1
|
Roland L, Nguyen CH, Zmajkovicova K, Khamyath M, Kalogeraki M, Schell B, Gourhand V, Rondeau V, Abou Nader Z, Monticelli H, Maierhofer B, Johnson R, Taveras A, Espéli M, Balabanian K. CXCR4 antagonism ameliorates leukocyte abnormalities in a preclinical model of WHIM syndrome. Front Immunol 2024; 15:1468823. [PMID: 39588369 PMCID: PMC11586337 DOI: 10.3389/fimmu.2024.1468823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Background WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome is an ultra-rare, combined primary immunodeficiency and chronic neutropenic disorder characterized by a range of clinical presentations, including peripheral neutropenia, lymphopenia, and recurrent infections. WHIM syndrome is most often caused by gain-of-function mutations in the gene encoding C-X-C chemokine receptor 4 (CXCR4). As such, inhibition of CXCR4 with XOLREMDI® (mavorixafor), an orally bioavailable CXCR4 antagonist, demonstrated clinically meaningful increases in absolute neutrophil and lymphocyte counts and concomitant reduction in infections in patients with WHIM syndrome, resulting in its recent U.S. Food and Drug Administration approval. The impact of CXCR4 antagonism on other aspects of the pathobiology in WHIM syndrome, such as lymphopoiesis and leukocyte trafficking between primary and secondary lymphoid organs, is less understood. Methods In the current study, the effects of CXCR4 antagonism on leukocyte trafficking and distribution in primary and secondary lymphoid organs were investigated in a mouse model of WHIM syndrome carrying the heterozygous Cxcr41013 mutation. Cxcr4+/1013 and Cxcr4 wild-type mice received the orally bioavailable CXCR4 antagonist X4-185. Blood, spleen and bone marrow samples were collected for numeration, flow cytometry, and functional studies. Results Cxcr4+/1013 mice exhibited profound peripheral blood leukopenia as seen in patients with WHIM syndrome. CXCR4 antagonism corrected circulating leukopenia and mobilized functional neutrophils without disrupting granulopoiesis in the bone marrow of Cxcr4+/1013 mice. Furthermore, Cxcr4+/1013 displayed aberrant splenic T and B-cell counts and frequency. Treatment with X4-185 normalized splenic T-cell abnormalities, correcting the reduced CD8+ T-cell numbers, restoring the CD4/CD8 T-cell ratio, and ameliorating peripheral blood T-cell lymphopenia. In addition, CXCR4 antagonism was able to correct the abnormal frequencies and numbers of splenic marginal zone and follicular B cells in Cxcr4+/1013 mice, and ultimately normalize B-cell lymphopenia in the peripheral circulation. Conclusions Our study provides comprehensive evidence that oral dosing with a CXCR4 antagonist can effectively correct WHIM-associated neutrophil and lymphocyte abnormalities in a mouse model of WHIM syndrome. These findings extend our understanding of how targeting the dysregulated CXCR4 signaling pathway can ameliorate the pathogenesis of WHIM syndrome.
Collapse
Affiliation(s)
- Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
2
|
Huang Y, Li L, Chen R, Yu L, Zhao S, Jia Y, Dou Y, Zhang Z, An Y, Tang X, Zhao X, Zhou L. Heterogeneous phenotype of a Chinese Familial WHIM syndrome with CXCR4 V340fs gain-of-function mutation. Front Immunol 2024; 15:1460990. [PMID: 39575248 PMCID: PMC11578956 DOI: 10.3389/fimmu.2024.1460990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Background WHIM syndrome is a rare, autosomal dominant inborn error of immunity characterized by warts, hypogammaglobulinemia, infection, and myelokathexis. It is caused mainly by heterozygous mutations at the C-terminus of the C-X-C chemokine receptor type 4 (CXCR4) gene. Methods We described the detailed clinical, genetic, immunological and treatment characteristic of four WHIM patients from a single Chinese family. Results Here, we report four patients from a family carrying a variant of CXCR4 (c.1016_1017dupCT), which introduces a frameshift at codon V340, resulting in an extension of 14 amino acids (p.V340L fs*27). We provide and in-depth analysis of their clinical, genetic, immunological and treatment characteristic, noting that these patients exhibited an atypical clinical phenotype when compared to reported CXCR4R334X patients. Additionally, the frameshift variant CXCR4V340fs led to impaired receptor downregulation in patients' PBMCs, and in HEK293T cells transfected with the variant plasmids. Conclusions Our study provided detailed clinical features of four CXCR4V340fs WHIM patients from one Chinese family who presented atypical phenotype and enrich the spectrum of WHIM syndrome.
Collapse
Affiliation(s)
- Yu Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkai Zhao
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Yanjun Jia
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Hoy SM. Mavorixafor: First Approval. Drugs 2024; 84:969-975. [PMID: 39004659 DOI: 10.1007/s40265-024-02063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Mavorixafor (XOLREMDI™) is an oral, selective C-X-C chemokine receptor 4 (CXCR4) antagonist developed by X4 Pharmaceuticals that blocks the binding of C-X-C chemokine ligand 12 (also known as stromal derived factor-1) to CXCR4. In April 2024, it became the first therapy to be approved for WHIM syndrome (named by an acronym for its observed characteristics of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis) in the USA, where it is indicated for use in patients aged ≥ 12 years with WHIM syndrome to increase the number of circulating mature neutrophils and lymphocytes. Clinical development of mavorixafor is ongoing for chronic neutropenic disorders. This article summarizes the milestones in the development of mavorixafor leading to this first approval for use in patients aged ≥ 12 years with WHIM syndrome to increase the number of circulating mature neutrophils and lymphocytes.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
5
|
Zmajkovicova K, Pawar S, Sharapova SO, Geier CB, Wiest I, Nguyen C, Monticelli H, Maier-Munsa S, Chen K, Sleasman JW, Aleshkevich S, Polyakova E, Sakovich I, Warnatz K, Grimbacher B, Proietti M, Sondheimer N, Ujhazi B, Gordon S, Ellison M, Yilmaz M, Walter JE, Badarau A, Taveras AG, Neff JL, Bledsoe JR, Tarrant TK. A novel transmembrane CXCR4 variant that expands the WHIM genotype-phenotype paradigm. Blood Adv 2024; 8:3754-3759. [PMID: 38768429 PMCID: PMC11296240 DOI: 10.1182/bloodadvances.2023011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
| | - Sumit Pawar
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Christoph B. Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivana Wiest
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Chi Nguyen
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | | | - John W. Sleasman
- Division of Allergy, Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Svetlana Aleshkevich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Ekaterina Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Neal Sondheimer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Maryssa Ellison
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA
| | | | | | - Jadee L. Neff
- Division of Hematopathology, Department of Pathology, Duke University, Durham, NC
| | | | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
6
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
7
|
Bibas M, Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia - A State-of-the-Art Review: Part 1: Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Risk Stratification, and Clinical Problems. Mediterr J Hematol Infect Dis 2024; 16:e2024061. [PMID: 38984103 PMCID: PMC11232678 DOI: 10.4084/mjhid.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is an infrequent variant of lymphoma, classified as a B-cell malignancy identified by the presence of IgM paraprotein, infiltration of clonal, small lymphoplasmacytic B cells in the bone marrow, and the MYD88 L265P mutation, which is observed in over 90% of cases. The direct invasion of the malignant cells into tissues like lymph nodes and spleen, along with the immune response related to IgM, can also lead to various health complications, such as cytopenias, hyperviscosity, peripheral neuropathy, amyloidosis, and Bing-Neel syndrome. Chemoimmunotherapy has historically been considered the preferred treatment for WM, wherein the combination of rituximab and nucleoside analogs, alkylating drugs, or proteasome inhibitors has exhibited notable efficacy in inhibiting tumor growth. Recent studies have provided evidence that Bruton Tyrosine Kinase inhibitors (BTKI), either used independently or in conjunction with other drugs, have been shown to be effective and safe in the treatment of WM. The disease is considered to be non-curable, with a median life expectancy of 10 to 12 years.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCSS Rome Italy
| | - Shayna Sarosiek
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
9
|
Kumar R, Milanesi S, Szpakowska M, Dotta L, Di Silvestre D, Trotta AM, Bello AM, Giacomelli M, Benedito M, Azevedo J, Pereira A, Cortesao E, Vacchini A, Castagna A, Pinelli M, Moratto D, Bonecchi R, Locati M, Scala S, Chevigné A, Borroni EM, Badolato R. Reduced G protein signaling despite impaired internalization and β-arrestin recruitment in patients carrying a CXCR4Leu317fsX3 mutation causing WHIM syndrome. JCI Insight 2023; 8:145688. [PMID: 36883568 PMCID: PMC10077478 DOI: 10.1172/jci.insight.145688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and β-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.
Collapse
Affiliation(s)
- Rajesh Kumar
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Samantha Milanesi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Laura Dotta
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Department of Pediatrics, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Mauro Giacomelli
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Manuela Benedito
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joana Azevedo
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Alexandra Pereira
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Emilia Cortesao
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | | | - Marinella Pinelli
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Daniele Moratto
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Bonecchi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Elena M Borroni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaele Badolato
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Department of Pediatrics, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
10
|
Garcia-Sanz R, Varettoni M, Jiménez C, Ferrero S, Poulain S, San-Miguel JF, Guerrera ML, Drandi D, Bagratuni T, McMaster M, Roccaro AM, Roos-Weil D, Leiba M, Li Y, Qiu L, Hou J, De Larrea CF, Castillo JJ, Dimopoulos M, Owen RG, Treon SP, Hunter ZR. Report of Consensus Panel 3 from the 11th International workshop on Waldenström's Macroglobulinemia: Recommendations for molecular diagnosis in Waldenström's Macroglobulinemia. Semin Hematol 2023; 60:90-96. [PMID: 37099028 DOI: 10.1053/j.seminhematol.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/27/2023]
Abstract
Apart from the MYD88L265P mutation, extensive information exists on the molecular mechanisms in Waldenström's Macroglobulinemia and its potential utility in the diagnosis and treatment tailoring. However, no consensus recommendations are yet available. Consensus Panel 3 (CP3) of the 11th International Workshop on Waldenström's Macroglobulinemia (IWWM-11) was tasked with reviewing the current molecular necessities and best way to access the minimum data required for a correct diagnosis and monitoring. Key recommendations from IWWM-11 CP3 included: (1) molecular studies are warranted for patients in whom therapy is going to be started; such studies should also be done in those whose bone marrow (BM) material is sampled based on clinical issues; (2) molecular studies considered essential for these situations are those that clarify the status of 6q and 17p chromosomes, and MYD88, CXCR4, and TP53 genes. These tests in other situations, and/or other tests, are considered optional; (3) independently of the use of more sensitive and/or specific techniques, the minimum requirements are allele specific polymerase chain reaction for MYD88L265P and CXCR4S338X using whole BM, and fluorescence in situ hybridization for 6q and 17p and sequencing for CXCR4 and TP53 using CD19+ enriched BM; (4) these requirements refer to all patients; therefore, sample should be sent to specialized centers.
Collapse
Affiliation(s)
- Ramón Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain.
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Simone Ferrero
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Stephanie Poulain
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, UMR9020 CNRS-U1277 INSERM, University of Lille, and ONCOLILLE Cancer Institute, CANTHER Laboratory, Lille, France
| | - Jesus F San-Miguel
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, Lille, France
| | - Maria L Guerrera
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Daniela Drandi
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Tina Bagratuni
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mary McMaster
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aldo M Roccaro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Damien Roos-Weil
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Merav Leiba
- Sorbonne Université, Hematology Unit, Pitié-Salpêtrière Hospital, Assitance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Yong Li
- Assuta Ashdod University Hospital, Faculty of Health Science, Ben-Gurion University of the Negev, Negev, Israel
| | - Luigi Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jian Hou
- National Clinical Research Center for Blood Diseases, Blood Disease Hospital and Institute of Hematology), Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Jorge J Castillo
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - M Dimopoulos
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - R G Owen
- Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain; St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - S P Treon
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Z R Hunter
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| |
Collapse
|
11
|
Zmajkovicova K, Pawar S, Maier-Munsa S, Maierhofer B, Wiest I, Skerlj R, Taveras AG, Badarau A. Genotype–phenotype correlations in WHIM syndrome: a systematic characterization of CXCR4WHIM variants. Genes Immun 2022; 23:196-204. [PMID: 36089616 PMCID: PMC9519442 DOI: 10.1038/s41435-022-00181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022]
Abstract
Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in CXCR4 C-terminus. We assessed genotype–phenotype correlations for known pathogenic CXCR4 variants and in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. We used cell-based assays to analyze CXCL12-induced receptor trafficking and downstream signaling of 14 pathogenic CXCR4 variants previously identified in patients with WHIM syndrome. All CXCR4 variants displayed impaired receptor trafficking, hyperactive downstream signaling, and enhanced chemotaxis in response to CXCL12. Mavorixafor inhibited CXCL12-dependent signaling and hyperactivation in cells harboring CXCR4WHIM mutations. A strong correlation was found between CXCR4 internalization defect and severity of blood leukocytopenias and infection susceptibility, and between AKT activation and immunoglobulin A level and CD4+ T-cell counts. This study is the first to show WHIM syndrome clinical phenotype variability as a function of both CXCR4WHIM genotype diversity and associated functional dysregulation. Our findings suggest that CXCR4 internalization may be used to assess the pathogenicity of CXCR4 variants in vitro and also as a potential WHIM-related disease biomarker. The investigational CXCR4 antagonist mavorixafor inhibited CXCL12-dependent signaling in all tested CXCR4-variant cell lines at clinically relevant concentrations.
Collapse
|
12
|
Altered CXCR4 dynamics at the cell membrane impairs directed cell migration in WHIM syndrome patients. Proc Natl Acad Sci U S A 2022; 119:e2119483119. [PMID: 35588454 PMCID: PMC9173760 DOI: 10.1073/pnas.2119483119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SignificanceNew imaging-based approaches are incorporating new concepts to our knowledge of biological processes. The analysis of receptor dynamics involved in cell movement using single-particle tracking demonstrates that cells require chemokine-mediated receptor clustering to sense appropriately chemoattractant gradients. Here, we report that this process does not occur in T cells expressing CXCR4R334X, a mutant form of CXCR4 linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis). The underlaying molecular mechanism involves inappropriate actin cytoskeleton remodeling due to the inadequate β-arrestin1 activation by CXCR4R334X, which alters its lateral mobility and spatial organization. These defects, associated to CXCR4R334X expression, contribute to the retention of hematopoietic precursors in bone marrow niches and explain the severe immunological symptoms associated with WHIM syndrome.
Collapse
|
13
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
14
|
Luo J, De Pascali F, Richmond GW, Khojah AM, Benovic JL. Characterization of a new WHIM syndrome mutant reveals mechanistic differences in regulation of the chemokine receptor CXCR4. J Biol Chem 2021; 298:101551. [PMID: 34973340 PMCID: PMC8802859 DOI: 10.1016/j.jbc.2021.101551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
WHIM syndrome is a rare immunodeficiency disorder that is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. While several gain-of-function mutations that lead to C-terminal truncations, frame shifts and point mutations in the chemokine receptor CXCR4 have been identified in WHIM syndrome patients, the functional effect of these mutations are not fully understood. Here, we report on a new WHIM syndrome mutation that results in a frame shift within the codon for Ser339 (S339fs5) and compare the properties of S339fs5 with wild-type CXCR4 and a previously identified WHIM syndrome mutant, R334X. The S339fs5 and R334X mutants exhibited significantly increased signaling compared to wild-type CXCR4 including agonist-promoted calcium flux and extracellular-signal-regulated kinase activation. This increase is at least partially due to a significant decrease in agonist-promoted phosphorylation, β-arrestin binding, and endocytosis of S339fs5 and R334X compared with wild-type CXCR4. Interestingly, there were also significant differences in receptor degradation, with S339fs5 having a very high basal level of degradation compared with that of R334X and wild-type CXCR4. In contrast to wild-type CXCR4, both R334X and S339fs5 were largely insensitive to CXCL12-promoted degradation. Moreover, while basal and agonist-promoted degradation of wild-type CXCR4 was effectively inhibited by the CXCR4 antagonist TE-14016, this had no effect on the degradation of the WHIM mutants. Taken together, these studies identify a new WHIM syndrome mutant, CXCR4-S339fs5, which promotes enhanced signaling, reduced phosphorylation, β-arrestin binding and endocytosis, and a very high basal rate of degradation that is not protected by antagonist treatment.
Collapse
Affiliation(s)
- Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - G Wendell Richmond
- Section of Allergy and Immunology, Department of Medicine, Rush University Medical Center, 1725 W. Harrison St. Chicago, IL. 60612
| | - Amer M Khojah
- Allergy, Immunology and Rheumatology, Ann & Robert Lurie Children's Hospital of Chicago, 225 E. Chicago, IL. 60611
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107.
| |
Collapse
|
15
|
Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, Ahmadiankia N, Faridhosseini R, Dastpak M, Shabgah AG, Matin MM. Mesenchymal Stem/Stromal Cells Overexpressing CXCR4 R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell Transplant 2021; 30:9636897211054498. [PMID: 34807749 PMCID: PMC8647223 DOI: 10.1177/09636897211054498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), initially recognized as a co-receptor
for HIV, contributes to several disorders, including the WHIM (Warts,
Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. CXCR4 binds to
its ligand SDF-1 to make an axis involved in the homing property of stem cells.
This study aimed to employ WHIM syndrome pathogenesis as an inspirational
approach to reinforce cell therapies. Wild type and WHIM-type variants of the
CXCR4 gene were chemically synthesized and cloned in the
pCDH-513B-1 lentiviral vector. Molecular cloning of the synthetic genes was
confirmed by DNA sequencing, and expression of both types of CXCR4 at the
protein level was confirmed by western blotting in HEK293T cells. Human
adipose-derived mesenchymal stem cells (Ad-MSCs) were isolated, characterized,
and subjected to lentiviral transduction with Wild type and WHIM-type variants
of CXCR4. The presence of copGFP-positive MSCs confirmed the
high efficiency of transduction. The migration ability of both groups of
transduced cells was then assessed by transwell migration assay in the presence
or absence of a CXCR4-blocking agent. Our qRT-PCR results showed overexpression
of CXCR4 at mRNA level in both groups of transduced MSCs, and
expression of WHIM-type CXCR4 was significantly higher than
Wild type CXCR4 (P<0.05). Our results
indicated that the migration of genetically modified MSCs expressing WHIM-type
CXCR4 had significantly enhanced towards SDF1 in comparison with Wild type CXCR4
(P<0.05), while it was reduced after treatment with
CXCR4 antagonist. These data suggest that overexpression of WHIM-type CXCR4
could lead to enhanced and sustained expression of CXCR4 on human MSCs, which
would increase their homing capability; hence it might be an appropriate
strategy to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Reza Faridhosseini
- Department of Immunology, Mashhad Universityof Medical Sciences, Mashhad, Iran
| | - Mahtab Dastpak
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Wang L, Xiong Q, Li P, Chen G, Tariq N, Wu C. The negative charge of the 343 site is essential for maintaining physiological functions of CXCR4. BMC Mol Cell Biol 2021; 22:8. [PMID: 33485325 PMCID: PMC7825245 DOI: 10.1186/s12860-021-00347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Warts, hypogammaglobulinemia, recurrent bacterial infections and myelokathexis (WHIM) syndrome is a primary immunodeficiency disease (PID) usually caused by autosomal dominant mutations in the chemokine receptor CXCR4 gene. To date, a total of nine different mutations including eight truncation mutations and one missense mutation (E343K, CXCR4E343K) distributed in the C-terminus of CXCR4 have been identified in humans. Studies have clarified that the loss of phosphorylation sites in the C-terminus of truncated CXCR4 impairs the desensitization process, enhances the activation of G-protein, prolongs downstream signaling pathways and introduces over immune responses, thereby causing WHIM syndrome. So far, there is only one reported case of WHIM syndrome with a missense mutation, CXCR4E343K, which has a full length of C-terminus with entire phosphorylation sites, no change in all potential phosphorylation sites. The mechanism of the missense mutation (CXCR4E343K) causing WHIM syndrome is unknown. This study aimed to characterize the effect of mutation at the 343 site of CXCR4 causing the replacement of arginine/E with glutamic acid/K on the receptor signal transduction, and elucidate the mechanism underling CXCR4E343K causing WHIM in the reported family. RESULTS We completed a series of mutagenesis to generate different mutations at the 343 site of CXCR4 tail, and established a series of HeLa cell lines stably expressing CXCR4WT or CXCR4E343D (glutamic acid/E replaced with aspartic acid/D) or CXCR4E343K (glutamic acid/E replaced with lysine/K) or CXCR4E343R (glutamic acid/E replaced with arginine/R) or CXCR4E343A (glutamic acid/E replaced with alanine/A) and then systematically analyzed functions of the CXCR4 mutants above. Results showed that the cells overexpressing of CXCR4E343D had no functional changes with comparison that of wild type CXCR4. However, the cells overexpressing of CXCR4E343K or CXCR4E343R or CXCR4E343A had enhanced cell migration, prolonged the phosphorylation of ERK1/2, p38, JNK1/2/3, aggravated activation of PI3K/AKT/NF-κB signal pathway, introduced higher expression of TNFa and IL6, suggesting over immune response occurred in CXCR4 mutants with charge change at the 343 site of receptor tail, as a result, causing WHIM syndrome. Biochemical analysis of those mutations at the 343 site of CXCR4 above shows that CXCR4 mutants with no matter positive or neutral charge have aberrant signal pathways downstream of activated mutated CXCR4, only CXVR4 with negative charge residues at the site shows normal signal pathway post activation with stromal-derived factor (SDF1, also known as CXCL12). CONCLUSION Taken together, our results demonstrated that the negative charge at the 343 site of CXCR4 plays an essential role in regulating the down-stream signal transduction of CXCR4 for physiological events, and residue charge changes, no matter positive or neutral introduce aberrant activities and functions of CXCR4, thus consequently lead to WHIM syndrome.
Collapse
Affiliation(s)
- Liqing Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Nayab Tariq
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China. .,Key laboratory of Medical Molecular Biology of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. Int J Mol Sci 2020; 21:ijms21165696. [PMID: 32784523 PMCID: PMC7460815 DOI: 10.3390/ijms21165696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Given its pleiotropic functions, including its prominent role in inflammation, immune responses and cancer, the C-X-C chemokine receptor type 4 (CXCR4) has gained significant attention in recent years and has become a relevant target in drug development. Although the signaling properties of CXCR4 have been extensively studied, several aspects deserve deeper investigations. Mutations in the C-term tail of the CXCR4 gene cause WHIM syndrome, a rare congenital immunodeficiency associated by chronic leukopenia. Similar mutations have also been recently identified in 30% of patients affected by Waldenstrom’s macroglobulinaemia, a B-cell neoplasia with bone marrow accumulation of malignant cells. An ample body of work has been generated to define the impact of WHIM mutations on CXCR4 signaling properties and evaluate their role on pathogenesis, diagnosis, and response to therapy, although the identity of disease-causing signaling pathways and their relevance for disease development in different genetic variants are still open questions. This review discusses the current knowledge on biochemical properties of CXCR4 mutations to identify their prototypic signaling profile potentially useful to highlighting novel opportunities for therapeutic intervention.
Collapse
|
18
|
New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM. Vaccines (Basel) 2020; 8:vaccines8020164. [PMID: 32260318 PMCID: PMC7349554 DOI: 10.3390/vaccines8020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread. At present, different cancer types have been shown to overexpress C-X-C chemokine receptor type 4 (CXCR4) and to respond to its ligand C-X-C motif chemokine 12 (CXCL12). The CXCL12/CXCR4 axis influences cancer biology, promoting survival, proliferation, and angiogenesis, and plays a pivotal role in directing migration of cancer cells to sites of metastases, making it a prognostic marker and a therapeutic target. More recently, mutations in the C-terminus of CXCR4 have been identified in the genomic landscape of patients affected by Waldenstrom's macroglobulinemia, a rare B cell neoplasm. These mutations closely resemble those occurring in Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis (WHIM) syndrome, an immunodeficiency associated with CXCR4 aberrant expression and activity and with chemotherapy resistance in clinical trials. In this review, we summarize the current knowledge on the relevance of CXCR4 mutations in cancer biology, focusing on its importance as predictors of clinical presentation and response to therapy.
Collapse
|
19
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
20
|
A chemotaxis model to explain WHIM neutrophil accumulation in the bone marrow of WHIM mouse model. BLOOD SCIENCE 2019; 1:102-112. [PMID: 35402788 PMCID: PMC8975054 DOI: 10.1097/bs9.0000000000000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022] Open
Abstract
Neutrophils are essential immune cells that defend the host against pathogenic microbial agents. Neutrophils are produced in the bone marrow and are retained there through CXCR4–CXCL12 signaling. However, patients with the Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome are prone to infections due to increased accumulation of neutrophils in the bone marrow leading to low numbers of circulating neutrophils. How neutrophils accumulate in the bone marrow in this condition is poorly understood. To better understand factors involved in neutrophil accumulation in the bone marrow, neutrophils from wildtype and WHIM mouse models were characterized in their response to CXCL12 stimulation. WHIM neutrophils were found to exert stronger traction forces, formed significantly more lamellipodia-type protrusions and migrated with increased speed and displacement upon CXCL12 stimulation as compared to wildtype cells. Migration speed of WHIM neutrophils showed a larger initial increase upon CXCL12 stimulation, which decayed over a longer time period as compared to wildtype cells. We proposed a computational model based on the chemotactic behavior of neutrophils that indicated increased CXCL12 sensitivity and prolonged CXCR4 internalization adaptation time in WHIM neutrophils as being responsible for increased accumulation in the bone marrow. These findings provide a mechanistic understanding of bone marrow neutrophil accumulation in WHIM condition and novel insights into restoring neutrophil regulation in WHIM patients.
Collapse
|
21
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
23
|
Vinarkar S, Arora N, Chowdhury SS, Saha K, Pal B, Parihar M, Radhakrishnan VS, Chakrapani A, Bhartia S, Bhave S, Chandy M, Nair R, Mishra DK. MYD88 and CXCR4 Mutation Profiling in Lymphoplasmacytic Lymphoma/Waldenstrom's Macroglobulinaemia. Indian J Hematol Blood Transfus 2019; 35:57-65. [PMID: 30828149 PMCID: PMC6369099 DOI: 10.1007/s12288-018-0978-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022] Open
Abstract
Recurrent mutations affecting MYD88 and CXCR4 gene nowadays form the basis for the diagnosis, risk stratification and use of inhibitors targeting these signalling pathways in LPL/WM which are rare B cell neoplasms. MYD88 L265P mutation analysis was performed on 33 cases of LPL/WM by AS-PCR (positivity-84.8%, n = 28/33) and by Sanger sequencing (positivity-39.3%, n = 13/33). We had only two cases with CXCR4 non-sense (NS) mutation (p.S338*) using Sanger sequencing. MYD88 (L265P) mutation detection by AS-PCR can form reliable biomarker for the diagnosis of LPL/WM in molecular labs. Although the cohort is small, still the CXCR4 mutation frequency in our study is low as compared to the published literature.
Collapse
Affiliation(s)
- Sushant Vinarkar
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Neeraj Arora
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Sourav Sarma Chowdhury
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Kallol Saha
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Biswajoy Pal
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Mayur Parihar
- Department of Laboratory Haematology and Cytogenetics, Tata Medical Center, Kolkata, India
| | | | | | | | - Saurabh Bhave
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Mammen Chandy
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Reena Nair
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Deepak Kumar Mishra
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| |
Collapse
|
24
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
25
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Treon SP, Xu L, Liu X, Hunter ZR, Yang G, Castillo JJ. Genomic Landscape of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:745-752. [DOI: 10.1016/j.hoc.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 787] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
28
|
Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018; 109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Chemokines are named and best known for their chemotactic cytokine activity in the hematopoietic system; however, their importance extends far beyond leukocytes, cell movement and immunoregulation. CXCL12, the most protean of chemokines, regulates development in multiple systems, including the hematopoietic, cardiovascular and nervous systems, and regulates diverse cell functions, including differentiation, distribution, activation, immune synapse formation, effector function, proliferation and survival in the immune system alone. The broad importance of CXCL12 is revealed by the complex lethal developmental phenotypes in mice lacking either Cxcl12 or either one of its two known 7-transmembrane domain receptors Cxcr4 and Ackr3, as well as by gain-of-function mutations in human CXCR4, which cause WHIM syndrome, a multisystem and combined immunodeficiency disease and the only Mendelian condition caused by a chemokine system mutation. In addition, wild type CXCR4 is important in the pathogenesis of HIV/AIDS and cancer. Thus, CXCL12 and its receptors CXCR4 and ACKR3 provide extraordinary examples of multisystem multitasking in the chemokine system in both health and disease.
Collapse
Affiliation(s)
- Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Lauren Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood 2017; 130:2491-2498. [DOI: 10.1182/blood-2017-02-708552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a genetic disease characterized by neutropenia, lymphopenia, susceptibility to infections, and myelokathexis, which describes degenerative changes of mature neutrophils and hyperplasia of bone marrow myeloid cells. Some patients present with hypogammaglobulinemia and/or refractory warts of skin and genitalia. Congenital cardiac defects constitute uncommon manifestations of the disease. The disorder, which is inherited as an autosomal dominant trait, is caused by heterozygous mutations of the chemokine receptor CXCR4. These mutations lead to an increased sensitivity of neutrophils and lymphocytes to the unique ligand CXCL12 and to an increased accumulation of mature neutrophils in the bone marrow. Despite greatly improved knowledge of the disease, therapeutic choices are insufficient to prevent some of the disease outcomes, such as development of bronchiectasis, anogenital dysplasia, or invasive cancer. The available therapeutic measures aimed at preventing the risk for infection in WHIM patients are discussed. We critically evaluate the diagnostic criteria of WHIM syndrome, particularly when WHIM syndrome should be suspected in patients with congenital neutropenia and lymphopenia despite the absence of hypogammaglobulinemia and/or warts. Finally, we discuss recent results of trials evaluating plerixafor, a selective antagonist of CXCR4, as a mechanism-oriented strategy for treatment of WHIM patients.
Collapse
|
30
|
Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, McDermott DH, Murphy PM. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 2017; 5:813-825. [PMID: 29057173 DOI: 10.1080/21678707.2017.1375403] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21 INTRODUCTION WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erin Yim
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander Yang
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ari B Azani
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qian Liu
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H McDermott
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Philip M Murphy
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
31
|
Roselli G, Martini E, Lougaris V, Badolato R, Viola A, Kallikourdis M. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol 2017; 8:1068. [PMID: 28928741 PMCID: PMC5591327 DOI: 10.3389/fimmu.2017.01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is an immunodeficiency caused by mutations in chemokine receptor CXCR4. WHIM patient adaptive immunity defects remain largely unexplained. We have previously shown that WHIM-mutant T cells form unstable immunological synapses, affecting T cell activation. Here, we show that, in WHIM patients and WHIM CXCR4 knock-in mice, B cells are more apoptosis prone. Intriguingly, WHIM-mutant B cells were also characterized by spontaneous activation. Searching for a mechanistic explanation for these observations, we uncovered a novel costimulatory effect of CXCL12, the CXCR4 ligand, on WHIM-mutant but not wild-type B cells. The WHIM CXCR4-mediated costimulation led to increased B-cell activation, possibly involving mTOR, albeit without concurrently promoting survival. A reduction in antigenic load during immunization in the mouse was able to circumvent the adaptive immunity defects. These results suggest that WHIM-mutant CXCR4 may lead to spontaneous aberrant B-cell activation, via CXCL12-mediated costimulation, impairing B-cell survival and thus possibly contributing to the WHIM syndrome defects in adaptive immunity.
Collapse
Affiliation(s)
- Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vassilios Lougaris
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Brescia, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
32
|
de Wit RH, Heukers R, Brink HJ, Arsova A, Maussang D, Cutolo P, Strubbe B, Vischer HF, Bachelerie F, Smit MJ. CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. J Pharmacol Exp Ther 2017; 363:35-44. [PMID: 28768817 DOI: 10.1124/jpet.117.242735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: warts, hypogammaglobulinemia, infections, and myelokathexis, which refers to abnormal accumulation of mature neutrophils in the bone marrow. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4, giving these CXCR4-WHIM mutants a gain of function in response to their ligand CXCL12. Considering the broad functions of CXCR4 in maintaining leukocyte homeostasis, patients are panleukopenic and display altered immune responses, likely as a consequence of impairment in the differentiation and trafficking of leukocytes. Treatment of WHIM patients currently consists of symptom relief, leading to unsatisfactory clinical responses. As an alternative and potentially more effective approach, we tested the potency and efficacy of CXCR4-specific nanobodies on inhibiting CXCR4-WHIM mutants. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy chain antibodies. They combine the advantages of small-molecule drugs and antibody-based therapeutics due to their relative small size, high stability, and high affinity. We compared the potential of monovalent and bivalent CXCR4-specific nanobodies to inhibit CXCL12-induced CXCR4-WHIM-mediated signaling with the small-molecule clinical candidate AMD3100. The CXCR4-targeting nanobodies displace CXCL12 binding and bind CXCR4-wild type and CXCR4-WHIM (R334X/S338X) mutants and with (sub-) nanomolar affinities. The nanobodies' epitope was mapped to extracellular loop 2 of CXCR4, overlapping with the binding site of CXCL12. Monovalent, and in particular bivalent, nanobodies were more potent than AMD3100 in reducing CXCL12-mediated G protein activation. In addition, CXCR4-WHIM-dependent calcium flux and wound healing of human papillomavirus-immortalized cell lines in response to CXCL12 was effectively inhibited by the nanobodies. Based on these in vitro results, we conclude that CXCR4 nanobodies hold significant potential as alternative therapeutics for CXCR4-associated diseases such as WHIM syndrome.
Collapse
Affiliation(s)
- Raymond H de Wit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Hendrik J Brink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Angela Arsova
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - David Maussang
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Pasquale Cutolo
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Beatrijs Strubbe
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Françoise Bachelerie
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| |
Collapse
|
33
|
Aghamohammadi A, Abolhassani H, Puchalka J, Greif-Kohistani N, Zoghi S, Klein C, Rezaei N. Preference of Genetic Diagnosis of CXCR4 Mutation Compared with Clinical Diagnosis of WHIM Syndrome. J Clin Immunol 2017; 37:282-286. [DOI: 10.1007/s10875-017-0387-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/20/2017] [Indexed: 01/13/2023]
|
34
|
Luo J, Busillo JM, Stumm R, Benovic JL. G Protein-Coupled Receptor Kinase 3 and Protein Kinase C Phosphorylate the Distal C-Terminal Tail of the Chemokine Receptor CXCR4 and Mediate Recruitment of β-Arrestin. Mol Pharmacol 2017; 91:554-566. [PMID: 28331048 DOI: 10.1124/mol.116.106468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/17/2017] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of G protein-coupled receptors (GPCRs) is a key event for cell signaling and regulation of receptor function. Previously, using tandem mass spectrometry, we identified two phosphorylation sites at the distal C-terminal tail of the chemokine receptor CXCR4, but were unable to determine which specific residues were phosphorylated. Here, we demonstrate that serines (Ser) 346 and/or 347 (Ser-346/7) of CXCR4 are phosphorylated upon stimulation with the agonist CXCL12 as well as a CXCR4 pepducin, ATI-2341. ATI-2341, a Gαiβγ heterotrimer-biased CXCR4 agonist, induced more robust phosphorylation of Ser-346/7 compared with CXCL12. Knockdown of G protein-coupled receptor kinase (GRK) 2, GRK3, or GRK6 reduced CXCL12-induced phosphorylation of Ser-346/7 with GRK3 knockdown having the strongest effect, while inhibition of the conventional protein kinase C (PKC) isoforms, particularly PKCα, reduced phosphorylation of Ser-346/7 induced by either CXCL12 or ATI-2341. The loss of GRK3- or PKC-mediated phosphorylation of Ser-346/7 impaired the recruitment of β-arrestin to CXCR4. We also found that a pseudo-substrate peptide inhibitor for PKCζ effectively inhibited CXCR4 phosphorylation and signaling, most likely by functioning as a nonspecific CXCR4 antagonist. Together, these studies demonstrate the role Ser-346/7 plays in arrestin recruitment and initiation of receptor desensitization and provide insight into the dysregulation of CXCR4 observed in patients with various forms of WHIM syndrome.
Collapse
Affiliation(s)
- Jiansong Luo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (J.L., J.M.B., J.L.B.); and Institute of Pharmacology and Toxicology, University Hospital, Friedrich-Schiller University, Jena, Germany (R.S.)
| | - John M Busillo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (J.L., J.M.B., J.L.B.); and Institute of Pharmacology and Toxicology, University Hospital, Friedrich-Schiller University, Jena, Germany (R.S.)
| | - Ralf Stumm
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (J.L., J.M.B., J.L.B.); and Institute of Pharmacology and Toxicology, University Hospital, Friedrich-Schiller University, Jena, Germany (R.S.)
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (J.L., J.M.B., J.L.B.); and Institute of Pharmacology and Toxicology, University Hospital, Friedrich-Schiller University, Jena, Germany (R.S.)
| |
Collapse
|
35
|
Hunter ZR, Yang G, Xu L, Liu X, Castillo JJ, Treon SP. Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. J Clin Oncol 2017; 35:994-1001. [PMID: 28294689 DOI: 10.1200/jco.2016.71.0814] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing has revealed recurring somatic mutations in Waldenström macroglobulinemia (WM). Commonly recurring mutations include MYD88 (95% to 97%), CXCR4 (30% to 40%), ARID1A (17%), and CD79B (8% to 15%). Diagnostic discrimination of WM from overlapping B-cell malignancies is aided by MYD88 mutation status. Transcription is affected by MYD88 and CXCR4 mutations and includes overexpression of genes involved in VDJ recombination, CXCR4 pathway signaling, and BCL2 family members. Among patients with MYD88 mutations, those with CXCR4 mutations show transcriptional silencing of tumor suppressors associated with acquisition of mutated MYD88. Deletions involving chromosome 6q are common and include genes that modulate nuclear factor-κB, BCL2, BTK, apoptosis, differentiation, and ARID1B. Non-chromosome 6q genes are also frequently deleted and include LYN, a regulator of B-cell receptor signaling. MYD88 and CXCR4 mutations affect WM disease presentation and treatment outcome. Patients with wild-type MYD88 show lower bone marrow disease burden and serum immunoglobulin M levels but show an increased risk of death. Patients with CXCR4 mutations have higher bone marrow disease burden, and those with nonsense CXCR4 mutations have higher serum immunoglobulin M levels and incidence of symptomatic hyperviscosity. Mutated MYD88 triggers BTK, IRAK1/IRAK4, and HCK growth and survival signaling, whereas CXCR4 mutations promote AKT and extracellular regulated kinase-1/2 signaling and drug resistance in the presence of its ligand CXCL12. Ibrutinib is active in patients with WM and is affected by MYD88 and CXCR4 mutation status. Patients with mutated MYD88 and wild-type CXCR4 mutation status exhibit best responses to ibrutinib. Lower response rates and delayed responses to ibrutinib are associated with mutated CXCR4 in patients with WM. MYD88 and CXCR4 mutation status may be helpful in treatment selection for symptomatic patients. Novel therapeutic approaches under investigation include therapeutics targeting MYD88, CXCR4, and BCL2 signaling.
Collapse
Affiliation(s)
- Zachary R Hunter
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Guang Yang
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Lian Xu
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Xia Liu
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| | - Steven P Treon
- All authors: Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute; and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
37
|
Liu Q, Pan C, Lopez L, Gao J, Velez D, Anaya-O'Brien S, Ulrick J, Littel P, Corns JS, Ellenburg DT, Malech HL, Murphy PM, McDermott DH. WHIM Syndrome Caused by Waldenström's Macroglobulinemia-Associated Mutation CXCR4 (L329fs). J Clin Immunol 2016; 36:397-405. [PMID: 27059040 DOI: 10.1007/s10875-016-0276-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/21/2016] [Indexed: 11/28/2022]
Abstract
WHIM syndrome is an autosomal dominant immunodeficiency disease caused by mutations affecting the carboxy-terminus of CXCR4. To characterize novel genetic causes of the syndrome, we recruited a pediatric patient with possible WHIM syndrome, performed CXCR4 gene sequencing and compared his clinical phenotype and CXCR4 tail amino acid sequences with other patients with WHIM syndrome carrying CXCR4 (R334X) mutations. We identified and biochemically characterized a heterozygous 5 base pair deletion (nucleotides 986-990) located in the portion of the open reading frame (ORF) of CXCR4 that encodes the carboxy-terminal domain of the receptor. This CXCR4 (L329fs) mutation causes a frame-shift at codon 329 resulting in replacement of the final 24 predicted amino acids of the receptor with 12 missense amino acids. Like previously reported WHIM mutations, this frame-shift mutation CXCR4 (L329fs) decreased receptor downregulation in response to the CXCR4 agonist CXCL12 in patient PBMCs as well as in transfected K562 and HEK 293 cells, but increased calcium flux responses in K562 cells to CXCL12 stimulation. Thus, CXCR4 (L329fs) appears to be a de novo autosomal dominant frame-shift gain-of-function mutation that like other carboxy-terminus mutations causes WHIM syndrome. The same CXCR4 (L329fs) frame-shift variant has been reported to occur in tumor cells from a patient with Waldenström's Macroglobulemia (WM), but is caused by a distinct genetic mechanism: insertion of a single nucleotide in the L329 codon, providing additional evidence that the carboxy-terminus of CXCR4 is a genetic hotspot for mutation.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - Catherina Pan
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - Lizbeeth Lopez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - Jiliang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - Sandra Anaya-O'Brien
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Ulrick
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Littel
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John S Corns
- Pediatric Hematology/Oncology, East Tennessee Children's Hospital, Knoxville, TN, USA
| | | | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11 N107, Bethesda, MD, 20892-1886, USA.
| |
Collapse
|
38
|
Mona CE, Besserer-Offroy É, Cabana J, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Design, synthesis, and biological evaluation of CXCR4 ligands. Org Biomol Chem 2016; 14:10298-10311. [DOI: 10.1039/c6ob01484d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An amino functionalized analog of the CXCR4 ligand IT1t is of higher affinity and inverse agonistic potency on the CXCR4-CAM receptor N119S than IT1t.
Collapse
Affiliation(s)
- Christine E. Mona
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Jérôme Cabana
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Richard Leduc
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Pierre Lavigne
- Department of Biochemistry
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Nikolaus Heveker
- Department of Biochemistry and Molecular Medicine
- Centre de Recherche Hôpital Sainte-Justine
- Université de Montréal
- Montreal
- Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Emanuel Escher
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| |
Collapse
|
39
|
Nadrah K, Beck TC, Pereira JP. Immature B Cell Egress from Bone Marrow Is SOCS3 Independent. PLoS One 2015; 10:e0136061. [PMID: 26274929 PMCID: PMC4537204 DOI: 10.1371/journal.pone.0136061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)-3 has been suggested to regulate CXCR4 signaling in a variety of human cell lines. In mice, conditional SOCS3 inactivation in hematopoietic cells including B-lineage lymphocytes has been reported to exacerbate CXCR4-signaling and focal adhesion kinase phosphorylation, which resulted in altered immature B cell distribution in bone marrow (BM) due to sustained α4β1 integrin-mediated adhesion to the extracellular matrix. However, a recent study examining conditional SOCS3 deletion specifically in B-lineage cells failed to detect significant roles in B-lineage cell retention in BM. In this study we carefully examined the role played by SOCS3 in CXCR4 signaling in developing B cell subsets. We show that in mice conditionally deficient in SOCS3 exclusively in B cells (Socs3fl/fl Mb1cre/+) there was no detectable difference in B cell development in BM and in periphery. We show that SOCS3 deficient and sufficient immature B cell subsets are similarly distributed between BM parenchyma and sinusoids, and are equally competent at exiting BM into peripheral blood. Furthermore, we found no significant differences in CXCR4 desensitization upon ligand exposure in developing B lymphocyte subsets. Consequently, SOCS3-deficient and sufficient B-lineage cell migration towards CXCL12 in vitro was undistinguishable, and B-lineage cell amoeboid motility within BM parenchyma was also unaffected by SOCS3-deficiency. Thus we conclude that SOCS3 has no detectable influence on biological processes known to be controlled by CXCR4 signaling.
Collapse
Affiliation(s)
- Kristina Nadrah
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
| | - Thomas C. Beck
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
| | - João P. Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
- * E-mail:
| |
Collapse
|
40
|
Troshchynsky A, Dzneladze I, Chen L, Sheng Y, Saridakis V, Wu GE. Functional analyses of polymorphic variants of human terminal deoxynucleotidyl transferase. Genes Immun 2015; 16:388-98. [PMID: 26043173 DOI: 10.1038/gene.2015.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Human terminal deoxynucleotidyl transferase (hTdT) is a DNA polymerase that functions to generate diversity in the adaptive immune system. Here, we focus on the function of naturally occurring single-nucleotide polymorphisms (SNPs) of hTdT to evaluate their role in genetic-generated immune variation. The data demonstrate that the genetic variations generated by the hTdT SNPs will vary the human immune repertoire and thus its responses. Human TdT catalyzes template-independent addition of nucleotides (N-additions) during coding joint formation in V(D)J recombination. Its activity is crucial to the diversity of the antigen receptors of B and T lymphocytes. We used in vitro polymerase assays and in vivo human cell V(D)J recombination assays to evaluate the activity and the N-addition levels of six natural (SNP) variants of hTdT. In vitro, the variants differed from wild-type hTdT in polymerization ability with four having significantly lower activity. In vivo, the presence of TdT varied both the efficiency of recombination and N-addition, with two variants generating coding joints with significantly fewer N-additions. Although likely heterozygous, individuals possessing these genetic changes may have less diverse B- and T-cell receptors that would particularly effect individuals prone to adaptive immune disorders, including autoimmunity.
Collapse
Affiliation(s)
- A Troshchynsky
- Department of Biology, York University, Toronto, Ontario, Canada
| | - I Dzneladze
- Department of Biology, York University, Toronto, Ontario, Canada
| | - L Chen
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Y Sheng
- Department of Biology, York University, Toronto, Ontario, Canada
| | - V Saridakis
- Department of Biology, York University, Toronto, Ontario, Canada
| | - G E Wu
- Department of Biology, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
41
|
Localized CCR2 Activation in the Bone Marrow Niche Mobilizes Monocytes by Desensitizing CXCR4. PLoS One 2015; 10:e0128387. [PMID: 26029924 PMCID: PMC4452517 DOI: 10.1371/journal.pone.0128387] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022] Open
Abstract
Inflammatory (classical) monocytes residing in the bone marrow must enter the bloodstream in order to combat microbe infection. These monocytes express high levels of CCR2, a chemokine receptor whose activation is required for them to exit the bone marrow. How CCR2 is locally activated in the bone marrow and how their activation promotes monocyte egress is not understood. Here, we have used double transgenic lines that can visualize CCR2 activation in vivo and show that its chemokine ligand CCL2 is acutely released by stromal cells in the bone marrow, which make direct contact with CCR2-expressing monocytes. These monocytes also express CXCR4, whose activation immobilizes cells in the bone marrow, and are in contact with stromal cells expressing CXCL12, the CXCR4 ligand. During the inflammatory response, CCL2 is released and activates the CCR2 on neighboring monocytes. We demonstrate that acutely isolated bone marrow cells co-express CCR2 and CXCR4, and CCR2 activation desensitizes CXCR4. Inhibiting CXCR4 by a specific receptor antagonist in mice causes CCR2-expressing cells to exit the bone marrow in absence of inflammatory insults. Taken together, these results suggest a novel mechanism whereby the local activation of CCR2 on monocytes in the bone marrow attenuates an anchoring signalling provided by CXCR4 expressed by the same cell and mobilizes the bone marrow monocyte to the blood stream. Our results also provide a generalizable model that cross-desensitization of chemokine receptors fine-tunes cell mobility by integrating multiple chemokine signals.
Collapse
|
42
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol 2015; 32:90-105. [PMID: 25645939 PMCID: PMC4364384 DOI: 10.1016/j.coi.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Pierre Quartier
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
44
|
Filamin A interaction with the CXCR4 third intracellular loop regulates endocytosis and signaling of WT and WHIM-like receptors. Blood 2014; 125:1116-25. [PMID: 25355818 DOI: 10.1182/blood-2014-09-601807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare congenital immunodeficiency often caused by mutations in the last 10 to 19 C-terminal amino acids of CXCR4. These mutations impair CXCR4 internalization and increase responsiveness to CXCL12. The CXCR4 C-terminal domain (C-tail) also has a binding site for the actin-binding protein filamin A (FLNA); it is not known whether FLNA binds to WHIM CXCR4 mutants or whether this interaction is implicated in the hyperfunction of these receptors. Here we show that, in addition to interacting with the CXCR4 C-tail, FLNA interacted with a region in the receptor third intracellular loop (ICL3) spanning amino acids 238 to 246. This interaction involved specific FLNA repeats and was sensitive to Rho kinase inhibition. Deletion of the 238-246 motif accelerated CXCL12-induced wild-type (WT) receptor endocytosis but enabled CXCL12-mediated endocytosis and normalized signaling by the WHIM-associated receptor CXCR4(R334X). CXCL12 stimulation triggered CXCR4(R334X) internalization in FLNA-deficient M2 cells but not in the FLNA-expressing M2 subclone A7; this suggests a role for FLNA in stabilization of WHIM-like CXCR4 at the cell surface. FLNA increased β-arrestin2 binding to CXCR4(R334X) in vivo, which provides a molecular basis for FLNA-mediated hyperactivation of WHIM receptor signaling. We propose that FLNA interaction with ICL3 is central for endocytosis and signaling of WT and WHIM-like CXCR4 receptors.
Collapse
|
45
|
Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS, Richmond A. CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol Biol Cell 2014; 25:566-82. [PMID: 24403602 PMCID: PMC3937084 DOI: 10.1091/mbc.e13-07-0360] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box-binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte-macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.
Collapse
Affiliation(s)
- Tammy Sobolik
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN 37212 Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Vanderbilt Cell Imaging Shared Resource, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232 Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
We initially described the WHIM syndrome based on the combination of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis (neutrophil retention in the bone marrow). Translational research led to the discovery that this rare immunodeficiency disease is caused by a heterozygous mutation in the CXCR4 gene. Recently, Plerixafor has been suggested as a treatment for WHIM syndrome due to its efficacy as a CXCR4 antagonist, closing the translational research loop. In this review, we will focus on the clinical manifestations, pathophysiology, diagnosis and possible therapies for this rare entity.
Collapse
Affiliation(s)
- Omar Al Ustwani
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| | - Razelle Kurzrock
- University of California, San Diego, Moores Cancer Center, San Diego, CA
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| |
Collapse
|
47
|
Wu J, Zhang W, Xu A, Zhang L, Yan T, Li Z, Wu X, Zhu X, Ma J, Li K, Li H, Liu Y. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China. Genet Test Mol Biomarkers 2013; 17:595-600. [PMID: 23790025 DOI: 10.1089/gtmb.2013.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. METHODS In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. RESULTS There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). CONCLUSION The rs11569017 T allele was associated with susceptibility to HBV-related HCC.
Collapse
Affiliation(s)
- Jia Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Badolato R. Defects of leukocyte migration in primary immunodeficiencies. Eur J Immunol 2013; 43:1436-40. [DOI: 10.1002/eji.201243155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Raffaele Badolato
- Department of Pediatrics; Institute of Molecular Medicine “Angelo Nocivelli”, University of Brescia, Brescia; Italy
| |
Collapse
|
49
|
Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS One 2013; 8:e64975. [PMID: 23734232 PMCID: PMC3666969 DOI: 10.1371/journal.pone.0064975] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 04/23/2013] [Indexed: 01/07/2023] Open
Abstract
The chemokine receptor CXCR4 regulates cell migration during ontogenesis and disease states including cancer and inflammation. Upon stimulation by the endogenous ligand CXCL12, CXCR4 becomes phosphorylated at multiple sites in its C-terminal domain. Mutations in the CXCR4 gene affecting C-terminal phosphorylation sites are a hallmark of WHIM syndrome, a genetic disorder characterized by a gain-of-CXCR4-function. To better understand how multi-site phosphorylation of CXCR4 is organized and how perturbed phosphorylation might affect CXCR4 function, we developed novel phosphosite-specific CXCR4 antibodies and studied the differential regulation and interaction of three C-terminal phosphorylation sites in human embryonic kidney cells (HEK293). CXCL12 promoted a robust phosphorylation at S346/347 which preceded phosphorylation at S324/325 and S338/339. After CXCL12 washout, the phosphosites S338/339 and S324/325 were rapidly dephosphorylated whereas phosphorylation at S346/347 was long-lasting. CXCL12-induced phosphorylation at S346/347 was staurosporine-insensitive and mediated by GRK2/3. WHIM syndrome-associated CXCR4 truncation mutants lacking the S346/347 phosphosite and the recently identified E343K WHIM mutant displayed strongly impaired phosphorylation at S324/325 and S338/339 as well as reduced CXCL12-induced receptor internalization. Relevance of the S346-S348 site was confirmed by a S346-348A mutant showing strongly impaired CXCL12-promoted phosphorylation at S324/325 and S338/339, defective internalization, gain of calcium mobilization, and reduced desensitization. Thus, the triple serine motif S346-S348 contains a major initial CXCR4 phosphorylation site and is required for efficient subsequent multi-site phosphorylation and receptor regulation. Hierarchical organization of CXCR4 phosphorylation explains why small deletions at the extreme CXCR4 C terminus typically associated with WHIM syndrome severely alter CXCR4 function.
Collapse
|
50
|
Patel J, Channon KM, McNeill E. The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediators Inflamm 2013; 2013:459520. [PMID: 23690662 PMCID: PMC3649756 DOI: 10.1155/2013/459520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G-protein-coupled receptors (GPCRs) are key mediators of intracellular signalling, control numerous physiological processes, and are one of the largest class of proteins to be pharmacologically targeted. Chemokine-induced macrophage recruitment into the vascular wall is an early pathological event in the progression of atherosclerosis. Leukocyte activation and chemotaxis during cell recruitment are mediated by chemokine ligation of multiple GPCRs. Regulation of GPCR signalling is critical in limiting vascular inflammation and involves interaction with downstream proteins such as GPCR kinases (GRKs), arrestin proteins and regulator of G-protein signalling (RGS) proteins. These have emerged as new mediators of atherogenesis by functioning in internalisation, desensitisation, and signal termination of chemokine receptors. Targeting chemokine signalling through these proteins may provide new strategies to alter atherosclerotic plaque formation and plaque biology.
Collapse
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|