1
|
Kolostyak Z, Bojcsuk D, Baksa V, Szigeti ZM, Bene K, Czimmerer Z, Boto P, Fadel L, Poliska S, Halasz L, Tzerpos P, Berger WK, Villabona-Rueda A, Varga Z, Kovacs T, Patsalos A, Pap A, Vamosi G, Bai P, Dezso B, Spite M, D’Alessio FR, Szatmari I, Nagy L. EGR2 is an epigenomic regulator of phagocytosis and antifungal immunity in alveolar macrophages. JCI Insight 2024; 9:e164009. [PMID: 39042472 PMCID: PMC11385099 DOI: 10.1172/jci.insight.164009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.
Collapse
Affiliation(s)
- Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Doctoral School of Molecular Cell and Immune Biology; and
| | - Dora Bojcsuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Viktoria Baksa
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Mathene Szigeti
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | - Krisztian Bene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Szeged, Hungary
| | - Pal Boto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Lina Fadel
- Department of Biophysics and Cell Biology, and
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Andres Villabona-Rueda
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zsofia Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Szeged, Hungary
| | | | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | | | - Peter Bai
- Department of Medical Chemistry and
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, and
- Department of Oral Pathology and Microbiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franco R. D’Alessio
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Istvan Szatmari
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
2
|
Nayer B, Tan JL, Alshoubaki YK, Lu YZ, Legrand JMD, Lau S, Hu N, Park AJ, Wang XN, Amann-Zalcenstein D, Hickey PF, Wilson T, Kuhn GA, Müller R, Vasanthakumar A, Akira S, Martino MM. Local administration of regulatory T cells promotes tissue healing. Nat Commun 2024; 15:7863. [PMID: 39251592 PMCID: PMC11383969 DOI: 10.1038/s41467-024-51353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.
Collapse
Affiliation(s)
- Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Sinnee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Nan Hu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor Wilson
- MHTP Medical Genomics Facility, Monash Health Translation Precinct, Clayton, VIC, Australia
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- La Trobe University, Bundoora, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Simon M, Stüve P, Schmidleithner L, Bittner S, Beumer N, Strieder N, Schmidl C, Pant A, Gebhard C, Eigenberger A, Rehli M, Prantl L, Hehlgans T, Brors B, Imbusch CD, Delacher M, Feuerer M. Single-cell chromatin accessibility and transposable element landscapes reveal shared features of tissue-residing immune cells. Immunity 2024; 57:1975-1993.e10. [PMID: 39047731 DOI: 10.1016/j.immuni.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.
Collapse
Affiliation(s)
- Malte Simon
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Niklas Beumer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; Division of Personalized Medical Oncology, DKFZ, 69120 Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | - Asmita Pant
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany; Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
5
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
6
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
7
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Gu Y, Lawrence T, Mohamed R, Liang Y, Yahaya BH. The emerging roles of interstitial macrophages in pulmonary fibrosis: A perspective from scRNA-seq analyses. Front Immunol 2022; 13:923235. [PMID: 36211428 PMCID: PMC9536737 DOI: 10.3389/fimmu.2022.923235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is an irreversible and progressive disease affecting the lungs, and the etiology remains poorly understood. This disease can be lethal and currently has no specific clinical therapeutic regimen. Macrophages, the most common type of immune cell in the lungs, have been reported to play a key role in the pathogenesis of fibrotic disease. The lung macrophage population is mostly composed of alveolar macrophages and interstitial macrophages, both of which have not been thoroughly studied in the pathogenesis of lung fibrosis. Interstitial macrophages have recently been recognised for their participation in lung fibrosis due to new technology arising from a combination of bioinformatics and single-cell RNA sequencing analysis. This paper reviews recent developments regarding lung macrophage classification and summarizes the origin and replenishment of interstitial macrophages and their function in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Toby Lawrence
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King’s Health Partners Centre, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rafeezul Mohamed
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| | - Badrul Hisham Yahaya
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| |
Collapse
|
9
|
Bain CC, Louwe PA, Steers NJ, Bravo‐Blas A, Hegarty LM, Pridans C, Milling SW, MacDonald AS, Rückerl D, Jenkins SJ. CD11c identifies microbiota and EGR2-dependent MHCII + serous cavity macrophages with sexually dimorphic fate in mice. Eur J Immunol 2022; 52:1243-1257. [PMID: 35568024 PMCID: PMC7613339 DOI: 10.1002/eji.202149756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
The murine serous cavities contain a rare and enigmatic population of short-lived F4/80lo MHCII+ macrophages but what regulates their development, survival, and fate is unclear. Here, we show that mature F4/80lo MHCII+ peritoneal macrophages arise after birth, but that this occurs largely independently of colonization by microbiota. Rather, microbiota specifically regulate development of a subpopulation of CD11c+ cells that express the immunoregulatory cytokine RELM-α, are reliant on the transcription factor EGR2, and develop independently of the growth factor CSF1. Furthermore, we demonstrate that intrinsic expression of RELM-α, a signature marker shared by CD11c+ and CD11c- F4/80lo MHCII+ cavity macrophages, regulates survival and differentiation of these cells in the peritoneal cavity in a sex-specific manner. Thus, we identify a previously unappreciated diversity in serous cavity F4/80lo MHCII+ macrophages that is regulated by microbiota, and describe a novel sex and site-specific function for RELM-α in regulating macrophage endurance that reveals the unique survival challenge presented to monocyte-derived macrophages by the female peritoneal environment.
Collapse
Affiliation(s)
- Calum C. Bain
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - Pieter A. Louwe
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | | | - Alberto Bravo‐Blas
- Institute of Infection, Immunity, and InflammationUniversity of GlasgowGlasgowUK
| | - Lizi M. Hegarty
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - Clare Pridans
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Simon W.F. Milling
- Institute of Infection, Immunity, and InflammationUniversity of GlasgowGlasgowUK
| | - Andrew S. MacDonald
- Lydia Becker Institute for Immunology and Infection, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dominik Rückerl
- Lydia Becker Institute for Immunology and Infection, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Stephen J. Jenkins
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| |
Collapse
|
10
|
Postmitotic differentiation of human monocytes requires cohesin-structured chromatin. Nat Commun 2022; 13:4301. [PMID: 35879286 PMCID: PMC9314343 DOI: 10.1038/s41467-022-31892-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Cohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs. How chromatin structure and gene accessibility changes during monocyte differentiation is not clearly defined. Here the authors characterize the chromatin changes during macrophage or dendritic cell maturation from monocytes and the dependence of this upon cohesin and CTCF.
Collapse
|
11
|
Propionate induces cross-tolerance to TLR1/2 and TLR4 agonists in an IFIT-dependent manner. Immunobiology 2022; 227:152186. [DOI: 10.1016/j.imbio.2022.152186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022]
|
12
|
Cochran K, Srivastava D, Shrikumar A, Balsubramani A, Hardison RC, Kundaje A, Mahony S. Domain adaptive neural networks improve cross-species prediction of transcription factor binding. Genome Res 2022; 32:512-523. [PMID: 35042722 PMCID: PMC8896468 DOI: 10.1101/gr.275394.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
The intrinsic DNA sequence preferences and cell type–specific cooperative partners of transcription factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary turnover of individual TF binding sites, predictive sequence models of cell type–specific genomic occupancy of a TF in one species should generalize to closely matched cell types in a related species. To assess the viability of cross-species TF binding prediction, we train neural networks to discriminate ChIP-seq peak locations from genomic background and evaluate their performance within and across species. Cross-species predictive performance is consistently worse than within-species performance, which we show is caused in part by species-specific repeats. To account for this domain shift, we use an augmented network architecture to automatically discourage learning of training species–specific sequence features. This domain adaptation approach corrects for prediction errors on species-specific repeats and improves overall cross-species model performance. Our results show that cross-species TF binding prediction is feasible when models account for domain shifts driven by species-specific repeats.
Collapse
|
13
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
McClarty B, Rodriguez G, Dong H. Dose Effects of Histone Deacetylase Inhibitor Tacedinaline (CI-994) on Antipsychotic Haloperidol-Induced Motor and Memory Side Effects in Aged Mice. Front Neurosci 2021; 15:674745. [PMID: 34690667 PMCID: PMC8526546 DOI: 10.3389/fnins.2021.674745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Elderly patients treated with antipsychotic drugs often experience increased severity and frequency of side effects, yet the mechanisms are not well understood. Studies from our group indicate age-related histone modifications at drug targeted receptor gene promoters may contribute to the increased side effects, and histone deacetylase (HDAC) inhibitors entinostat (MS-275) and valproic acid (VPA) could reverse typical antipsychotic haloperidol (HAL) induced motor-side effects. However, whether such effects could be dose dependent and whether HDAC inhibitors could improve memory function in aged mice is unknown. Methods: We co-treated selective class 1 HDAC inhibitor tacedinaline (CI-994) at different doses (10, 20, and 30 mg/kg) with HAL (0.05 mg/kg) in young (3 months) and aged (21 months) mice for 14 consecutive days, then motor and memory behavioral tests were conducted, followed by biochemical measurements. Results: CI-994 at doses of 10 and 20 mg/kg could decrease HAL-induced cataleptic episodes but only 20 mg/kg was sufficient to improve motor coordination in aged mice. Additionally, CI-994 at 10 and 20 mg/kg mitigate HAL-induced memory impairment in aged mice. Biochemical analyses showed increased acetylation of histone marks H3K27ac and H3K18ac at the dopamine 2 receptor (D2R) gene (Drd2) promoter and increased expression of the Drd2 mRNA and D2R protein in the striatum of aged mice after administration of CI-994 at 20 mg/kg. Conclusions: Our results suggest CI-994 can reduce HAL-induced motor and memory side effects in aged mice. These effects may act through an increase of acetylation at the Drd2 promoter, thereby restoring D2R expression and improving antipsychotic drug action.
Collapse
Affiliation(s)
- Bryan McClarty
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Zhang Y, Lu Q, Ye Y, Huang K, Liu W, Wu Y, Zhong X, Li B, Yu Z, Travers BG, Werling DM, Li JJ, Zhao H. SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol 2021; 22:262. [PMID: 34493297 PMCID: PMC8422619 DOI: 10.1186/s13059-021-02478-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA, a statistical framework to estimate local genetic correlations using summary statistics from genome-wide association studies. We demonstrate that SUPERGNOVA outperforms existing methods through simulations and analyses of 30 complex traits. In particular, we show that the positive yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically distinct genetic signatures with bidirectional local genetic correlations.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yixuan Ye
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Kunling Huang
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiaoyuan Zhong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Brittany G Travers
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Donna M Werling
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - James J Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
17
|
Shirafuta Y, Tamura I, Ohkawa Y, Maekawa R, Doi-Tanaka Y, Takagi H, Mihara Y, Shinagawa M, Taketani T, Sato S, Tamura H, Sugino N. Integrated Analysis of Transcriptome and Histone Modifications in Granulosa Cells During Ovulation in Female Mice. Endocrinology 2021; 162:6309636. [PMID: 34171084 DOI: 10.1210/endocr/bqab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/14/2022]
Abstract
The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
18
|
Allele-specific expression of GATA2 due to epigenetic dysregulation in CEBPA double-mutant AML. Blood 2021; 138:160-177. [PMID: 33831168 DOI: 10.1182/blood.2020009244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.
Collapse
|
19
|
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Lüscher TF, Paneni F, Costantino S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid Redox Signal 2021; 34:1165-1199. [PMID: 32808539 DOI: 10.1089/ars.2020.8040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The prevalence of obesity and cardiometabolic phenotypes is alarmingly increasing across the globe and is associated with atherosclerotic vascular complications and high mortality. In spite of multifactorial interventions, vascular residual risk remains high in this patient population, suggesting the need for breakthrough therapies. The mechanisms underpinning obesity-related vascular disease remain elusive and represent an intense area of investigation. Recent Advances: Epigenetic modifications-defined as environmentally induced chemical changes of DNA and histones that do not affect DNA sequence-are emerging as a potent modulator of gene transcription in the vasculature and might significantly contribute to the development of obesity-induced endothelial dysfunction. DNA methylation and histone post-translational modifications cooperate to build complex epigenetic signals, altering transcriptional networks that are implicated in redox homeostasis, mitochondrial function, vascular inflammation, and perivascular fat homeostasis in patients with cardiometabolic disturbances. Critical Issues: Deciphering the epigenetic landscape in the vasculature is extremely challenging due to the complexity of epigenetic signals and their function in regulating transcription. An overview of the most important epigenetic pathways is required to identify potential molecular targets to treat or prevent obesity-related endothelial dysfunction and atherosclerotic disease. This would enable the employment of precision medicine approaches in this setting. Future Directions: Current and future research efforts in this field entail a better definition of the vascular epigenome in obese patients as well as the unveiling of novel, cell-specific chromatin-modifying drugs that are able to erase specific epigenetic signals that are responsible for maladaptive transcriptional alterations and vascular dysfunction in obese patients. Antioxid. Redox Signal. 34, 1165-1199.
Collapse
Affiliation(s)
- Stefano Masi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Heart Division, Royal Brompton and Harefield Hospital Trust, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Abstract
Epigenetic modifications have been implicated to mediate several complications of diabetes mellitus (DM), especially nephropathy and retinopathy. Our aim was to ascertain whether epigenetic alterations in whole blood discriminate among patients with DM with normal, delayed, and rapid gastric emptying (GE).
Collapse
|
21
|
Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8. Cell Rep 2021; 35:109143. [PMID: 34010659 DOI: 10.1016/j.celrep.2021.109143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPβ, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor κB (NF-κB) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation.
Collapse
|
22
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
23
|
Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2021; 222:2041-2051. [PMID: 32852032 PMCID: PMC7661765 DOI: 10.1093/infdis/jiaa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Azadeh Nilchian
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Estelle Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata M Parniewska
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ana Santiago
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aránzazu Rossignoli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Estrada-Capetillo L, Aragoneses-Fenoll L, Domínguez-Soto Á, Fuentelsaz-Romero S, Nieto C, Simón-Fuentes M, Alonso B, Portolés P, Corbí AL, Rojo JM, Puig-Kröger A. CD28 is expressed by macrophages with anti-inflammatory potential and limits their T-cell activating capacity. Eur J Immunol 2021; 51:824-834. [PMID: 33169838 DOI: 10.1002/eji.202048806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022]
Abstract
CD28 expression is generally considered to be T lymphocyte specific. We have previously shown CD28 mRNA expression in M-CSF-dependent anti-inflammatory monocyte-derived macrophages (M-MØ), and now demonstrate that CD28 cell surface expression is higher in M-MØ than in GM-CSF-dependent macrophages, and that macrophage CD28 expression is regulated by MAFB and activin A. In vivo, CD28 was found in tumor-associated macrophages and, to a lower extent, in pro-inflammatory synovial fluid macrophages from rheumatoid arthritis patients. Analysis of mouse macrophages confirmed Cd28 expression in bone-marrow derived M-MØ. Indeed, anti-CD28 antibodies triggered ERK1/2 phosphorylation in mouse M-MØ. At the functional level, Cd28KO M-MØ exhibited a significantly higher capacity to activate the OVA-specific proliferation of OT-II CD4+ T cells than WT M-MØ, as well as enhanced LPS-induced IL-6 production. Besides, the Cd28KO M-MØ transcriptome was significantly different from WT M-MØ regarding the expression IFN response, inflammatory response, and TGF-β signaling related gene sets. Therefore, defective CD28 expression in mouse macrophages associates to changes in gene expression profile, what might contribute to the altered functionality displayed by Cd28KO M-MØ. Thus, CD28 expression appears as a hallmark of anti-inflammatory macrophages and might be a target for immunotherapy.
Collapse
Affiliation(s)
- Lizbeth Estrada-Capetillo
- Unidad de InmunoMetabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Aragoneses-Fenoll
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sara Fuentelsaz-Romero
- Unidad de InmunoMetabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Concha Nieto
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | | | - Bárbara Alonso
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Pilar Portolés
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Angel L Corbí
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Jose M Rojo
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Amaya Puig-Kröger
- Unidad de InmunoMetabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
25
|
The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun 2021; 12:1556. [PMID: 33692344 PMCID: PMC7946903 DOI: 10.1038/s41467-021-21661-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The differentiation of human blood monocytes (MO), the post-mitotic precursors of macrophages (MAC) and dendritic cells (moDC), is accompanied by the active turnover of DNA methylation, but the extent, consequences and mechanisms of DNA methylation changes remain unclear. Here, we profile and compare epigenetic landscapes during IL-4/GM-CSF-driven MO differentiation across the genome and detect several thousand regions that are actively demethylated during culture, both with or without accompanying changes in chromatin accessibility or transcription factor (TF) binding. We further identify TF that are globally associated with DNA demethylation processes. While interferon regulatory factor 4 (IRF4) is found to control hallmark dendritic cell functions with less impact on DNA methylation, early growth response 2 (EGR2) proves essential for MO differentiation as well as DNA methylation turnover at its binding sites. We also show that ERG2 interacts with the 5mC hydroxylase TET2, and its consensus binding sequences show a characteristic DNA methylation footprint at demethylated sites with or without detectable protein binding. Our findings reveal an essential role for EGR2 as epigenetic pioneer in human MO and suggest that active DNA demethylation can be initiated by the TET2-recruiting TF both at stable and transient binding sites. DNA methylation turnover is an essential epigenetic process during development. Here, the authors look at the changes in DNA methylation during the differentiation of post-mitotic human monocytes (MO), and find that EGR2 interacts with TET2 and is required for DNA demethylation at its binding sites; revealing EGR2 as an epigenetic pioneer factor in human MO.
Collapse
|
26
|
Fiuza BSD, Fonseca HF, Meirelles PM, Marques CR, da Silva TM, Figueiredo CA. Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes. Front Immunol 2021; 12:623737. [PMID: 33732246 PMCID: PMC7957070 DOI: 10.3389/fimmu.2021.623737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to different organisms (bacteria, mold, virus, protozoan, helminths, among others) can induce epigenetic changes affecting the modulation of immune responses and consequently increasing the susceptibility to inflammatory diseases. Epigenomic regulatory features are highly affected during embryonic development and are responsible for the expression or repression of different genes associated with cell development and targeting/conducting immune responses. The well-known, "window of opportunity" that includes maternal and post-natal environmental exposures, which include maternal infections, microbiota, diet, drugs, and pollutant exposures are of fundamental importance to immune modulation and these events are almost always accompanied by epigenetic changes. Recently, it has been shown that these alterations could be involved in both risk and protection of allergic diseases through mechanisms, such as DNA methylation and histone modifications, which can enhance Th2 responses and maintain memory Th2 cells or decrease Treg cells differentiation. In addition, epigenetic changes may differ according to the microbial agent involved and may even influence different asthma or allergy phenotypes. In this review, we discuss how exposure to different organisms, including bacteria, viruses, and helminths can lead to epigenetic modulations and how this correlates with allergic diseases considering different genetic backgrounds of several ancestral populations.
Collapse
Affiliation(s)
| | | | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, Brazil
| | - Cintia Rodrigues Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | |
Collapse
|
27
|
Tamura I, Maekawa R, Jozaki K, Ohkawa Y, Takagi H, Doi-Tanaka Y, Shirafuta Y, Mihara Y, Taketani T, Sato S, Tamura H, Sugino N. Transcription factor C/EBPβ induces genome-wide H3K27ac and upregulates gene expression during decidualization of human endometrial stromal cells. Mol Cell Endocrinol 2021; 520:111085. [PMID: 33232782 DOI: 10.1016/j.mce.2020.111085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
We previously reported that H3K27 acetylation (H3K27ac) increases throughout the genome during decidualization of human endometrial stromal cells (ESCs). However, its mechanisms have not been clarified. We also reported that C/EBPβ acts as a pioneer factor initiating chromatin remodeling by increasing H3K27ac of IGFBP-1 and PRL promoters. Therefore, C/EBPβ may be involved in the genome-wide increase of H3K27ac during decidualization. In this study, we investigated whether C/EBPβ causes genome-wide H3K27ac modifications and regulates gene expressions during decidualization. cAMP was used to induce decidualization. Three types of cells (control cells, cAMP-treated cells, and cAMP-treated + C/EBPβ-knockdowned cells by siRNA) were generated. Of 4190 genes that were upregulated by cAMP, C/EBPβ knockdown inhibited these upregulation in 2239 genes (53.4%), indicating that they are under the regulation of C/EBPβ. cAMP increased H3K27ac in 1272 of the 2239 genes. C/EBPβ knockdown abolished the increase of H3K27ac in almost all genes (1263 genes, 99.3%), suggesting that C/EBPβ can upregulate gene expression by increasing H3K27ac. To investigate how C/EBPβ regulates H3K27ac throughout the genome, we tested the hypothesis that C/EBPβ binds to its binding regions and recruits cofactors with histone acetyltransferase activities. To do this, we collated our ChIP-sequence data with public ChIP-sequence database of transcription factors, and found that p300 is the most likely cofactor that binds to the H3K27ac-increased-regions with C/EBPβ. ChIP-qPCR of several genes confirmed that C/EBPβ binds to the target regions, recruits p300, and increases H3K27ac. Our genome-wide analysis revealed that C/EBPβ induces H3K27ac throughout the genome and upregulates gene expressions during decidualization by recruiting p300 to the promoters.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan.
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Kosuke Jozaki
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Japan
| |
Collapse
|
28
|
Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D, Gardini A. EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. SCIENCE ADVANCES 2021; 7:7/3/eaaz8836. [PMID: 33523892 PMCID: PMC7806227 DOI: 10.1126/sciadv.aaz8836] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/20/2020] [Indexed: 05/20/2023]
Abstract
Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Avery Zucco
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Sandra Deliard
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Fang Wang
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Filippo Veglia
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
29
|
Shi T, Denney L, An H, Ho LP, Zheng Y. Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J Leukoc Biol 2020; 110:107-114. [PMID: 33155728 DOI: 10.1002/jlb.3ru0720-418r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Mϕs are the main innate immune cells in the lung at homeostasis, with important roles in host defence and immune modulation. Alveolar Mϕs (AMs) and interstitial Mϕs (IMs) are the two lung Mϕ subsets, so called according to the sites they reside in. These subsets are also defined by their origins and immunological microenvironment, which endow these cells with distinct features and plasticity. This review summarizes the latest definitions and functions of lung Mϕs during homeostasis and provides exemplar of their divergent roles in lung fibrosis.
Collapse
Affiliation(s)
- Ting Shi
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Laura Denney
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Huazhang An
- Clinical Cancer Institute, Center of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Assouvie A, Rotival M, Hamroune J, Busso D, Romeo PH, Quintana-Murci L, Rousselet G. A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer. PLoS Genet 2020; 16:e1009090. [PMID: 33147208 PMCID: PMC7641354 DOI: 10.1371/journal.pgen.1009090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/31/2020] [Indexed: 12/01/2022] Open
Abstract
Interferon β (IFN-β) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-β binding motif, prevents binding of C/EBP-β, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-β expression in myeloid cells. Genome-wide association studies identify multiple genetic variants associated with higher order phenotypes. Pinpointing the causative variant and understanding its molecular mode of action is a complex task. Using a murine model of interferon-β transcriptional deregulation, we characterize a super-enhancer controlling Ifnb1 expression in myeloid cells. The most active enhancer of this locus is conserved in humans, but presents a frequent variant found in around 30% of the population worldwide. This variant prevents binding of the C/EBP-β transcription factor, and is associated with decreased expression of IFNB1 in activated monocytes. When mimicked in the murine enhancer, it abolishes its inducible enhancer activity. Our results describe the molecular link between a point mutation and a cellular phenotype that could influence clinical situations.
Collapse
Affiliation(s)
- Anaïs Assouvie
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| | - Juliette Hamroune
- Plate-forme Génomique, Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Didier Busso
- CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Paul-Henri Romeo
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
- Chair Human Genomics & Evolution, Collège de France, Paris, France
| | - Germain Rousselet
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
31
|
Herrera-Uribe J, Liu H, Byrne KA, Bond ZF, Loving CL, Tuggle CK. Changes in H3K27ac at Gene Regulatory Regions in Porcine Alveolar Macrophages Following LPS or PolyIC Exposure. Front Genet 2020; 11:817. [PMID: 32973863 PMCID: PMC7468443 DOI: 10.3389/fgene.2020.00817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs. By combining RNA sequencing (RNA-seq) with chromatin immunoprecipitation and sequencing (ChIP-seq) for four histone marks (H3K4me3, H3K4me1, H3K27ac and H3K27me3), we established a chromatin state map for AM stimulated with two different PAMPs, lipopolysaccharide (LPS) and Poly(I:C), and investigated the potential effect of identified histone modifications on transcription factor binding motif (TFBM) prediction and RNA abundance changes in these AM. The integrative analysis suggests that the differential gene expression between non-stimulated and stimulated AM is significantly associated with changes in the H3K27ac level at active regulatory regions. Although global changes in chromatin states were minor after stimulation, we detected chromatin state changes for differentially expressed genes involved in the TLR4, TLR3 and RIG-I signaling pathways. We found that regions marked by H3K27ac genome-wide were enriched for TFBMs of TF that are involved in the inflammatory response. We further documented that TF whose expression was induced by these stimuli had TFBMs enriched within H3K27ac-marked regions whose chromatin state changed by these same stimuli. Given that the dramatic transcriptomic changes and minor chromatin state changes occurred in response to both stimuli, we conclude that regulatory elements (i.e. active promoters) that contain transcription factor binding motifs were already active/poised in AM for immediate inflammatory response to PAMPs. In summary, our data provides the first chromatin state map of porcine AM in response to bacterial and viral PAMPs, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the role of HMs, especially H3K27ac, in regulating transcription in AM in response to LPS and Poly(I:C).
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | | |
Collapse
|
32
|
Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, Dickerson KE, Chen M, Chen W, Shao Z, Ni M, Xu J. Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Cancer Discov 2020; 10:724-745. [PMID: 32188707 DOI: 10.1158/2159-8290.cd-19-1128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Mutations in protein-coding genes are well established as the basis for human cancer, yet how alterations within noncoding genome, a substantial fraction of which contain cis-regulatory elements (CRE), contribute to cancer pathophysiology remains elusive. Here, we developed an integrative approach to systematically identify and characterize noncoding regulatory variants with functional consequences in human hematopoietic malignancies. Combining targeted resequencing of hematopoietic lineage-associated CREs and mutation discovery, we uncovered 1,836 recurrently mutated CREs containing leukemia-associated noncoding variants. By enhanced CRISPR/dCas9-based CRE perturbation screening and functional analyses, we identified 218 variant-associated oncogenic or tumor-suppressive CREs in human leukemia. Noncoding variants at KRAS and PER2 enhancers reside in proximity to nuclear receptor (NR) binding regions and modulate transcriptional activities in response to NR signaling in leukemia cells. NR binding sites frequently colocalize with noncoding variants across cancer types. Hence, recurrent noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. SIGNIFICANCE: We describe an integrative approach to identify noncoding variants in human leukemia, and reveal cohorts of variant-associated oncogenic and tumor-suppressive cis-regulatory elements including KRAS and PER2 enhancers. Our findings support a model in which noncoding regulatory variants connect enhancer dysregulation with nuclear receptor signaling to modulate gene programs in hematopoietic malignancies.See related commentary by van Galen, p. 646.This article is highlighted in the In This Issue feature, p. 627.
Collapse
Affiliation(s)
- Kailong Li
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xin Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuxuan Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhimin Gu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Cao
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Ni
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Chen M, Li Q, Cao N, Deng Y, Li L, Zhao Q, Wu M, Ye M. Profiling of histone 3 lysine 27 acetylation reveals its role in a chronic DSS-induced colitis mouse model. Mol Omics 2020; 15:296-307. [PMID: 31147658 DOI: 10.1039/c9mo00070d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. In current dogma, pathogenesis of IBD is attributed to the dysregulated mucosal immune response to gut flora in genetically susceptible individuals, but the genetics evidence from GWAS studies so far is insufficient to explain the observed heritability in IBD. For this discordance, epigenetics has emerged to be one of the important causes. Recent studies have reported that histone acetylation is correlated with the development of IBD, whereas its role and underlying molecular mechanism in the disease still remain elusive. Here, we established a dextran sulfate sodium (DSS)-induced chronic colitis model and performed RNA-sequencing (RNA-seq) and Chromatin Immunoprecipitation followed by NGS sequencing (ChIP-seq) for H3K27ac in the mice colon tissues to investigate whether H3K27ac is involved in the development of intestinal inflammation. We found that the global H3K27ac level and distribution in colon tissue had no significant difference after DSS treatment, while H3K27ac signals were significantly enriched in the typical-enhancers of the DSS group compared with the control. By combining with RNA-seq data (fold change >2), we identified 56 candidate genes as potential target genes for H3K27ac change upon DSS treatment. We further predicted transcription factors (TFs) involved in DSS-induced colitis according to the enhancers with increased H3K27ac. H3K27ac increase in special typical-enhancers in the DSS group is possibly related to the development of intestinal inflammation by up-regulating adjacent gene expression and shifting TF networks, which will provide new insight into the pathogenesis and therapy of IBD.
Collapse
Affiliation(s)
- Meng Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat Commun 2020; 11:402. [PMID: 31964861 PMCID: PMC6972792 DOI: 10.1038/s41467-019-13960-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.
Collapse
|
35
|
Huang Y, Mouttet B, Warnatz HJ, Risch T, Rietmann F, Frommelt F, Ngo QA, Dobay MP, Marovca B, Jenni S, Tsai YC, Matzk S, Amstislavskiy V, Schrappe M, Stanulla M, Gstaiger M, Bornhauser B, Yaspo ML, Bourquin JP. The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell 2019; 36:630-644.e9. [PMID: 31735627 DOI: 10.1016/j.ccell.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.
Collapse
Affiliation(s)
- Yun Huang
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Brice Mouttet
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Thomas Risch
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fabian Rietmann
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Quy A Ngo
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Maria Pamela Dobay
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Silvia Jenni
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Yi-Chien Tsai
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Sören Matzk
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jean-Pierre Bourquin
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
36
|
Ordoñez R, Martínez-Calle N, Agirre X, Prosper F. DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? Cancers (Basel) 2019; 11:cancers11101424. [PMID: 31554341 PMCID: PMC6827153 DOI: 10.3390/cancers11101424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, 31008 Pamplona, Spain.
| |
Collapse
|
37
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Dekkers KF, Neele AE, Jukema JW, Heijmans BT, de Winther MPJ. Human monocyte-to-macrophage differentiation involves highly localized gain and loss of DNA methylation at transcription factor binding sites. Epigenetics Chromatin 2019; 12:34. [PMID: 31171035 PMCID: PMC6551876 DOI: 10.1186/s13072-019-0279-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophages and their precursors monocytes play a key role in inflammation and chronic inflammatory disorders. Monocyte-to-macrophage differentiation and activation programs are accompanied by significant epigenetic remodeling where DNA methylation associates with cell identity. Here we show that DNA methylation changes characteristic for monocyte-to-macrophage differentiation occur at transcription factor binding sites, and, in contrast to what was previously described, are generally highly localized and encompass both losses and gains of DNA methylation. Results We compared genome-wide DNA methylation across 440,292 CpG sites between human monocytes, naïve macrophages and macrophages further activated toward a pro-inflammatory state (using LPS/IFNγ), an anti-inflammatory state (IL-4) or foam cells (oxLDL and acLDL). Moreover, we integrated these data with public whole-genome sequencing data on monocytes and macrophages to demarcate differentially methylated regions. Our analysis showed that differential DNA methylation was most pronounced during monocyte-to-macrophage differentiation, was typically restricted to single CpGs or very short regions, and co-localized with lineage-specific enhancers irrespective of whether it concerns gain or loss of methylation. Furthermore, differentially methylated CpGs were located at sites characterized by increased binding of transcription factors known to be involved in monocyte-to-macrophage differentiation including C/EBP and ETS for gain and AP-1 for loss of methylation. Conclusion Our study highlights the involvement of subtle, yet highly localized remodeling of DNA methylation at regulatory regions in cell differentiation. Electronic supplementary material The online version of this article (10.1186/s13072-019-0279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koen F Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Munich, Germany.
| |
Collapse
|
39
|
Amariuta T, Luo Y, Gazal S, Davenport EE, van de Geijn B, Ishigaki K, Westra HJ, Teslovich N, Okada Y, Yamamoto K, Price AL, Raychaudhuri S. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Am J Hum Genet 2019; 104:879-895. [PMID: 31006511 PMCID: PMC6506796 DOI: 10.1016/j.ajhg.2019.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies regulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high accuracy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA) summary statistics from European (N = 38,242) and East Asian (N = 22,515) populations revealed that the top 5% of CD4+ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by compared CD4+ T histone marks is 42.3% and by CD4+ T specifically expressed gene sets is 36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.
Collapse
Affiliation(s)
- Tiffany Amariuta
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yang Luo
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven Gazal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Emma E Davenport
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryce van de Geijn
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Harm-Jan Westra
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Faculty of Medical Sciences, University of Groningen, Groningen, the Netherlands
| | - Nikola Teslovich
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yukinori Okada
- Osaka University Graduate School of Medicine, Osaka, Japan; Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Kazuhiko Yamamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
40
|
Bencheikh L, Diop MK, Rivière J, Imanci A, Pierron G, Souquere S, Naimo A, Morabito M, Dussiot M, De Leeuw F, Lobry C, Solary E, Droin N. Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages. Nat Commun 2019; 10:1935. [PMID: 31028249 PMCID: PMC6486619 DOI: 10.1038/s41467-019-09970-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Despite their location at the cell surface, several receptor tyrosine kinases (RTK) are also found in the nucleus, as either intracellular domains or full length proteins. However, their potential nuclear functions remain poorly understood. Here we find that a fraction of full length Colony Stimulating Factor-1 Receptor (CSF-1R), an RTK involved in monocyte/macrophage generation, migrates to the nucleus upon CSF-1 stimulation in human primary monocytes. Chromatin-immunoprecipitation identifies the preferential recruitment of CSF-1R to intergenic regions, where it co-localizes with H3K4me1 and interacts with the transcription factor EGR1. When monocytes are differentiated into macrophages with CSF-1, CSF-1R is redirected to transcription starting sites, colocalizes with H3K4me3, and interacts with ELK and YY1 transcription factors. CSF-1R expression and chromatin recruitment is modulated by small molecule CSF-1R inhibitors and altered in monocytes from chronic myelomonocytic leukemia patients. Unraveling this dynamic non-canonical CSF-1R function suggests new avenues to explore the poorly understood functions of this receptor and its ligands. Receptor tyrosine kinases localize to the cell surface and have been suggested to also have nuclear function. Here the authors provide evidence that Colony Stimulating Factor-1 Receptor (CSF-1R) migrates to the nucleus upon CSF-1 stimulation in monocytes and that upon differentiation into macrophages, CSF-1R localizes to TSS, co-localizes with H3K4me3, and interacts with ELK and YY1.
Collapse
Affiliation(s)
- Laura Bencheikh
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | | | - Julie Rivière
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Aygun Imanci
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | - Gerard Pierron
- CNRS UMR9196, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Sylvie Souquere
- CNRS UMR9196, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Audrey Naimo
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Margot Morabito
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Michaël Dussiot
- INSERM U1163, CNRS UMR8254, Institut Imagine, Hôpital Necker Enfants Malades, 75015, Paris, France.,Institut Imagine, Hôpital Necker Enfants Malades, Université Sorbonne-Paris-Cité, 75015, Paris, France.,Laboratoire d'excellence GR-Ex, Institut Imagine, Hôpital Necker Enfants Malades, 75015, Paris, France
| | - Frédéric De Leeuw
- INSERM US23, CNRS UMS 3655, AMMICa, Imaging and Cytometry Platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France. .,Department of Hematology, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France. .,INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| |
Collapse
|
41
|
Ferguson JF, Xue C, Gao Y, Tian T, Shi J, Zhang X, Wang Y, Li YD, Wei Z, Li M, Zhang H, Reilly MP. Tissue-Specific Differential Expression of Novel Genes and Long Intergenic Noncoding RNAs in Humans With Extreme Response to Evoked Endotoxemia. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001907. [PMID: 30571184 PMCID: PMC6309423 DOI: 10.1161/circgen.117.001907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/27/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cytokine responses to activation of innate immunity differ between individuals, yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic noncoding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses. METHODS In the GENE Study (Genetics of Evoked Response to Niacin and Endotoxemia), we performed an inpatient endotoxin challenge (1 ng/kg lipopolysaccharide [LPS]) in healthy humans. We selected individuals in the top (high responders) and bottom (low responders) extremes of inflammatory responses and applied RNA sequencing to CD14 monocytes (N=15) and adipose tissue (N=25) before and after LPS administration. RESULTS Although only a small number of genes were differentially expressed at baseline, there were clear differences in the magnitude of the transcriptional response post-LPS between high and low responders, with a far greater number of genes differentially expressed by endotoxemia in high responders. Furthermore, tissue responses differed during inflammation, and we found a number of tissue-specific differentially expressed lincRNAs post-LPS, which we validated. Relative to nondifferentially expressed lincRNAs, differentially expressed lincRNAs were equally likely to be nonconserved as conserved between human and mouse, indicating that conservation is not a predictor of lincRNAs associated with human inflammatory pathophysiology. Differentially expressed genes also were enriched for signals with inflammatory and cardiometabolic disease in published genome-wide association studies. CTB-41I6.2 ( AC002091.1), a nonconserved human-specific lincRNA, is one of the top lincRNAs regulated by endotoxemia in monocytes, but not in adipose tissue. Knockdown experiments in THP-1 monocytes suggest that this lincRNA enhances LPS-induced interleukin 6 ( IL6) expression in monocytes, and we now refer to this as monocyte LPS-induced lincRNA regulator of IL6 ( MOLRIL6). CONCLUSIONS We highlight mRNAs and lincRNAs that represent novel candidates for modulation of innate immune and metabolic responses in humans. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov . Unique identifier: NCT00953667.
Collapse
Affiliation(s)
- Jane F. Ferguson
- Division of Cardiovascular Medicine, and Vanderbilt Translational & Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville TN
| | - Chenyi Xue
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Yuanfeng Gao
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark NJ
| | - Jianting Shi
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Xuan Zhang
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Ying Wang
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Yuhuang D. Li
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark NJ
| | - Mingyao Li
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Hanrui Zhang
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| | - Muredach P. Reilly
- Cardiology Division, Department of Medicine, Columbia University Medical Center, New York NY
| |
Collapse
|
42
|
Temporal autoregulation during human PU.1 locus SubTAD formation. Blood 2018; 132:2643-2655. [PMID: 30315124 DOI: 10.1182/blood-2018-02-834721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.
Collapse
|
43
|
Epigenetic processing in cardiometabolic disease. Atherosclerosis 2018; 281:150-158. [PMID: 30290963 DOI: 10.1016/j.atherosclerosis.2018.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Albeit a consistent body of evidence supports the notion that genes influence cardiometabolic features and outcomes, the "non-genetic regulation" of this process is gaining increasing attention. Plastic chemical changes of DNA/histone complexes - known as epigenetic changes - critically determine gene activity by rapidly modifying chromatin accessibility to transcription factors. In this review, we describe the emerging role of chromatin modifications as fine tuners of gene transcription in adipogenesis, insulin resistance, macrophage polarization, immuno-metabolism, endothelial dysfunction and metabolic cardiomyopathy. Epigenetic processing participates in the dynamic interplay among different organs in the cardiometabolic patient. DNA methylation and post-translational histone modifications in both visceral and subcutaneous adipose tissue enable the transcription of genes implicated in lipo- and adipogenesis, inflammation and insulin resistance. Along the same line, complex networks of chromatin modifying enzymes are responsible for impaired nitric oxide bioavailability and defective insulin signalling in the vasculature, thus leading to reduced capillary recruitment and insulin delivery in the liver, skeletal muscle and adipose tissue. Furthermore, changes in methylation status of IL-4, IFNγ and Forkhead box P3 (Foxp3) gene loci are crucial for the polarization of immune cells, thus leading to adipose tissue inflammation and atherosclerosis. Cell-specific epigenetic information could advance our understanding of cardiometabolic processes, thus leading to individualized risk assessment and personalized therapeutic approaches in patients with cardiometabolic disturbances. The development of new chromatin modifying drugs indicates that targeting epigenetic changes is a promising approach to reduce the burden of cardiovascular disease in this setting.
Collapse
|
44
|
Czimmerer Z, Nagy ZS, Nagy G, Horvath A, Silye-Cseh T, Kriston A, Jonas D, Sauer S, Steiner L, Daniel B, Deleuze JF, Nagy L. Extensive and functional overlap of the STAT6 and RXR cistromes in the active enhancer repertoire of human CD14+ monocyte derived differentiating macrophages. Mol Cell Endocrinol 2018; 471:63-74. [PMID: 28774779 DOI: 10.1016/j.mce.2017.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
Abstract
Macrophages are able to differentiate into classically polarized (M1) or alternatively polarized (M2) states upon encountering pro-inflammatory cytokines such as interferon (IFN) γ or anti-inflammatory cytokines such as interleukin (IL) -4/IL-13, respectively. Moreover, macrophages are known to regulate lipid metabolism via multiple members of the nuclear hormone receptor family, including the retinoid X receptors (RXR). It has been also documented that cytokines are able to modulate macrophage responses to lipid signals but the nature of these interactions and the underlying mechanisms of these processes especially at the level of the chromatinized genome are not well understood. Previous work from our laboratory suggested that STAT6 is a facilitator of nuclear receptor mediated transcriptional activity acting at the genome level. This prompted us to investigate genome-wide DNA binding events and the development of cistromes in human CD14+ monocyte-derived macrophages upon exposure to IL-4. We determined the impact of IL-4 on the PU.1, RXR and STAT6 cistromes within the active enhancer regions marked by H3K27-acetylation using chromatin immunoprecipitation followed by deep sequencing and integrated bioinformatics analyses. We found that about 2/3rd of the IL-4 induced STAT6 peaks co-localized with RXR peaks. These STAT6/RXR co-peaks differed at least in part from the non-overlapping RXR peaks regarding the most enriched de novo transcription factor binding motifs. Interestingly, RXR-binding was not regulated at the STAT6/RXR co-bound enhancers following IL-4 stimulation, but differential enhancer interactions were observed between the IL-4/STAT6 and RXR signaling pathways acting in a gene selective manner. Our results suggest that there is a novel, so far uncharacterized cistromic crosstalk between RXR and STAT6 that is likely to contribute to the formation of the active enhancer repertoire, transcriptome and differential signal-specific gene regulation of polarized macrophages.
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Academy of Sciences, "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Academy of Sciences, "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Timea Silye-Cseh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Kriston
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Jonas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sascha Sauer
- Max Delbruck Center for Molecular Medicine (BISMB and BIH), Germany
| | - Laszlo Steiner
- UD-Genomed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Bence Daniel
- Sanford-Burnham-Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Jean-Francois Deleuze
- Centre National de Recherche en Genomique Humaine, Institute de Biologie Francois Jacob, CEA, Evry, France
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Academy of Sciences, "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary; Sanford-Burnham-Prebys Medical Discovery Institute, Orlando, FL, USA.
| |
Collapse
|
45
|
Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cell Immunol 2018; 330:86-90. [DOI: 10.1016/j.cellimm.2018.01.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
46
|
Barbieri E, Trizzino M, Welsh SA, Owens TA, Calabretta B, Carroll M, Sarma K, Gardini A. Targeted Enhancer Activation by a Subunit of the Integrator Complex. Mol Cell 2018; 71:103-116.e7. [PMID: 30008316 DOI: 10.1016/j.molcel.2018.05.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
The control of cell fate is an epigenetic process initiated by transcription factors (TFs) that recognize DNA motifs and recruit activator complexes and transcriptional machineries to chromatin. Lineage specificity is thought to be provided solely by TF-motif pairing, while the recruited activators are passive. Here, we show that INTS13, a subunit of the Integrator complex, operates as monocytic/macrophagic differentiation factor. Integrator is a general activator of transcription at coding genes and is required for eRNA maturation. Here, we show that INTS13 functions as an independent sub-module and targets enhancers through Early Growth Response (EGR1/2) TFs and their co-factor NAB2. INTS13 binds poised monocytic enhancers eliciting chromatin looping and activation. Independent depletion of INTS13, EGR1, or NAB2 impairs monocytic differentiation of cell lines and primary human progenitors. Our data demonstrate that Integrator is not functionally homogeneous and has TF-specific regulatory potential, revealing a new enhancer regulatory axis that controls myeloid differentiation.
Collapse
Affiliation(s)
- Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah Ann Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori Alexandra Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Bruno Calabretta
- Sidney Kimmel Cancer Center, Thomas Jefferson Medical School, Philadelphia, PA, USA
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Mehrabi M, Amini F, Mehrabi S. Active Role of the Necrotic Zone in Desensitization of Hypoxic Macrophages and Regulation of CSC-Fate: A hypothesis. Front Oncol 2018; 8:235. [PMID: 29988496 PMCID: PMC6026632 DOI: 10.3389/fonc.2018.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023] Open
Abstract
Fast-proliferating cancer cells in the hypoxic region face a shortage of oxygen and nutrients, undergo necrotic cell death, and release numerous signaling components. Hypoxia-induced chemo-attractants signal for macrophages/monocytes to clear debris and return the system to steady state. Accordingly, macrophages arrange into pre-necrotic positions, where they are continuously exposed to stress signals. It can thus be hypothesized that gradual alteration of gene expression in macrophages eventually turns off their phagocytic machinery. Uncleared cell corpses within the hypoxic region potentially provide a rich source of building blocks for anaerobic metabolism of cancer stem cells via macropinocytosis, and are conceivably implicated in tumor progression and invasion.
Collapse
Affiliation(s)
| | - Fatemeh Amini
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Shima Mehrabi
- Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|
49
|
Carey HA, Hildreth BE, Geisler JA, Nickel MC, Cabrera J, Ghosh S, Jiang Y, Yan J, Lee J, Makam S, Young NA, Valiente GR, Jarjour WN, Huang K, Rosol TJ, Toribio RE, Charles JF, Ostrowski MC, Sharma SM. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res 2018; 6:8. [PMID: 29619268 PMCID: PMC5874256 DOI: 10.1038/s41413-018-0011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states. Genetic variation in non-coding regions of DNA could raise osteoporosis risk by affecting osteoclast differentiation. Osteoporosis occurs when the normal process of bone remodeling by osteoblasts and osteoclasts falls out of balance. Genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with osteoporosis, but how these affect specific cell types was unclear. Sudarshana Sharma and Michael Ostrowski at the Medical University of South Carolina and colleagues wondered if variations in non-coding ‘enhancer’ regions of DNA, might shed light on the molecular underpinnings of osteoporosis. So, they overlaid SNPs associated with reduced bone mineral density onto enhancers in mesenchymal and myeloid cells—the precursors of osteoblasts and osteoclasts—identifying a transcription factor network in myeloid cells that drives the differentiation of osteoclasts. When this was disrupted in mice, severe defects in osteoclast differentiation and function resulted.
Collapse
Affiliation(s)
- Heather A Carey
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Blake E Hildreth
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jennifer A Geisler
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Mara C Nickel
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jennifer Cabrera
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sankha Ghosh
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yue Jiang
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jing Yan
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - James Lee
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sandeep Makam
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Nicholas A Young
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Giancarlo R Valiente
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Wael N Jarjour
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Kun Huang
- 6Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Thomas J Rosol
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Ramiro E Toribio
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Julia F Charles
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Michael C Ostrowski
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Sudarshana M Sharma
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
50
|
Zhang H, Xue C, Wang Y, Shi J, Zhang X, Li W, Nunez S, Foulkes AS, Lin J, Hinkle CC, Yang W, Morrisey EE, Rader DJ, Li M, Reilly MP. Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases. J Am Heart Assoc 2017; 6:JAHA.117.007431. [PMID: 29133519 PMCID: PMC5721798 DOI: 10.1161/jaha.117.007431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Sustained and dysfunctional macrophage activation promotes inflammatory cardiometabolic disorders, but the role of long intergenic noncoding RNA (lincRNA) in human macrophage activation and cardiometabolic disorders is poorly defined. Through transcriptomics, bioinformatics, and selective functional studies, we sought to elucidate the lincRNA landscape of human macrophages. Methods and Results We used deep RNA sequencing to assemble the lincRNA transcriptome of human monocyte‐derived macrophages at rest and following stimulation with lipopolysaccharide and IFN‐γ (interferon γ) for M1 activation and IL‐4 (interleukin 4) for M2 activation. Through de novo assembly, we identified 2766 macrophage lincRNAs, including 861 that were previously unannotated. The majority (≈85%) was nonsyntenic or was syntenic but not annotated as expressed in mouse. Many macrophage lincRNAs demonstrated tissue‐enriched transcription patterns (21.5%) and enhancer‐like chromatin signatures (60.9%). Macrophage activation, particularly to the M1 phenotype, markedly altered the lincRNA expression profiles, revealing 96 lincRNAs differentially expressed, suggesting potential roles in regulating macrophage inflammatory functions. A subset of lincRNAs overlapped genomewide association study loci for cardiometabolic disorders. MacORIS (macrophage‐enriched obesity‐associated lincRNA serving as a repressor of IFN‐γ signaling), a macrophage‐enriched lincRNA not expressed in mouse macrophages, harbors variants associated with central obesity. Knockdown of MacORIS, which is located in the cytoplasm, enhanced IFN‐γ–induced JAK2 (Janus kinase 2) and STAT1 (signal transducer and activator of transcription 1) phosphorylation in THP‐1 macrophages, suggesting a potential role as a repressor of IFN‐γ signaling. Induced pluripotent stem cell–derived macrophages recapitulated the lincRNA transcriptome of human monocyte‐derived macrophages and provided a high‐fidelity model with which to study lincRNAs in human macrophage biology, particularly those not conserved in mouse. Conclusions High‐resolution transcriptomics identified lincRNAs that form part of the coordinated response during macrophage activation, including specific macrophage lincRNAs associated with human cardiometabolic disorders that modulate macrophage inflammatory functions.
Collapse
Affiliation(s)
- Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Ying Wang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jianting Shi
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sara Nunez
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA
| | - Andrea S Foulkes
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA
| | - Jennie Lin
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christine C Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward E Morrisey
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY
| |
Collapse
|