1
|
Sarabipour S, Kinghorn K, Quigley KM, Kovacs-Kasa A, Annex BH, Bautch VL, Mac Gabhann F. Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells. PLoS Comput Biol 2024; 20:e1011798. [PMID: 38324585 PMCID: PMC10878527 DOI: 10.1371/journal.pcbi.1011798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/20/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaitlyn M. Quigley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anita Kovacs-Kasa
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Brian H. Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Manjunatha K, Schaaps N, Behr M, Vogt F, Reese S. Computational modeling of in-stent restenosis: Pharmacokinetic and pharmacodynamic evaluation. Comput Biol Med 2023; 167:107686. [PMID: 37972534 DOI: 10.1016/j.compbiomed.2023.107686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Persistence of the pathology of in-stent restenosis even with the advent of drug-eluting stents warrants the development of highly resolved in silico models. These computational models assist in gaining insights into the transient biochemical and cellular mechanisms involved and thereby optimize the stent implantation parameters. Within this work, an already established fully-coupled Lagrangian finite element framework for modeling the restenotic growth is enhanced with the incorporation of endothelium-mediated effects and pharmacological influences of rapamycin-based drugs embedded in the polymeric layers of the current generation drug-eluting stents. The continuum mechanical description of growth is further justified in the context of thermodynamic consistency. Qualitative inferences are drawn from the model developed herein regarding the efficacy of the level of drug embedment within the struts as well as the release profiles adopted. The framework is then intended to serve as a tool for clinicians to tune the interventional procedures patient-specifically.
Collapse
Affiliation(s)
- Kiran Manjunatha
- Institute of Applied Mechanics, RWTH Aachen University, Germany.
| | - Nicole Schaaps
- Department of Cardiology, Vascular Medicine and Intensive Care, RWTH Aachen University, Germany
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
| | - Felix Vogt
- Department of Cardiology, Vascular Medicine and Intensive Care, RWTH Aachen University, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Germany
| |
Collapse
|
3
|
Liu Z, Liu X, Liu L, Wang Y, Zheng J, Li L, Li S, Zhang H, Ni J, Ma C, Gao X, Bian X, Fan G. SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity. J Pharm Anal 2023; 13:170-186. [PMID: 36908856 PMCID: PMC9999303 DOI: 10.1016/j.jpha.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Small ubiquitin-related modifier (SUMOylation) is a dynamic post-translational modification that maintains cardiac function and can protect against a hypertrophic response to cardiac pressure overload. However, the function of SUMOylation after myocardial infarction (MI) and the molecular details of heart cell responses to SUMO1 deficiency have not been determined. In this study, we demonstrated that SUMO1 protein was inconsistently abundant in different cell types and heart regions after MI. However, SUMO1 knockout significantly exacerbated systolic dysfunction and infarct size after myocardial injury. Single-nucleus RNA sequencing revealed the differential role of SUMO1 in regulating heart cells. Among cardiomyocytes, SUMO1 deletion increased the Nppa + Nppb + Ankrd1 + cardiomyocyte subcluster proportion after MI. In addition, the conversion of fibroblasts to myofibroblasts subclusters was inhibited in SUMO1 knockout mice. Importantly, SUMO1 loss promoted proliferation of endothelial cell subsets with the ability to reconstitute neovascularization and expressed angiogenesis-related genes. Computational analysis of ligand/receptor interactions suggested putative pathways that mediate cardiomyocytes to endothelial cell communication in the myocardium. Mice preinjected with cardiomyocyte-specific AAV-SUMO1, but not the endothelial cell-specific form, and exhibited ameliorated cardiac remodeling following MI. Collectively, our results identified the role of SUMO1 in cardiomyocytes, fibroblasts, and endothelial cells after MI. These findings provide new insights into SUMO1 involvement in the pathogenesis of MI and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Ying Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Jie Zheng
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Lan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Sheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
4
|
Di Maira G, Foglia B, Napione L, Turato C, Maggiora M, Sutti S, Novo E, Alvaro M, Autelli R, Colombatto S, Bussolino F, Carucci P, Gaia S, Rosso C, Biasiolo A, Pontisso P, Bugianesi E, Albano E, Marra F, Parola M, Cannito S. Oncostatin M is overexpressed in
NASH
‐related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. J Pathol 2022; 257:82-95. [PMID: 35064579 PMCID: PMC9315146 DOI: 10.1002/path.5871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)‐6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non‐alcoholic fatty liver disease (NAFLD)/non‐alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH‐related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial‐to‐mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH‐related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH‐related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM upregulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro‐carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Giovanni Di Maira
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Lucia Napione
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Applied Science and Technology Politecnico di Torino Torino Italy
| | - Cristian Turato
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Salvatore Sutti
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Maria Alvaro
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | | | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Patrizia Carucci
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Silvia Gaia
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Chiara Rosso
- Department of Medical Sciences University of Torino Italy
| | | | | | | | - Emanuele Albano
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| |
Collapse
|
5
|
Ricci A, Biancucci F, Morganti G, Magnani M, Menotta M. New human ATM variants are able to regain ATM functions in ataxia telangiectasia disease. Cell Mol Life Sci 2022; 79:601. [PMID: 36422718 PMCID: PMC9691487 DOI: 10.1007/s00018-022-04625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Ataxia telangiectasia is a rare neurodegenerative disease caused by biallelic mutations in the ataxia telangiectasia mutated gene. No cure is currently available for these patients but positive effects on neurologic features in AT patients have been achieved by dexamethasone administration through autologous erythrocytes (EryDex) in phase II and phase III clinical trials, leading us to explore the molecular mechanisms behind the drug action. During these investigations, new ATM variants, which originated from alternative splicing of ATM messenger, were discovered, and detected in vivo in the blood of AT patients treated with EryDex. Some of the new ATM variants, alongside an in silico designed one, were characterized and examined in AT fibroblast cell lines. ATM variants were capable of rescuing ATM activity in AT cells, particularly in the nuclear role of DNA DSBs recognition and repair, and in the cytoplasmic role of modulating autophagy, antioxidant capacity and mitochondria functionality, all of the features that are compromised in AT but essential for neuron survival. These outcomes are triggered by the kinase and further functional domains of the tested ATM variants, that are useful for restoring cellular functionality. The in silico designed ATM variant eliciting most of the functionality recover may be exploited in gene therapy or gene delivery for the treatment of AT patients.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy.
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Gianluca Morganti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| |
Collapse
|
6
|
Ricci A, Galluzzi L, Magnani M, Menotta M. DDIT4 gene expression is switched on by a new HDAC4 function in ataxia telangiectasia. FASEB J 2019; 34:1802-1818. [PMID: 31914654 DOI: 10.1096/fj.201902039r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/12/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Ataxia telangiectasia (AT) is a rare, severe, and ineluctably progressive multisystemic neurodegenerative disease. Histone deacetylase 4 (HDAC4) nuclear accumulation has been related to neurodegeneration in AT. Since treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome, the effects of dexamethasone on HDAC4 were investigated. In this paper, we describe a novel nonepigenetic function of HDAC4 induced by dexamethasone, through which it can directly modulate HIF-1a activity and promote the upregulation of the DDIT4 gene and protein expression. This new HDAC4 transcription regulation mechanism leads to a positive effect on autophagic flux, an AT-compromised biological pathway. This signaling was specifically induced by dexamethasone only in AT cell lines and can contribute in explaining the positive effects of dexamethasone observed in AT-treated patients.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
7
|
Alowaidi F, Hashimi SM, Alqurashi N, Wood SA, Wei MQ. Cripto-1 overexpression in U87 glioblastoma cells activates MAPK, focal adhesion and ErbB pathways. Oncol Lett 2019; 18:3399-3406. [PMID: 31452820 DOI: 10.3892/ol.2019.10626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Discovering the underlying signalling pathways that control cancer cells is crucial for understanding their biology and to develop therapeutic regimens. Thus, the aim of the present study was to determine the effect of Cripto-1 on pathways controlling glioblastoma (GBM) cell function. To this end, changes in protein phosphorylation in cells overexpressing Cripto-1 were analysed using the Kyoto Encyclopedia of Genes and Genomes pathway analysis tool, as well as the Uniprot resource to identify the functions of Cripto-1-dependent phosphorylated proteins. This revealed that proteins affected by Cripto-1 overexpression are involved in multiple signalling pathways. The mitogen-activated protein kinase (MAPK), focal adhesion (FA) and ErbB pathways were found to be enriched by Cripto-1 overexpression with 35, 27 and 24% of pathway proteins phosphorylated, respectively. These pathways control important cellular processes in cancer cells that correlate with the observed functional changes described in earlier studies. More specifically, Cripto-1 may regulate MAPK cellular proliferation and survival pathways by activating epithelial growth factor receptor (EGFR; Ser1070) or fibroblast GFR1 (Tyr654). Its effect on cellular proliferation and survival could be mediated through Src (Tyr418), FA kinase (FAK; Tyr396), p130CAS (Tyr410), c-Jun (Ser63), Paxillin (PXN; Tyr118) and BCL2 (Thr69) of the FA pathway. Cripto-1 may also control cellular motility and invasion by activating Src (Tyr418), FAK (Tyr396) and PXN (Tyr118) of the FA pathway. However, Cripto-1 regulation of cellular invasion and migration might be not limited to the FA pathway, it may also control these cellular mechanisms through signalling via EGFR (Ser1070)/Her2 (Tyr877) to mediate the Src (Tyr418) and FAK (Tyr396) cascade activation of the ErbB signalling pathway. Angiogenesis could be mediated by Cripto-1 by activating c-Jun (Ser63) through EGFR (Ser1070)/Her2 (Tyr877) of the ErbB pathway. To conclude, the present study has augmented and enriched our current knowledge on the crucial roles that Cripto-1 may play in controlling different cellular mechanisms in GBM cells.
Collapse
Affiliation(s)
- Faisal Alowaidi
- Department of Pathology and Laboratory Medicine, College of Medicine and University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Naif Alqurashi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ming Q Wei
- Division of Molecular and Gene Therapies, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
8
|
Doronzo G, Astanina E, Corà D, Chiabotto G, Comunanza V, Noghero A, Neri F, Puliafito A, Primo L, Spampanato C, Settembre C, Ballabio A, Camussi G, Oliviero S, Bussolino F. TFEB controls vascular development by regulating the proliferation of endothelial cells. EMBO J 2018; 38:embj.201798250. [PMID: 30591554 PMCID: PMC6356157 DOI: 10.15252/embj.201798250] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/30/2022] Open
Abstract
Transcription factor TFEB is thought to control cellular functions—including in the vascular bed—primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non‐canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1‐S transition by inhibiting the CDK4/Rb pathway. TFEB‐deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA‐mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR‐15a/16‐1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR‐15a/16‐1 and MYO1C in TFEB‐depleted cells cause increased expression of plasma membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium‐specific Tfeb‐knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expand its role beyond regulation of the autophagic pathway in the vascular system.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Department of Oncology, University of Turin, Candiolo, Italy .,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Alessio Noghero
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alberto Puliafito
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Luca Primo
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| | - Carmine Spampanato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Ian and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Ian and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Ian and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Candiolo, Italy .,Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
9
|
López-García M, Nowicka M, Bendtsen C, Lythe G, Ponnambalam S, Molina-París C. Quantifying the phosphorylation timescales of receptor-ligand complexes: a Markovian matrix-analytic approach. Open Biol 2018; 8:180126. [PMID: 30232099 PMCID: PMC6170503 DOI: 10.1098/rsob.180126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
Abstract
Cells interact with the extracellular environment by means of receptor molecules on their surface. Receptors can bind different ligands, leading to the formation of receptor-ligand complexes. For a subset of receptors, called receptor tyrosine kinases, binding to ligand enables sequential phosphorylation of intra-cellular residues, which initiates a signalling cascade that regulates cellular function and fate. Most mathematical modelling approaches employed to analyse receptor signalling are deterministic, especially when studying scenarios of high ligand concentration or large receptor numbers. There exist, however, biological scenarios where low copy numbers of ligands and/or receptors need to be considered, or where signalling by a few bound receptor-ligand complexes is enough to initiate a cellular response. Under these conditions stochastic approaches are appropriate, and in fact, different attempts have been made in the literature to measure the timescales of receptor signalling initiation in receptor-ligand systems. However, these approaches have made use of numerical simulations or approximations, such as moment-closure techniques. In this paper, we study, from an analytical perspective, the stochastic times to reach a given signalling threshold for two receptor-ligand models. We identify this time as an extinction time for a conveniently defined auxiliary absorbing continuous time Markov process, since receptor-ligand association/dissociation events can be analysed in terms of quasi-birth-and-death processes. We implement algorithmic techniques to compute the different order moments of this time, as well as the steady-state probability distribution of the system. A novel feature of the approach introduced here is that it allows one to quantify the role played by each kinetic rate in the timescales of signal initiation, and in the steady-state probability distribution of the system. Finally, we illustrate our approach by carrying out numerical studies for the vascular endothelial growth factor and one of its receptors, the vascular endothelial growth factor receptor of human endothelial cells.
Collapse
Affiliation(s)
- M López-García
- Department of Applied Mathematics, School of MathematicsSchool of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - M Nowicka
- Department of Applied Mathematics, School of MathematicsSchool of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, UK
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - C Bendtsen
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Milton Road, CB4 0WG Cambridge, UK
| | - G Lythe
- Department of Applied Mathematics, School of MathematicsSchool of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - S Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - C Molina-París
- Department of Applied Mathematics, School of MathematicsSchool of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, UK
| |
Collapse
|
10
|
Abstract
Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.
Collapse
Affiliation(s)
- Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University; Initiative for Biological Function & Systems, BK21 PLUS, Yonsei University, Seoul 03722, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University; Initiative for Biological Function & Systems, BK21 PLUS, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development. Methods Mol Biol 2017; 1570:117-138. [PMID: 28238133 DOI: 10.1007/978-1-4939-6840-4_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.
Collapse
|
12
|
Braun A, Caesar NM, Dang K, Myers KA. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells. J Vis Exp 2016. [PMID: 27584860 PMCID: PMC5091855 DOI: 10.3791/54265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Nicole M Caesar
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia;
| |
Collapse
|
13
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 596] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Sarabipour S, Ballmer-Hofer K, Hristova K. VEGFR-2 conformational switch in response to ligand binding. eLife 2016; 5:e13876. [PMID: 27052508 PMCID: PMC4829425 DOI: 10.7554/elife.13876] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | - Kurt Ballmer-Hofer
- Laboratory of Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
15
|
Chen S, Guo X, Imarenezor O, Imoukhuede PI. Quantification of VEGFRs, NRP1, and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, and Cross-Family Ligand Regulation. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0411-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Fearnley GW, Wheatcroft SB, Ponnambalam S. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells. Methods Mol Biol 2015; 1332:49-65. [PMID: 26285745 DOI: 10.1007/978-1-4939-2917-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
17
|
Hamada K, Osaka M, Yoshida M. Cell density impacts epigenetic regulation of cytokine-induced E-selectin gene expression in vascular endothelium. PLoS One 2014; 9:e90502. [PMID: 24690766 PMCID: PMC3972157 DOI: 10.1371/journal.pone.0090502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/03/2014] [Indexed: 01/27/2023] Open
Abstract
Growing evidence suggests that the phenotype of endothelial cells during angiogenesis differs from that of quiescent endothelial cells, although little is known regarding the difference in the susceptibility to inflammation between both the conditions. Here, we assessed the inflammatory response in sparse and confluent endothelial cell monolayers. To obtain sparse and confluent monolayers, human umbilical vein endothelial cells were seeded at a density of 7.3 × 10(3) cells/cm(2) and 29.2 × 10(3) cells/cm(2), respectively, followed by culturing for 36 h and stimulation with tumor necrosis factor α. The levels of tumor necrosis factor α-induced E-selectin protein and mRNA expression were higher in the confluent monolayer than in the sparse monolayer. The phosphorylation of c-jun N-terminal kinase and p38 mitogen-activated protein kinase or nuclear factor-κB activation was not involved in this phenomenon. A chromatin immunoprecipitation assay of the E-selectin promoter using an anti-acetyl-histone H3 antibody showed that the E-selectin promoter was highly and specifically acetylated in the confluent monolayer after tumor necrosis factor α activation. Furthermore, chromatin accessibility real-time PCR showed that the chromatin accessibility at the E-selectin promoter was higher in the confluent monolayer than in the sparse monolayer. Our data suggest that the inflammatory response may change during blood vessel maturation via epigenetic mechanisms that affect the accessibility of chromatin.
Collapse
Affiliation(s)
- Katsuhiko Hamada
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuko Osaka
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Zhang XY, Birtwistle MR, Gallo JM. A General Network Pharmacodynamic Model-Based Design Pipeline for Customized Cancer Therapy Applied to the VEGFR Pathway. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e92. [PMID: 24429593 PMCID: PMC3910016 DOI: 10.1038/psp.2013.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/21/2013] [Indexed: 01/02/2023]
Abstract
A unified approach to optimize multidrug chemotherapy using a pharmacokinetic (PK)/enhanced pharmacodynamic model was developed using the vascular endothelial growth factor receptor (VEGFR) signaling system. The base VEGFR network model, characterized by ligand–receptor interactions, enzyme recruitment (Grb2-Sos, phospholipase C γ (PLCγ), and phosphoinositide-3 kinase (PI3K)), and downstream mitogen-activated protein kinase and Akt cascade activation, was linked to a sunitinib (VEGFR inhibitor) PK model and underwent Sobol sensitivity analysis that revealed potential sunitinib-enhancing mechanisms. Drugs targeting these mechanisms (a VEGF inhibitor, a PI3K inhibitor, a PLCγ inhibitor, and a mitogen-activated protein kinase inhibitor) and sunitinib were input to optimization-based control analyses to design multidrug regimens that maintained 80% pERK and pAkt inhibition for 28 days while minimizing drug dose. The resultant combination regimens contained both continuous and discontinuous schedules, mostly at low doses, and were altered by oncogenic mutations. This pipeline of computational analyses demonstrates how model-based methods can capture the complexities of drug action, tailor cancer chemotherapy, and empower personalized medicine.
Collapse
Affiliation(s)
- X-Y Zhang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M R Birtwistle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J M Gallo
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
20
|
Chaki SP, Rivera GM. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. BIOARCHITECTURE 2013; 3:57-63. [PMID: 23887203 PMCID: PMC3782540 DOI: 10.4161/bioa.25744] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar and apical-basal cellular polarization of epithelia and endothelia are crucial during morphogenesis. The establishment of these distinct polarity states and their transitions are regulated by signaling networks that include polarity complexes, Rho GTPases, and phosphoinositides. The spatiotemporal coordination of signaling by these molecules modulates cytoskeletal remodeling and vesicle trafficking to specify membrane domains, a prerequisite for the organization of tissues and organs. Here we present an overview of how activation of the WASp/Arp2/3 pathway of actin remodeling by Nck coordinates directional cell migration and speculate on its role as a signaling integrator in the coordination of cellular processes involved in endothelial cell polarity and vascular lumen formation.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
21
|
Tan WH, Popel AS, Mac Gabhann F. Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation. PLoS One 2013; 8:e67438. [PMID: 23805312 PMCID: PMC3689841 DOI: 10.1371/journal.pone.0067438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. However, no detailed mass-action models of VEGF receptor signaling have been developed. We constructed and validated the first computational model of VEGFR2 trafficking and signaling, to study the opposing roles of Gab1 and Gab2 in regulation of Akt phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized against 5 previously published in vitro experiments, and the model was validated against six independent published datasets. The model showed agreement at several key nodes, involving scaffolding proteins Gab1, Gab2 and their complexes with Shp2. VEGFR2 recruitment of Gab1 is greater in magnitude, slower, and more sustained than that of Gab2. As Gab2 binds VEGFR2 complexes more transiently than Gab1, VEGFR2 complexes can recycle and continue to participate in other signaling pathways. Correspondingly, the simulation results show a log-linear relationship between a decrease in Akt phosphorylation and Gab1 knockdown while a linear relationship was observed between an increase in Akt phosphorylation and Gab2 knockdown. Global sensitivity analysis demonstrated the importance of initial-concentration ratios of antagonistic molecular species (Gab1/Gab2 and PI3K/Shp2) in determining Akt phosphorylation profiles. It also showed that kinetic parameters responsible for transient Gab2 binding affect the system at specific nodes. This model can be expanded to study multiple signaling contexts and receptor crosstalk and can form a basis for investigation of therapeutic approaches, such as tyrosine kinase inhibitors (TKIs), overexpression of key signaling proteins or knockdown experiments.
Collapse
Affiliation(s)
- Wan Hua Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|
22
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|