 0.009; IL-18: r = 0.594, p = 0.007; IL-17: r = 0.575, p = 0.006). Discussion and conclusion: Since the Huoxin formula improved arterial functions and reduced inflammatory factor activities in CHD patients, a large-scale clinical trial is warranted.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Li
- Department of Nephropathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Cen
- Endoscopic Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengzeng Yao
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenhuan Ma
- Department of Cardiology, Zhabei District TCM Hospital, Shanghai, China
| | - Minhua Huang
- Department of Cardiology, Shanghai BaoShan District Combine Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yahui Yin
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongzhi Gao
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Alexander Endler
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
18
|
Puhr-Westerheide D, Schink SJ, Fabritius M, Mittmann L, Hessenauer MET, Pircher J, Zuchtriegel G, Uhl B, Holzer M, Massberg S, Krombach F, Reichel CA. Neutrophils promote venular thrombosis by shaping the rheological environment for platelet aggregation. Sci Rep 2019; 9:15932. [PMID: 31685838 PMCID: PMC6828708 DOI: 10.1038/s41598-019-52041-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
In advanced inflammatory disease, microvascular thrombosis leads to the interruption of blood supply and provokes ischemic tissue injury. Recently, intravascularly adherent leukocytes have been reported to shape the blood flow in their immediate vascular environment. Whether these rheological effects are relevant for microvascular thrombogenesis remains elusive. Employing multi-channel in vivo microscopy, analyses in microfluidic devices, and computational modeling, we identified a previously unanticipated role of leukocytes for microvascular clot formation in inflamed tissue. For this purpose, neutrophils adhere at distinct sites in the microvasculature where these immune cells effectively promote thrombosis by shaping the rheological environment for platelet aggregation. In contrast to larger (lower-shear) vessels, this process in high-shear microvessels does not require fibrin generation or extracellular trap formation, but involves GPIbα-vWF and CD40-CD40L-dependent platelet interactions. Conversely, interference with these cellular interactions substantially compromises microvascular clotting. Thus, leukocytes shape the rheological environment in the inflamed venular microvasculature for platelet aggregation thereby effectively promoting the formation of blood clots. Targeting this specific crosstalk between the immune system and the hemostatic system might be instrumental for the prevention and treatment of microvascular thromboembolic pathologies, which are inaccessible to invasive revascularization strategies.
Collapse
Affiliation(s)
- Daniel Puhr-Westerheide
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Severin J Schink
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Fabritius
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laura Mittmann
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian E T Hessenauer
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Plastic and Hand Surgery, Friedrich Alexander University Erlangen Nuernberg, Erlangen, Germany
| | - Joachim Pircher
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Cardiology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Holzer
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Cardiology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany. .,Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
19
|
Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Taruya A, Furuta M, Mukaida N, Kondo T. Contribution of the TNF-α (Tumor Necrosis Factor-α)-TNF-Rp55 (Tumor Necrosis Factor Receptor p55) Axis in the Resolution of Venous Thrombus. Arterioscler Thromb Vasc Biol 2019; 38:2638-2650. [PMID: 30354252 DOI: 10.1161/atvbaha.118.311194] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Deep vein thrombosis results from a combination of risk factors including genetic conditions, obesity, drugs, pregnancy, aging, and malignancy. We examined pathophysiological roles of the TNF-α (tumor necrosis factor-α)-TNF-Rp55 (tumor necrosis factor receptor p55) axis in thrombus resolution using Tnfrp55-/- (TNF-Rp55-deficient) mice. Approach and Results- On ligating the inferior vena cava of wild-type (WT) mice, venous thrombi formed and grew progressively until 5 days but shrunk to <50% of the thrombus weight at day 14. Concomitantly, inferior vena cava ligation enhanced intrathrombotic gene expression of Tnfa and Tnfrp55, and intrathrombotic macrophages expressed both TNF-α and TNF-Rp55 proteins. In Tnfrp55-/- mice treated with the same manner, thrombus formed at a similar rate for 5 days, but shrinking was delayed compared with WT mice. Moreover, the blood flow recovery in thrombosed inferior vena cava was suspended in Tnfrp55-/- mice compared with WT mice. Intrathrombotic Plau (urokinase-type plasminogen activator), Mmp2 (matrix metalloproteinase 2), and Mmp9 (matrix metalloproteinase 9) mRNA expression was significantly reduced in Tnfrp55-/- mice, compared with WT ones. Supportingly, the administration of anti-TNF-α antibody or TNF-α inhibitor (etanercept) delayed the thrombus resolution in WT mice. Furthermore, TNF-α treatment enhanced gene expression of Plau, Mmp2, and Mmp9 in WT macrophages but not Tnfrp55-/- macrophages. These effects were significantly suppressed by ERK (extracellular signal regulated kinase) and NF-κB (nuclear factor-kappa B) inhibitors. Therefore, the lack of TNF-Rp55 has detrimental roles in the thrombus resolution by suppressing PLAU, MMP-2, and MMP-9 expression. In contrast, TNF-α administration accelerated thrombus resolution in WT but not Tnfrp55-/- mice. Conclusions- The TNF-α-TNF-Rp55 axis may have essential roles in the resolution of venous thrombus in mice.
Collapse
Affiliation(s)
- Mizuho Nosaka
- From the Department of Forensic Medicine (M.N., Y.I., A.K., Y.K., T.K.), Wakayama Medical University, Japan
| | - Yuko Ishida
- From the Department of Forensic Medicine (M.N., Y.I., A.K., Y.K., T.K.), Wakayama Medical University, Japan
| | - Akihiko Kimura
- From the Department of Forensic Medicine (M.N., Y.I., A.K., Y.K., T.K.), Wakayama Medical University, Japan
| | - Yumi Kuninaka
- From the Department of Forensic Medicine (M.N., Y.I., A.K., Y.K., T.K.), Wakayama Medical University, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine (A.T.), Wakayama Medical University, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine (M.F.), Wakayama Medical University, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Japan (N.M.)
| | - Toshikazu Kondo
- From the Department of Forensic Medicine (M.N., Y.I., A.K., Y.K., T.K.), Wakayama Medical University, Japan
| |
Collapse
|
20
|
Wang TP. Association between TNF-α polymorphisms and the risk of upper gastrointestinal bleeding induced by aspirin in patients with coronary heart disease. Ann Hum Genet 2018; 83:124-133. [PMID: 30506894 DOI: 10.1111/ahg.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To investigate the correlation of tumor necrosis factor α (TNF-α) polymorphisms with upper gastrointestinal bleeding (UGIB) induced by enteric-coated aspirin in coronary heart disease (CHD) patients. METHODS In total, 154 CHD patients taking enteric-coated aspirin were enrolled in this study. Patients were divided into the UGIB group (n = 57) and non-UGIB group (n = 97) based on the presence or absence of signs of UGIB, respectively. TNF-α polymorphism (-857C > T, -863C > A, and -1031T > C) genotyping was performed using polymerase chain reaction (PCR) amplification with sequence-specific primers (PCR-SSP). RESULTS Patients who had the CC genotype and C allele of -1031T > C exhibited a significantly increase risk of UGIB after receiving enteric-coated aspirin (CC vs. TT: odds (OR) (95% confidence interval (CI)): 7.568 (1.527-37.49), P = 0.005; C vs. T: OR (95% CI): 1.852 (1.036-3.312), P = 0.036). Patients who had CA and CA + AA genotypes and the A allele of -863C > A also exhibited an increased risk of aspirin-induced UGIB (CA vs. CC: OR (95% CI): 2.415 (1.143-5.101), P = 0.019: CA + AA vs. CC: OR (95% CI): 2.218 (1.123-4.381), P = 0.021; A vs. C: OR (95% CI): 1.788 (1.039-3.078), P = 0.035). However, the TNF-α -857 C > T polymorphism was unrelated to the induction of UGIB by enteric-coated aspirin in CHD patients (P > 0.05). In addition, the haplotypes of CCC (-1031T > C, -863C > A, and -857C > T) markedly reduced the risk of aspirin-induced UGIB in CHD patients. CONCLUSION TNF-α -863A and -1031C increased the risk of UGIB induction by enteric-coated aspirin in CHD patients, whereas TNF-α -857C > T was not correlated with the UGIB risk.
Collapse
Affiliation(s)
- Tai-Ping Wang
- Department of Gastroenterology, Rizhao People's Hospital of Shandong Province, Rizhao, 276800, China
| |
Collapse
|
21
|
Ito Y, Nakamura S, Sugimoto N, Shigemori T, Kato Y, Ohno M, Sakuma S, Ito K, Kumon H, Hirose H, Okamoto H, Nogawa M, Iwasaki M, Kihara S, Fujio K, Matsumoto T, Higashi N, Hashimoto K, Sawaguchi A, Harimoto KI, Nakagawa M, Yamamoto T, Handa M, Watanabe N, Nishi E, Arai F, Nishimura S, Eto K. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell 2018; 174:636-648.e18. [PMID: 30017246 DOI: 10.1016/j.cell.2018.06.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.
Collapse
Affiliation(s)
- Yukitaka Ito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE Chemical Equipment Manufacturing Ltd., Saitama, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Keitaro Ito
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Hiroki Kumon
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Hidenori Hirose
- Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Haruki Okamoto
- Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Masayuki Nogawa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Mio Iwasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kosuke Fujio
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Matsumoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Natsumi Higashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuya Hashimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ken-Ichi Harimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masato Nakagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, AMED, Tokyo, Japan
| | - Makoto Handa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Naohide Watanabe
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
22
|
Doi R, Tsuchiya T, Mitsutake N, Nishimura S, Matsuu-Matsuyama M, Nakazawa Y, Ogi T, Akita S, Yukawa H, Baba Y, Yamasaki N, Matsumoto K, Miyazaki T, Kamohara R, Hatachi G, Sengyoku H, Watanabe H, Obata T, Niklason LE, Nagayasu T. Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Sci Rep 2017; 7:8447. [PMID: 28814761 PMCID: PMC5559597 DOI: 10.1038/s41598-017-09115-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
Bioengineered lungs consisting of a decellularized lung scaffold that is repopulated with a patient's own cells could provide desperately needed donor organs in the future. This approach has been tested in rats, and has been partially explored in porcine and human lungs. However, existing bioengineered lungs are fragile, in part because of their immature vascular structure. Herein, we report the application of adipose-derived stem/stromal cells (ASCs) for engineering the pulmonary vasculature in a decellularized rat lung scaffold. We found that pre-seeded ASCs differentiated into pericytes and stabilized the endothelial cell (EC) monolayer in nascent pulmonary vessels, thereby contributing to EC survival in the regenerated lungs. The ASC-mediated stabilization of the ECs clearly reduced vascular permeability and suppressed alveolar hemorrhage in an orthotopic transplant model for up to 3 h after extubation. Fibroblast growth factor 9, a mesenchyme-targeting growth factor, enhanced ASC differentiation into pericytes but overstimulated their proliferation, causing a partial obstruction of the vasculature in the regenerated lung. ASCs may therefore provide a promising cell source for vascular regeneration in bioengineered lungs, though additional work is needed to optimize the growth factor or hormone milieu for organ culture.
Collapse
Affiliation(s)
- Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Translational Research Center, Research Institute for Science & Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Mutsumi Matsuu-Matsuyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yuka Nakazawa
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Hiroshi Yukawa
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yoshinobu Baba
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Naoya Yamasaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Ryotaro Kamohara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hideyori Sengyoku
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hironosuke Watanabe
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Anesthesia, Yale University, New Haven, CT, 06520, USA
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
| |
Collapse
|
23
|
Swystun LL, Georgescu I, Mewburn J, Deforest M, Nesbitt K, Hebert K, Dwyer C, Brown C, Notley C, Lillicrap D. Abnormal von Willebrand factor secretion, factor VIII stabilization and thrombus dynamics in type 2N von Willebrand disease mice. J Thromb Haemost 2017; 15:1607-1619. [PMID: 28581694 DOI: 10.1111/jth.13749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Essentials Type 2N von Willebrand disease involves impaired von Willebrand factor to factor VIII binding. Type 2N von Willebrand disease mutations exhibit qualitative and mild quantitative deficiencies. Type 2N von Willebrand disease mice exhibit unstable venous hemostatic thrombi. The factor VIII-binding ability of von Willebrand factor regulates arteriole thrombosis dynamics. SUMMARY Background von Willebrand factor (VWF) and factor VIII (FVIII) circulate as a non-covalent complex, with VWF serving as the carrier for FVIII. VWF indirectly influences secondary hemostasis by stabilizing FVIII and transporting it to the site of primary hemostasis. Type 2N von Willebrand disease involves impaired binding of VWF to FVIII, resulting in decreased plasma levels of FVIII. Objectives In these studies, we characterize the impact of three type 2N VWD variants (R763A, R854Q, R816W) on VWF secretion, FVIII stabilization and thrombus formation in a murine model. Methods Type 2N VWD mice were generated by hydrodynamic injections of mutant murine VWF cDNAs and the influence of these variants on VWF secretion and FVIII binding was evaluated. In vivo hemostasis and the dynamics of thrombus formation and embolization were assessed using a murine tail vein transection hemostasis model and an intravital thrombosis model in the cremaster arterioles. Results Type 2N VWD variants were associated with decreased VWF secretion using cell and animal-based models. FVIII-binding to type 2N variants was impaired in vitro and was variably stabilized in vivo by expressed or infused 2N variant VWF protein. Both transgenic type 2N VWD and FVIII knockout (KO) mice demonstrated impaired thrombus formation associated with decreased thrombus stability. Conclusions The type 2N VWD phenotype can be recapitulated in a murine model and is associated with both quantitative and qualitative VWF deficiencies and impaired thrombus formation. Patients with type 2N VWD may have normal primary hemostasis formation but decreased thrombus stability related to ineffective secondary hemostasis.
Collapse
Affiliation(s)
- L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - I Georgescu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - J Mewburn
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - M Deforest
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - K Nesbitt
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - K Hebert
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - C Dwyer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - C Brown
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - C Notley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
24
|
Hiratsuka T, Sano T, Kato H, Komatsu N, Imajo M, Kamioka Y, Sumiyama K, Banno F, Miyata T, Matsuda M. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer. J Thromb Haemost 2017; 15:1487-1499. [PMID: 28453888 DOI: 10.1111/jth.13723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/22/2023]
Abstract
Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. SUMMARY Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders.
Collapse
Affiliation(s)
- T Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Sano
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Kato
- Department of Hematology-Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Komatsu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - F Banno
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - T Miyata
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - M Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood 2017; 129:1030-1038. [DOI: 10.1182/blood-2016-09-738856] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Key Points
Prophylactic administration of NAC was effective in preventing severe TTP signs in mice by reducing the VWF multimer size. In both mice and baboons, NAC was not effective in resolving preexisting TTP signs, as thrombus resolution could not be achieved.
Collapse
|
26
|
Hayes V, Johnston I, Arepally GM, McKenzie SE, Cines DB, Rauova L, Poncz M. Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. J Clin Invest 2017; 127:1090-1098. [PMID: 28218620 DOI: 10.1172/jci90958] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/06/2016] [Indexed: 01/27/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder initiated by antibodies against complexes between human platelet factor 4 (hPF4) and heparin. A better understanding of the events that initiate the prothrombotic state may improve approaches to antithrombotic management. Here, we visualized thrombus formation in an in vivo murine model and an endothelialized microfluidic system that simulate the pathogenesis of HIT. hPF4 released from platelets predominantly bound to peri-injury endothelium and formed HIT antigenic complexes that were dissociated by heparin. In mice expressing both hPF4+ and human platelet IgG Fc receptor IIA (FcγRIIA), infusion of the HIT-like monoclonal antibody KKO increased fibrin and platelet deposition at sites of injury, followed immediately by antigen formation on proximate endothelial cells. After a few minutes, HIT antigen was detected within the thrombus itself at the interface between the platelet core and the surrounding shell. We observed similar results in the humanized, endothelialized microfluidic system. hPF4 and KKO selectively bound to photochemically injured endothelium at sites where surface glycocalyx was reduced. These studies support the concept that the perithrombus endothelium is the predominant site of HIT antigen assembly. This suggests that disrupting antigen formation along the endothelium or protecting the endothelium may provide a therapeutic opportunity to prevent thrombotic complications of HIT, while sparing systemic hemostatic pathways.
Collapse
|
27
|
Kaur H, Corscadden K, Ware J, Othman M. Thrombocytopathy leading to impaired in vivo haemostasis and thrombosis in platelet type von Willebrand disease. Thromb Haemost 2016; 117:543-555. [PMID: 28004055 DOI: 10.1160/th16-04-0317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/26/2016] [Indexed: 11/05/2022]
Abstract
Platelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTgG233V were compared to control hTgWT mice. Platelets' pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTgG233V compared to hTgWT and not significantly different when compared to unstimulated platelets. The hTgG233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTgWT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTgG233V compared to hTgWT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new - unstable - clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.
Collapse
Affiliation(s)
| | | | | | - Maha Othman
- Dr. Maha Othman, MD MSc PhD, Associate Professor, Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Boterell Hall room 513, Kingston, Ontario K7L 3N6, Canada, Tel.: +1 613 533 6108, Fax: +1 613 533 2022, E-mail:
| |
Collapse
|
28
|
Michels A, Albánez S, Mewburn J, Nesbitt K, Gould TJ, Liaw PC, James PD, Swystun LL, Lillicrap D. Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis. J Thromb Haemost 2016; 14:2274-2286. [PMID: 27589692 DOI: 10.1111/jth.13493] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/15/2016] [Indexed: 11/27/2022]
Abstract
Essentials Dysregulated DNA and histone release can promote pathological immunothrombosis. Weibel-Palade bodies (WPBs) are sentinel-like organelles that respond to proinflammatory stimuli. Histones induce WPB exocytosis in a caspase, calcium and charge-dependent mechanism. A targetable axis may exist between DNA/histones and WPBs in inflammation and immunothrombosis. SUMMARY Background Damage-associated molecular patterns (DAMPs), including molecules such as DNA and histones, are released into the blood following cell death. DAMPs promote a procoagulant phenotype through enhancement of thrombin generation and platelet activation, thereby contributing to immunothrombosis. Weibel-Palade bodies (WPBs) are dynamic endothelial cell organelles that contain procoagulant and proinflammatory mediators, such as von Willebrand factor (VWF), and are released in response to cell stresses. VWF mediates platelet adhesion and aggregation, and has been implicated as a procoagulant component of the innate immune response. Objective To determine the influence of histones and DNA on WPB release, and characterize their association in models of inflammation. Methods We treated C57BL/6J mice and cultured endothelial cells with histones (unfractionated, lysine-rich or arginine-rich) and DNA, and measured WPB exocytosis. We used inhibitors to determine a mechanism of histone-induced WPB release in vitro. We characterized the release of DAMPs and WPBs in response to acute and chronic inflammation in human and murine models. Results and conclusions Histones, but not DNA, induced the release of VWF (1.46-fold) from WBPs and caused thrombocytopenia (0.74-fold), which impaired arterial thrombus formation in mice. Histones induced WPB release from endothelial cells in a caspase-dependent, calcium-dependent and charge-dependent manner, and promoted platelet capture in a flow chamber model of VWF-platelet string formation. The levels of DAMPs and WPB-released proteins were elevated during inflammation, and were positively correlated in chronic inflammation. These studies showed that DAMPs can regulate the function and level of VWF by inducing its release from endothelial WPBs. This DAMP-WPB axis may propagate immunothrombosis associated with inflammation.
Collapse
Affiliation(s)
- A Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - S Albánez
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Mewburn
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - K Nesbitt
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - T J Gould
- Department of Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - P C Liaw
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - P D James
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Hirata S, Murata T, Suzuki D, Nakamura S, Jono‐Ohnishi R, Hirose H, Sawaguchi A, Nishimura S, Sugimoto N, Eto K. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem Cells Transl Med 2016; 6:720-730. [PMID: 28297575 PMCID: PMC5442763 DOI: 10.5966/sctm.2016-0104] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine2017;6:720–730
Collapse
Affiliation(s)
- Shinji Hirata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kaken Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Daisuke Suzuki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryoko Jono‐Ohnishi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidenori Hirose
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Kyoto Development Center, Megakaryon Co., Ltd., Kyoto, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Innovation Stem Cell Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
30
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
31
|
Fuentes E, Palomo I. Role of oxidative stress on platelet hyperreactivity during aging. Life Sci 2016; 148:17-23. [PMID: 26872977 DOI: 10.1016/j.lfs.2016.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| |
Collapse
|
32
|
Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, Vaglio A, Taddei N, Abbate R, Emmi L, Goldoni M, Fiorillo C, Prisco D. Neutrophil Activation Promotes Fibrinogen Oxidation and Thrombus Formation in Behçet Disease. Circulation 2016; 133:302-11. [DOI: 10.1161/circulationaha.115.017738] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/11/2015] [Indexed: 01/03/2023]
Abstract
Background—
Behçet disease (BD) is a systemic vasculitis with a broad range of organ involvement, characterized by a multisystemic, immune-inflammatory disorder involving vessels of all sizes and often complicated by thrombosis. Systemic redox imbalance and circulating neutrophil hyperactivation have been observed in BD patients and are thought to be responsible for impaired coagulation. We here focused on the pathogenetic mechanisms potentially linking immune cell activation and thrombosis, and specifically examined whether neutrophil activation can affect fibrinogen modifications and consequently elicit thrombosis.
Methods and Results—
Blood samples were collected from 98 consecutive BD patients attending our dedicated Center and from 70 age- and sex-matched healthy controls; in all patients fibrinogen function and structure, fibrin susceptibility to plasmin-lysis, plasma redox status, leukocyte oxidative stress markers, and possible reactive oxygen species sources were examined. Thrombin-catalyzed fibrin formation and fibrin susceptibility to plasmin-induced lysis were significantly impaired in BD patients (
P
<0.001). These findings were associated with increased plasma oxidative stress markers (
P
<0.001) and with a marked carbonylation of fibrinogen (
P
<0.001), whose secondary structure appeared deeply modified. Neutrophils displayed an enhanced NADPH oxidase activity and increased reactive oxygen species production (
P
<0.001), which significantly correlated with fibrinogen carbonylation level (
r
2
=0.33,
P
<0.0001), residual β-band intensity (
r
2
=0.07,
P
<0.01), and fibrinogen clotting ability (
r
2
=0.073,
P
<0.01)
Conclusions—
In BD patients, altered fibrinogen structure and impaired fibrinogen function are associated with neutrophil activation and enhanced reactive oxygen species production whose primary source is represented by neutrophil NADPH oxidase.
Collapse
Affiliation(s)
- Matteo Becatti
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Giacomo Emmi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Elena Silvestri
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Giulia Bruschi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Lucia Ciucciarelli
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Danilo Squatrito
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Augusto Vaglio
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Niccolò Taddei
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Rosanna Abbate
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Lorenzo Emmi
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Matteo Goldoni
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Claudia Fiorillo
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| | - Domenico Prisco
- From Department of Experimental and Clinical Biomedical Sciences “Mario Serio” (M.B., G.B., N.T., C.F.) and Department of Experimental and Clinical Medicine (G.E., E.S., L.C., D.S., R.A., D.P.), University of Florence, Italy; Nephrology Unit, University Hospital of Parma, Italy (A.V.); Interdisciplinary Internal Medicine, Center for Autoimmune Systemic Diseases, Behçet Center and Lupus Clinic, AOU Careggi, Florence, Italy (L.E., D.P.); and Department of Clinical and Experimental Medicine, University
| |
Collapse
|
33
|
Sawaguchi A, Nishimura S. C1-O-03Dynamics of Thrombus Formation in Mouse Testicular Surface Vein Visualized by Newly Devised “Vascular Mapping” Method for Live-CLEM Imagingin vivo. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Zhou J, Wu Y, Wang L, Rauova L, Hayes VM, Poncz M, Essex DW. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Invest 2015; 125:4391-406. [PMID: 26529254 DOI: 10.1172/jci80319] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022] Open
Abstract
Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation.
Collapse
|
35
|
Ivanciu L, Stalker TJ. Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 2015; 13:1949-59. [PMID: 26386264 PMCID: PMC5847271 DOI: 10.1111/jth.13145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
Abstract
The hemostatic response requires the tightly regulated interaction of the coagulation system, platelets, other blood cells and components of the vessel wall at a site of vascular injury. The dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is overly robust. Extensive studies over the past decade have sought to unravel the regulatory mechanisms that coordinate the multiple biochemical and cellular responses in time and space to ensure that an optimal response to vascular damage is achieved. These studies have relied in part on advances in in vivo imaging techniques in animal models, allowing for the direct visualization of various molecular and cellular events in real time during the hemostatic response. This review summarizes knowledge gained with these in vivo imaging and other approaches that provides new insights into the spatiotemporal regulation of coagulation and platelet activation at a site of vascular injury.
Collapse
Affiliation(s)
- L Ivanciu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Fujii T, Sakata A, Nishimura S, Eto K, Nagata S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci U S A 2015; 112:12800-5. [PMID: 26417084 PMCID: PMC4611630 DOI: 10.1073/pnas.1516594112] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Asuka Sakata
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan;
| |
Collapse
|
37
|
Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediators Inflamm 2015; 2015:435783. [PMID: 25814789 PMCID: PMC4357129 DOI: 10.1155/2015/435783] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 12/27/2022] Open
Abstract
Platelets are crucial effector cells in hemostasis. In addition, platelets are increasingly recognized as major inflammatory cells with key roles in innate and adaptive immune responses. Activated platelets have key thromboinflammatory activities linking coagulation to inflammatory response in a variety of coagulation disorders and vasculopathies. Recently identified inflammatory activities of platelets include the synthesis of IL-1β from spliced pre-RNA, as well as the presence and assembly of inflammasome which intermediate IL-1β secretion. Here we review the mechanisms by which platelets activate translation machinery and inflammasome assembly to synthesize and release IL-1β. The contributions of these processes to protective and pathogenic responses during infectious and inflammatory diseases are discussed.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Several decades of work by many investigators have elucidated the major signaling pathways responsible for platelet activation. Still to be fully understood is how these pathways are integrated into a single network and how changing conditions within a growing thrombus affect that network. In this review we will consider some of the recent studies that address these issues and describe a model that provides insights into platelet activation as it occurs in vivo. RECENT FINDINGS Genetic and pharmacologic studies performed in vivo have demonstrated that platelet activation during hemostasis and thrombosis is heterogeneous. Those studies indicate that distinct platelet activation pathways are not merely redundant, but are coordinated in time and space to achieve an optimal response. This coordination is achieved at least in part by the evolving distribution of platelet agonists and changes in solute transport within a hemostatic plug. SUMMARY Studies examining the coordination of platelet signaling in time and space continue to increase our understanding of hemostasis and thrombosis. In addition to helping to decipher platelet biology, the results have implications for the understanding of new and existing antiplatelet agents and their potential risks.
Collapse
|
39
|
Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun 2014; 5:5797. [PMID: 25504335 PMCID: PMC4268882 DOI: 10.1038/ncomms6797] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is manifested by fibrosis, vasculopathy and immune dysregulation. So far, a unifying hypothesis underpinning these pathological events remains unknown. Given that SSc is a multifactorial disease caused by both genetic and environmental factors, we focus on the two transcription factors, which modulate the fibrotic reaction and are epigenetically suppressed in SSc dermal fibroblasts, Friend leukemia integration 1 (Fli1) and Krüppel-like factor 5 (KLF5). In addition to Fli1 silencing-dependent collagen induction, simultaneous knockdown of Fli1 and KLF5 synergistically enhances expression of connective tissue growth factor. Notably, mice with double heterozygous deficiency of Klf5 and Fli1 mimicking the epigenetic phenotype of SSc skin spontaneously recapitulate all the three features of SSc, including fibrosis and vasculopathy of the skin and lung, B cell activation, and autoantibody production. These studies implicate the epigenetic downregulation of Fli1 and KLF5 as a central event triggering the pathogenic triad of SSc.
Collapse
|
40
|
Morreall J, Limpose K, Sheppard C, Kow YW, Werner E, Doetsch PW. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells. DNA Repair (Amst) 2014; 26:15-22. [PMID: 25534136 DOI: 10.1016/j.dnarep.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species threaten genomic integrity by inducing oxidative DNA damage. One common form of oxidative DNA damage is the mutagenic lesion 8-oxoguanine (8-oxodG). One driver of oxidative stress that can induce 8-oxodG is inflammation, which can be initiated by the cytokine tumor necrosis factor alpha (TNF-α). Oxidative DNA damage is primarily repaired by the base excision repair pathway, initiated by glycosylases targeting specific DNA lesions. 8-oxodG is excised by 8-oxoguanine glycosylase 1 (OGG1). A common Ogg1 allelic variant is S326C-Ogg1, prevalent in Asian and Caucasian populations. S326C-Ogg1 is associated with various forms of cancer, and is inactivated by oxidation. However, whether oxidative stress caused by inflammatory cytokines compromises OGG1 variant repair activity remains unknown. We addressed whether TNF-α causes oxidative stress that both induces DNA damage and inactivates S326C-OGG1 via cysteine 326 oxidation. In mouse embryonic fibroblasts, we found that S326C-OGG1 was inactivated only after exposure to H2O2 or TNF-α. Treatment with the antioxidant N-acetylcysteine prior to oxidative stress rescued S326C-OGG1 activity, demonstrated by in vitro and cellular repair assays. In contrast, S326C-OGG1 activity was unaffected by potassium bromate, which induces oxidative DNA damage without causing oxidative stress, and presumably cysteine oxidation. This study reveals that Cys326 is vulnerable to oxidation that inactivates S326C-OGG1. Physiologically relevant levels of TNF-α simultaneously induce 8-oxodG and inactivate S326C-OGG1. These results suggest a mechanism that could contribute to increased risk of cancer among S326C-Ogg1 homozygous individuals.
Collapse
Affiliation(s)
- Jordan Morreall
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, 30322, USA
| | - Kristin Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, USA
| | - Clayton Sheppard
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yoke Wah Kow
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Assessment of changes in membrane properties of platelets from patients with chronic myeloid leukaemia in different stages of the disease. Blood Coagul Fibrinolysis 2014; 25:142-50. [PMID: 24346354 DOI: 10.1097/mbc.0b013e328365776f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with chronic myeloproliferative leukemia (CML) have frequent haemorrhage and/or thrombosis in their medical history. The mechanisms of these major and life-threatening complications remain unclear. Membrane organization influences many of the unique cellular functions and is strongly correlated, among other factors, to the membrane lipid composition; it may be evaluated by following up the membrane fluidity and aggregation properties of the platelet. In this study, we evaluated the platelet aggregation, the expression of platelet surface receptors, the membrane fluidity (as evaluated by fluorescence anisotropy) and its correlation to reactive oxygen species (ROS) production, in patients with chronic myeloid leukaemia (CML). It was found that the patients in accelerated and blastic phase of CML present an altered platelet aggregation response to all reagents except for ristocetin as compared with chronic phase group, which shows only epinephrine-altered response. We also found that BCR/ABL transcript leads to higher levels of ROS in accelerated and blastic CML phases. Patients without molecular remission have lower platelet membrane fluidity. We obtained a positive correlation between ROS level and membrane fluorescence anisotropy changes. The CD41 expression was decreased in CML patients and P selectin expression was found to be higher in these patients than in healthy volunteers. Platelets of CML patients have altered aggregation parameters in accelerated and blastic phases, in which BCR/ABL transcript level is increased. The increased level of ROS in CML patients without molecular remission is associated with a decrease in fluidity of platelet membrane and expression of CD41/CD61 receptors. These findings may contribute to understanding the mechanism of the altered platelet response reported in CML patients.
Collapse
|
42
|
Datta A, Chen CP, Sze SK. Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microvesicles enriched plasma. PLoS One 2014; 9:e94663. [PMID: 24752076 PMCID: PMC3994162 DOI: 10.1371/journal.pone.0094663] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/18/2014] [Indexed: 11/25/2022] Open
Abstract
Background Lacunar infarction (LACI) is a subtype of acute ischemic stroke affecting around 25% of all ischemic stroke cases. Despite having an excellent recovery during acute phase, certain LACI patients have poor mid- to long-term prognosis due to the recurrence of vascular events or a decline in cognitive functions. Hence, blood-based biomarkers could be complementary prognostic and research tools. Methods and Finding Plasma was collected from forty five patients following a non-disabling LACI along with seventeen matched control subjects. The LACI patients were monitored prospectively for up to five years for the occurrence of adverse outcomes and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events). Microvesicles-enriched fractions isolated from the pooled plasma of four groups were profiled by an iTRAQ-guided discovery approach to quantify the differential proteome. The data have been deposited to the ProteomeXchange with identifier PXD000748. Bioinformatics analysis and data mining revealed up-regulation of brain-specific proteins including myelin basic protein, proteins of coagulation cascade (e.g., fibrinogen alpha chain, fibrinogen beta chain) and focal adhesion (e.g., integrin alpha-IIb, talin-1, and filamin-A) while albumin was down-regulated in both groups of patients with adverse outcome. Conclusion This data set may offer important insight into the mechanisms of poor prognosis and provide candidate prognostic biomarkers for validation on larger cohort of individual LACI patients.
Collapse
Affiliation(s)
- Arnab Datta
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P. Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Jiang P, Lan Y, Luo J, Ren YL, Liu DG, Pang JX, Liu J, Li J, Wang C, Cai JP. Rapamycin promoted thrombosis and platelet adhesion to endothelial cells by inducing membrane remodeling. BMC Cell Biol 2014; 15:7. [PMID: 24564184 PMCID: PMC3936831 DOI: 10.1186/1471-2121-15-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 02/06/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recently, evidence indicated that the rapamycin-eluting stent which was used worldwide may contribute to an increased risk for thrombosis. On the contrary, other researchers found it was safe. Thus, it is necessary to clarify the effect of rapamycin on thrombosis and the corresponding mechanisms. RESULTS The effects of rapamycin in vivo were evaluated by modified deep vein thrombosis animal model. The platelets were from healthy volunteers and the platelet-endothelium (purchased from ATCC) adhesion in cultured endothelial cells was assessed. Membrane rufflings in endothelial cells were examined by confocal and electron microscope. Thrombus formation increased in rats that were injected with rapamycin. Electron microscope analysis exhibited microvilli on the rapamycin-treated endothelium in rats. Rapamycin enhanced membrane ruffling in human umbilical vein endothelial cells (HUVECs) and adhesion of platelets to HUVECs. The platelet-HUVECs adhesion was attenuated when cells were treated with cytochalacin B. Inhibition of autophagy by 3-methyladenine led to suppression of membrane ruffles in HUVECs and augmentation of platelet-endothelial adhesion. CONCLUSIONS In conclusion, we found that endothelial membrane remodeling induced by rapamycin is crucial for the adhesion of platelets to endothelial cells and thereby for thrombosis in vivo, and that the endothelial membrane remodeling is autophagy dependent.
Collapse
Affiliation(s)
- Ping Jiang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, No,1, DaHua Road, Dong Dan, Beijing 100730, P,R,China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
GpIbα-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood 2014; 123:3354-63. [PMID: 24553181 DOI: 10.1182/blood-2013-12-543074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interactions between platelet glycoprotein (Gp) IIb/IIIa and plasma proteins mediate platelet cross-linking in arterial thrombi. However, GpIIb/IIIa inhibitors fail to disperse platelet aggregates after myocardial infarction or ischemic stroke. These results suggest that stability of occlusive thrombi involves additional and as-yet-unidentified mechanisms. In the present study, we investigated the mechanisms driving platelet cross-linking during occlusive thrombus formation. Using computational fluid dynamic simulations and in vivo thrombosis models, we demonstrated that the inner structure of occlusive thrombi is heterogeneous and primarily determined by the rheological conditions that prevailed during thrombus growth. Unlike the first steps of thrombus formation, which are GpIIb/IIIa-dependent, our findings reveal that closure of the arterial lumen is mediated by GpIbα-von Willebrand Factor (VWF) interactions. Accordingly, disruption of platelet cross-linking using GpIbα-VWF inhibitors restored vessel patency and improved outcome in a mouse model of ischemic stroke, although the thrombi were resistant to fibrinolysis or traditional antithrombotic agents. Overall, our study demonstrates that disruption of GpIbα-VWF interactions restores vessel patency after occlusive thrombosis by specifically disaggregating the external layer of occlusive thrombi, which is constituted of platelet aggregates formed under very high shear rates.
Collapse
|
45
|
Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita KI, Koike T, Harimoto KI, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014; 14:535-48. [PMID: 24529595 DOI: 10.1016/j.stem.2014.01.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 10/02/2013] [Accepted: 01/12/2014] [Indexed: 12/25/2022]
Abstract
The donor-dependent supply of platelets is frequently insufficient to meet transfusion needs. To address this issue, we developed a clinically applicable strategy for the derivation of functional platelets from human pluripotent stem cells (PSCs). This approach involves the establishment of stable immortalized megakaryocyte progenitor cell lines (imMKCLs) from PSC-derived hematopoietic progenitors through the overexpression of BMI1 and BCL-XL to respectively suppress senescence and apoptosis and the constrained overexpression of c-MYC to promote proliferation. The resulting imMKCLs can be expanded in culture over extended periods (4-5 months), even after cryopreservation. Halting the overexpression of c-MYC, BMI1, and BCL-XL in growing imMKCLs led to the production of CD42b(+) platelets with functionality comparable to that of native platelets on the basis of a range of assays in vitro and in vivo. The combination of robust expansion capacity and efficient platelet production means that appropriately selected imMKCL clones represent a potentially inexhaustible source of hPSC-derived platelets for clinical application.
Collapse
Affiliation(s)
- Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Naoya Takayama
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Shinji Hirata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Hideya Seo
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Hiroshi Endo
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Kiyosumi Ochi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Ken-ichi Fujita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Tomo Koike
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Ken-ichi Harimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Takeaki Dohda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan
| | - Akira Watanabe
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Keisuke Okita
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Nobuyasu Takahashi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shinya Yamanaka
- Department of Reprogramming Science, CiRA, Kyoto University, 606-8507, Japan
| | - Hiromitsu Nakauchi
- Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 606-8507, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
46
|
Sakata A, Ohmori T, Nishimura S, Suzuki H, Madoiwa S, Mimuro J, Kario K, Sakata Y. Paxillin is an intrinsic negative regulator of platelet activation in mice. Thromb J 2014; 12:1. [PMID: 24383745 PMCID: PMC3904695 DOI: 10.1186/1477-9560-12-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 01/04/2023] Open
Abstract
Background Paxillin is a LIM domain protein localized at integrin-mediated focal adhesions. Although paxillin is thought to modulate the functions of integrins, little is known about the contribution of paxillin to signaling pathways in platelets. Here, we studied the role of paxillin in platelet activation in vitro and in vivo. Methods and results We generated paxillin knockdown (Pxn-KD) platelets in mice by transplanting bone marrow cells transduced with a lentiviral vector carrying a short hairpin RNA sequence, and confirmed that paxillin expression was significantly reduced in platelets derived from the transduced cells. Pxn-KD platelets showed a slight increased in size and augmented integrin αIIbβ3 activation following stimulation of multiple receptors including glycoprotein VI and G protein-coupled receptors. Thromboxane A2 biosynthesis and the release of α-granules and dense granules in response to agonist stimulation were also enhanced in Pxn-KD platelets. However, Pxn-KD did not increase tyrosine phosphorylation or intracellular calcium mobilization. Intravital imaging confirmed that Pxn-KD enhanced thrombus formation in vivo. Conclusions Our findings suggest that paxillin negatively regulates several common platelet signaling pathways, resulting in the activation of integrin αIIbβ3 and release reactions.
Collapse
Affiliation(s)
| | - Tsukasa Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
McFadyen JD, Jackson SP. Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb Haemost 2013; 110:859-67. [PMID: 23945664 DOI: 10.1160/th13-05-0379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The central role of platelets in the formation of the primary haemostatic plug as well as in the development of arterial thrombosis is well defined. In general, the molecular events underpinning these processes are broadly similar. Whilst it has long been known that disturbances in blood flow, changes in platelet reactivity and enhanced coagulation reactions facilitate pathological thrombus formation, the precise details underlying these events remain incompletely understood. Intravital microscopy studies have highlighted the dynamic and heterogeneous nature of thrombus development and demonstrated that there are considerable spatiotemporal differences in the activation states of platelets within a forming thrombus. In this review we will consider the factors regulating the activation state of platelets in a developing thrombus and discuss how specific prothrombotic factors may influence this process, leading to excessive thrombus propagation. We will also discuss some potentially novel therapeutic approaches that may reduce excess thrombus development whilst minimising bleeding risk.
Collapse
Affiliation(s)
- J D McFadyen
- Shaun P. Jackson, Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), 6th level Burnet Tower, 89 Commercial Rd, Melbourne, Victoria 3004, Australia, Tel.: +613 9903 0131, Fax: +613 9903 0228, E-mail:
| | | |
Collapse
|
48
|
Pope AG, Wu G, McWhorter FY, Merricks EP, Nichols TC, Czernuszewicz TJ, Gallippi CM, Oldenburg AL. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound. Phys Med Biol 2013; 58:7277-90. [PMID: 24077004 DOI: 10.1088/0031-9155/58/20/7277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
Collapse
Affiliation(s)
- Ava G Pope
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3255, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost 2013; 11 Suppl 1:233-41. [PMID: 23809127 DOI: 10.1111/jth.12261] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deep vein thrombosis (DVT) is a common condition characterized by the formation of an occlusive blood clot in the venous vascular system, potentially complicated by detachment and embolization of thrombi into the lung. Recent evidence from mouse models has shed light on the sequence of events and on the cellular (innate immune cells, platelets) and molecular (hematopoietic tissue factor, nucleic acids) components involved. In response to decreased blood flow, circulating neutrophils and monocytes adhere to the activated endothelium within hours. They initiate and propagate DVT by interacting with platelets and by the exposure and activation of circulating tissue factor and FXII. Intravascular blood coagulation is also induced by extracellular nucleosomes released mainly from activated neutrophils. Interestingly, these mechanisms are closely linked to an evolutionary conserved immune defense mechanism activated in response to infections. In this review, we will give an overview of DVT and the role of innate immune pathways supporting this process. While the latter are aimed at preserving tissue integrity and function, uncontrolled blood coagulation and activation of immune cells may result in pathological thrombus formation and vascular occlusion. Understanding the molecular and cellular players triggering occlusion of large veins, and their distinction from physiological hemostasis, is important for the development of strategies to prevent and treat DVT.
Collapse
Affiliation(s)
- C Schulz
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| | | | | |
Collapse
|
50
|
Brass LF, Tomaiuolo M, Stalker TJ. Harnessing the platelet signaling network to produce an optimal hemostatic response. Hematol Oncol Clin North Am 2013; 27:381-409. [PMID: 23714305 DOI: 10.1016/j.hoc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Once released into the circulation by megakaryocytes, circulating platelets can undergo rapid activation at sites of vascular injury and resist unwarranted activation, which can lead to heart attacks and strokes. Historically, the signaling mechanisms underlying the regulation of platelet activation have been approached as a collection of individual pathways unique to agonist. This review takes a different approach, casting platelet activation as the product of a signaling network, in which activating and restraining mechanisms interact in a flexible network that regulates platelet adhesiveness, cohesion between platelets, granule secretion, and the formation of a stable hemostatic thrombus.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|