1
|
Bates SM, Evans KV, Delsing L, Wong R, Cornish G, Bahjat M. Immune safety challenges facing the preclinical assessment and clinical progression of cell therapies. Drug Discov Today 2024; 29:104239. [PMID: 39521331 DOI: 10.1016/j.drudis.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The promise of curative outcomes for life-limiting diseases using cell therapies is starting to become a reality, not only for patients with end-stage cancer, but also increasingly for regenerative therapies, including dentistry, ocular, neurodegenerative, and cardiac diseases. The introduction of often genetically modified cells into a patient can come with an extensive range of safety considerations. From an immune perspective, cell-based therapies carry inherent consequences and consideration of factors, such as the cell source (donor-derived autologous cells versus allogeneic cells), the intrinsic cellular nature of the therapy, and engineering/manufacturing methods, all of which influence the likelihood of inducing unwanted immune responses. Here, we provide an overview of the potential immune safety risks associated with cell therapies and explore possible mitigation approaches.
Collapse
Affiliation(s)
- Stephanie M Bates
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kelly V Evans
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Louise Delsing
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Wong
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Georgina Cornish
- Oncology Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahnoush Bahjat
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
2
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024:10.1038/s41551-024-01264-w. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
5
|
Hao T, Ji G, Qian M, Li QX, Huang H, Deng S, Liu P, Deng W, Wei Y, He J, Wang S, Gao W, Li T, Cheng J, Tian J, Pan L, Gao F, Li Z, Zhao Q. Intracellular delivery of nitric oxide enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. SCIENCE ADVANCES 2023; 9:eadi9967. [PMID: 38019911 PMCID: PMC10686553 DOI: 10.1126/sciadv.adi9967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Cell therapy by autologous mesenchymal stem cells (MSCs) is a clinically acceptable strategy for treating various diseases. Unfortunately, the therapeutic efficacy is largely affected by the low quality of MSCs collected from patients. Here, we showed that the gene expression of MSCs from patients with diabetes was differentially regulated compared to that of MSCs from healthy controls. Then, MSCs were genetically engineered to catalyze an NO prodrug to release NO intracellularly. Compared to extracellular NO conversion, intracellular NO delivery effectively prolonged survival and enhanced the paracrine function of MSCs, as demonstrated by in vitro and in vivo assays. The enhanced therapeutic efficacy of engineered MSCs combined with intracellular NO delivery was further confirmed in mouse and rat models of myocardial infarction, and a clinically relevant cell administration paradigm through secondary thoracotomy has been attempted.
Collapse
Affiliation(s)
- Tian Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guangbo Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiu Xuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haoyan Huang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Shiyu Deng
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Pei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Tong Li
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
7
|
Qian W, Xu Y, Wen W, Huang L, Guo Z, Zhu W, Li Y. Exosomal miR-103a-3p from Crohn's Creeping Fat-Derived Adipose-Derived Stem Cells Contributes to Intestinal Fibrosis by Targeting TGFBR3 and Activating Fibroblasts. J Crohns Colitis 2023; 17:1291-1308. [PMID: 36897738 DOI: 10.1093/ecco-jcc/jjad042] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mesenteric adipose tissue hypertrophy is a hallmark of Crohn's disease [CD], and creeping fat [CF] is unique to CD. Adipose-derived stem cells [ASCs] from inflammatory tissue exhibited altered biological functions. The role of ASCs isolated from CF in intestinal fibrosis and the potential mechanism remain unclear. METHODS ASCs were isolated from CF [CF-ASCs] and disease-unaffected mesenteric adipose tissue [Ctrl-ASCs] of patients with CD. A series of in vitro and in vivo experiments were conducted to study the effects of exosomes from CF-ASCs [CF-Exos] on intestinal fibrosis and fibroblast activation. A micro-RNA microarray analysis was performed. Western blot, luciferase assay and immunofluorescence were performed to further detect the underlying mechanisms. RESULTS The results indicated that CF-Exos promoted intestinal fibrosis by activating fibroblasts in a dose-dependent manner. They continuously promoted progression of intestinal fibrosis even after dextran sulphate sodium withdrawal. Further analysis showed that exosomal miR-103a-3p was enriched in CF-Exos and participated in exosome-mediated fibroblast activation. TGFBR3 was identified as a target gene of miR-103a-3p. Mechanistically, CF-ASCs released exosomal miR-103a-3p and promoted fibroblast activation by targeting TGFBR3 and promoting Smad2/3 phosphorylation. We also found that the expression of miR-103a-3p in diseased intestine was positively associated with the degree of CF and fibrosis score. CONCLUSION Our findings show that exosomal miR-103a-3p from CF-ASCs promotes intestinal fibrosis by activating fibroblasts via TGFBR3 targeting, suggesting that CF-ASCs are potential therapeutic targets for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| |
Collapse
|
8
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
9
|
Davies LC, Queckbörner S, Jylhä CE, Andrén AT, Forshell TZP, Blanc KL. Lysis and phenotypic modulation of mesenchymal stromal cells upon blood contact triggers anti-inflammatory skewing of the peripheral innate immune repertoire. Cytotherapy 2023:S1465-3249(23)00954-4. [PMID: 37354149 DOI: 10.1016/j.jcyt.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions. METHODS Human, bone marrow derived MSCs were exposed to human plasma +/- heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry. RESULTS Plasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells. CONCLUSIONS This study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Suzanna Queckbörner
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Cecilia E Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tacha Zi Plym Forshell
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; CAST, Patient Area Cell Therapies and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
11
|
Giacomini C, Granéli C, Hicks R, Dazzi F. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell Mol Immunol 2023; 20:570-582. [PMID: 37185486 DOI: 10.1038/s41423-023-01018-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity. We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC "licensing": one that is cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the inflammatory environment.
Collapse
Affiliation(s)
- Chiara Giacomini
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| | - Cecilia Granéli
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
12
|
Rangasami VK, Asawa K, Teramura Y, Le Blanc K, Nilsson B, Hilborn J, Varghese OP, Oommen OP. Biomimetic polyelectrolyte coating of stem cells suppresses thrombotic activation and enhances its survival and function. BIOMATERIALS ADVANCES 2023; 147:213331. [PMID: 36773382 DOI: 10.1016/j.bioadv.2023.213331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Mesenchymal stem cells (MSCs) therapy is a promising approach for treating inflammatory diseases due to their immunosuppressive and tissue repair characteristics. However, allogenic transplantation of MSCs induces thrombotic complications in some patients which limits its potential for clinical translation. To address this challenge, we have exploited the bioactivity of heparin, a well-known anticoagulant and immunosuppressive polysaccharide that is widely used in clinics. We have developed a smart layer-by-layer (LbL) coating strategy using gelatin and heparin polymers exploiting their overall positive and negative charges that enabled efficient complexation with the MSCs' glycocalyx. The stable coating of MSCs suppressed complement attack and mitigated thrombotic activation as demonstrated in human whole blood. Gratifyingly, the MSC coating retained its immunosuppressive properties and differentiation potential when exposed to inflammatory conditions and differentiation factors. We believe the simple coating procedure of MSCs will increase allogenic tolerance and circumvent the major challenge of MSCs transplantation.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720 Tampere, Finland; Macromolecular Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central Fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katrina Le Blanc
- H5 Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75105, Sweden
| | - Jöns Hilborn
- Macromolecular Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Oommen P Varghese
- Macromolecular Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
13
|
Hua C, Chen S, Cheng H. Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases. Hum Vaccin Immunother 2022; 18:2144667. [PMID: 36382475 PMCID: PMC9746473 DOI: 10.1080/21645515.2022.2144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and immunological skin diseases such as psoriasis, systemic sclerosis, dermatomyositis and atopic dermatitis, whose abnormal skin manifestations not only affected life quality but also caused social discrimination, have been wildly concerned. Complex variables such as hereditary predisposition, racial differences, age and gender can influence the prevalence and therapeutic options. The population of patients with unsatisfactory curative effects under current therapies is growing, it's advisable to seek novel and advanced therapies that are less likely to cause systemic damage. Mesenchymal stem cells (MSCs) have been proven with therapeutic benefits in tissue regeneration, self-renewal and differentiation abilities when treating refractory skin disorders in preclinical and clinical studies. Here we highlighted the immune modulation and inflammation suppression of MSCs in skin diseases, summarized current studies, research progress and related clinical trials, hoping to strengthen the confidence of promising MSCs therapy in future clinical application.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Optimal Intravenous Administration Procedure for Efficient Delivery of Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314681. [PMID: 36499004 PMCID: PMC9740176 DOI: 10.3390/ijms232314681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) are currently being investigated for their therapeutic applications in a wide range of diseases. Although many studies examined peripheral venous administration of MSC, few have investigated the detailed intravenous administration procedures of MSC from their preparation until they enter the body. The current study therefore aimed to explore the most efficient infusion procedure for MSC delivery by preparing and infusing them under various conditions. Canine adipose-derived mesenchymal stem cells (cADSC) were infused using different infusion apparatuses, suspension solutions, allogenic serum supplementation, infusion time and rates, and cell densities, respectively. Live and dead cell counts were then assessed by manual measurements and flow cytometry. Efficiency of live- and dead-cell infusion and cell viability were calculated from the measured cell counts and compared under each condition. Efficiency of live-cell infusion differed significantly according to the infusion apparatus, infusion rate, and combination of cell density and serum supplementation. Cell viability after infusion differed significantly between the infusion apparatuses. The optimal infusion procedure resulting in the highest cell delivery and viability involved suspending cADSC in normal saline supplemented with 5% allogenic serum at a density of 5 × 105 cells/mL, and infusing them using an automatic infusion device for 15 min. This procedure is therefore recommended as the standard procedure for the intravenous administration of ADSC in terms of cell-delivery efficiency.
Collapse
|
15
|
Sadeghi B, Ringdén O, Gustafsson B, Castegren M. Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Front Immunol 2022; 13:963445. [PMID: 36426365 PMCID: PMC9680556 DOI: 10.3389/fimmu.2022.963445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.
Collapse
Affiliation(s)
- Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Behnam Sadeghi,
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Markus Castegren
- Center for Clinical Research, Sörmland, Uppsala University, Uppsala, Sweden
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Section of Infectious Diseases, Department of Medical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
17
|
Dadgar N, Altemus J, Li Y, Lightner AL. Effect of Crohn's disease mesenteric mesenchymal stem cells and their extracellular vesicles on T-cell immunosuppressive capacity. J Cell Mol Med 2022; 26:4924-4939. [PMID: 36047483 PMCID: PMC9549497 DOI: 10.1111/jcmm.17483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal intestinal tract and has characteristic hypertrophic adipose changes observed in the mesentery. To better understand the role of the mesentery in the pathophysiology of Crohn's disease (CD), we evaluated the immunomodulatory potential of mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) derived from Crohn's patients. MSCs and EVs were isolated from the mesentery and subcutaneous tissues of CD patients and healthy individuals subcutaneous tissues, and were analysed for differentiation, cytokine expression, self‐renewal and proliferation. The varying capacity of these tissue‐derived MSCs and EVs to attenuate T‐cell activation was measured in in vitro and an in vivo murine model. RNA sequencing of inflamed Crohn's disease mesentery tissue revealed an enrichment of T‐cell activation compared to non‐inflamed subcutaneous tissue. MSCs and MSC‐derived EVs isolated from Crohn's mesentery lose their ability to attenuate DSS‐induced colitis compared to subcutaneous tissue‐derived cell or EV therapy. We found that treatment with subcutaneous isolated MSCs and their EV product compared to Crohn's mesentery MSCs or EVs, the inhibition of T‐cell proliferation and IFN‐γ, IL‐17a production increased, suggesting a non‐inflamed microenvironment allows for T‐cell inhibition by MSCs/EVs. Our results demonstrate that Crohn's patient‐derived diseased mesentery tissue MSCs lose their immunosuppressive capacity in the treatment of colitis by distinct regulation of pathogenic T‐cell responses and/or T‐cell infiltration into the colon.
Collapse
Affiliation(s)
- Neda Dadgar
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jessica Altemus
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Yan Li
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA
| | - Amy L Lightner
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
19
|
Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:839844. [PMID: 35371003 PMCID: PMC8973075 DOI: 10.3389/fimmu.2022.839844] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, All Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
21
|
Gomes FG, Andrade AC, Wolf M, Hochmann S, Krisch L, Maeding N, Regl C, Poupardin R, Ebner-Peking P, Huber CG, Meisner-Kober N, Schallmoser K, Strunk D. Synergy of Human Platelet-Derived Extracellular Vesicles with Secretome Proteins Promotes Regenerative Functions. Biomedicines 2022; 10:238. [PMID: 35203448 PMCID: PMC8869293 DOI: 10.3390/biomedicines10020238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Platelet-rich plasma is a promising regenerative therapeutic with controversial efficacy. We and others have previously demonstrated regenerative functions of human platelet lysate (HPL) as an alternative platelet-derived product. Here we separated extracellular vesicles (EVs) from soluble factors of HPL to understand the mode of action during skin-organoid formation and immune modulation as model systems for tissue regeneration. HPL-EVs were isolated by tangential-flow filtration (TFF) and further purified by size-exclusion chromatography (SEC) separating EVs from (lipo)protein-enriched soluble fractions. We characterized samples by tunable resistive pulse sensing, western blot, tandem mass-tag proteomics and super-resolution microscopy. We evaluated EV function during angiogenesis, wound healing, organoid formation and immune modulation. We characterized EV enrichment by TFF and SEC according to MISEV2018 guidelines. Proteomics showed three major clusters of protein composition separating TSEC-EVs from HPL clustering with TFF soluble fractions and TFF-EVs clustering with TSEC soluble fractions, respectively. HPL-derived TFF-EVs promoted skin-organoid formation and inhibited T-cell proliferation more efficiently than TSEC-EVs or TSEC-soluble fractions. Recombining TSEC-EVs with TSEC soluble fractions re-capitulated TFF-EV effects. Zeta potential and super-resolution imaging further evidenced protein corona formation on TFF-EVs. Corona depletion on SEC-EVs could be artificially reconstituted by TSEC late fraction add-back. In contrast to synthetic nanoparticles, which commonly experience reduced function after corona formation, the corona-bearing EVs displayed improved functionality. We conclude that permissive isolation technology, such as TFF, and better understanding of the mechanism of EV corona function are required to realize the complete potential of platelet-based regenerative therapies.
Collapse
Affiliation(s)
- Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Nicole Maeding
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Christof Regl
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Christian G. Huber
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Nicole Meisner-Kober
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| |
Collapse
|
22
|
Zou D, Vigen M, Putnam AJ, Cao C, Tarlé SA, Guinn T, Kaigler D. Phenotypic, trophic, and regenerative properties of mesenchymal stem cells from different osseous tissues. Cell Tissue Res 2022; 388:75-88. [DOI: 10.1007/s00441-021-03563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
|
23
|
Kamm JL, Riley CB, Parlane NA, Gee EK, McIlwraith CW. Immune response to allogeneic equine mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:570. [PMID: 34772445 PMCID: PMC8588742 DOI: 10.1186/s13287-021-02624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are believed to be hypoimmunogeneic with potential use for allogeneic administration. METHODS Bone marrow was harvested from Connemara (n = 1), Standardbred (n = 6), and Thoroughbred (n = 3) horses. MSCs were grouped by their level of expression of major histocompatibility factor II (MHC II). MSCs were then sub-grouped by those MSCs derived from universal blood donor horses. MSCs were isolated and cultured using media containing fetal bovine serum until adequate numbers were acquired. The MSCs were cultured in xenogen-free media for 48 h prior to use and during all assays. Autologous and allogeneic MSCs were then directly co-cultured with responder leukocytes from the Connemara horse in varying concentrations of MSCs to leukocytes (1:1, 1:10, and 1:100). MSCs were also cultured with complement present and heat-inactivated complement to determine whether complement alone would decrease MSC viability. MSCs underwent haplotyping of their equine leukocyte antigen (ELA) to determine whether the MHC factors were matched or mismatched between the donor MSCs and the responder leukocytes. RESULTS All allogeneic MSCs were found to be ELA mismatched with the responder leukocytes. MHC II-low and universal blood donor MSCs caused no peripheral blood mononuclear cell (PBMC) proliferation, no increase in B cells, and no activation of CD8 lymphocytes. Universal blood donor MSCs stimulated a significant increase in the number of T regulatory cells. Neutrophil interaction with MSCs showed that universal blood donor and MHC II-high allogeneic MSCs at the 6 h time point in co-culture caused greater neutrophil activation than the other co-culture groups. Complement-mediated cytotoxicity did not consistently cause MSC death in cultures with active complement as compared to those with inactivated complement. Gene expression assays revealed that the universal blood donor group and the MHC II-low MSCs were more metabolically active both in the anabolic and catabolic gene categories when cultured with allogeneic lymphocytes as compared to the other co-cultures. These upregulated genes included CD59, FGF-2, HGF, IDO, IL-10, IL-RA, IL-2, SOX2, TGF-β1, ADAMSTS-4, ADAMSTS-5, CCL2, CXCLB/IL-8, IFNγ, IL-1β, and TNFα. CONCLUSIONS MHC II-low MSCs are the most appropriate type of allogeneic MSC to prevent activation of the innate and cell-mediated component of the adaptive immune systems and have increased gene expression as compared to other allogeneic MSCs.
Collapse
Affiliation(s)
- J. Lacy Kamm
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Christopher B. Riley
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Natalie A. Parlane
- AgResearch, Hopkirk Research Institute, Massey University, Palmerston North, 4474 New Zealand
| | - Erica K. Gee
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - C. Wayne McIlwraith
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- C. Wayne McIlwraith Translational Medicine Institute and the Orthopaedic Research Center, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523-1678 USA
| |
Collapse
|
24
|
Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat Commun 2021; 12:6495. [PMID: 34764248 PMCID: PMC8586224 DOI: 10.1038/s41467-021-26834-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) ameliorate a wide range of diseases in preclinical models, but the lack of clarity around their mechanisms of action has impeded their clinical utility. The therapeutic effects of MSCs are often attributed to bioactive molecules secreted by viable MSCs. However, we found that MSCs underwent apoptosis in the lung after intravenous administration, even in the absence of host cytotoxic or alloreactive cells. Deletion of the apoptotic effectors BAK and BAX prevented MSC death and attenuated their immunosuppressive effects in disease models used to define MSC potency. Mechanistically, apoptosis of MSCs and their efferocytosis induced changes in metabolic and inflammatory pathways in alveolar macrophages to effect immunosuppression and reduce disease severity. Our data reveal a mode of action whereby the host response to dying MSCs is key to their therapeutic effects; findings that have broad implications for the effective translation of cell-based therapies. Mesenchymal stromal cells (MSCs) demonstrate therapeutic benefits in multiple diseases, but the mechanisms remain unclear as infused MSCs do not persist in the body. Here, the authors show that MSC apoptosis is an important mechanistic element, as MSCs rendered genetically incapable of apoptosis lose their ability to ameliorate disease.
Collapse
|
25
|
Mallis P, Michalopoulos E, Chatzistamatiou T, Giokas CS. Interplay between mesenchymal stromal cells and immune system: clinical applications in immune-related diseases. EXPLORATION OF IMMUNOLOGY 2021. [DOI: 10.37349/ei.2021.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2024]
Abstract
Mesenchymal stromal cells (MSCs) are a mesodermal stem cell population, with known self-renewal and multilineage differentiation properties. In the last century, MSCs have been widely used in regenerative medicine and tissue engineering approaches. MSCs initially were isolated from bone marrow aspirates, but currently have been identified in a great number of tissues of the human body. Besides their utilization in regenerative medicine, MSCs possess significant immunoregulatory/immunosuppressive properties, through interaction with the cells of innate and adaptive immunity. MSCs can exert their immunomodulatory properties with either cell-cell contact or via paracrine secretion of molecules, such as cytokines, growth factors and chemokines. Of particular importance, the MSCs’ immunomodulatory properties are explored as promising therapeutic strategies in immune-related disorders, such as autoimmune diseases, graft versus host disease, cancer. MSCs may also have an additional impact on coronavirus disease-19 (COVID-19), by attenuating the severe symptoms of this disorder. Nowadays, a great number of clinical trials, of MSC-mediated therapies are evaluated for their therapeutic potential. In this review, the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation were highlighted. Also, the most important aspects, regarding their potential application in immune-related diseases, will be highlighted. The broad application of MSCs has emerged their role as key immunomodulatory players, therefore their utilization in many disease situations is full of possibilities for future clinical treatment.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Theofanis Chatzistamatiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece 2Histocompatibility & Immunogenetics Lab, Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | | |
Collapse
|
26
|
Fu Y, Sui B, Xiang L, Yan X, Wu D, Shi S, Hu X. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy. Cell Death Dis 2021; 12:596. [PMID: 34108448 PMCID: PMC8190192 DOI: 10.1038/s41419-021-03883-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cell transplantation (MSCT) has been recognized as a potent and promising approach to achieve immunomodulation and tissue regeneration, but the mechanisms of how MSCs exert therapeutic effects remain to be elucidated. Increasing evidence suggests that transplanted MSCs only briefly remain viable in recipients, after which they undergo apoptosis in the host circulation or in engrafted tissues. Intriguingly, apoptosis of infused MSCs has been revealed to be indispensable for their therapeutic efficacy, while recipient cells can also develop apoptosis as a beneficial response in restoring systemic and local tissue homeostasis. It is notable that apoptotic cells produce apoptotic extracellular vesicles (apoEVs), traditionally known as apoptotic bodies (apoBDs), which possess characterized miRnomes and proteomes that contribute to their specialized function and to intercellular communication. Importantly, it has been demonstrated that the impact of apoEVs is long-lasting in health and disease contexts, and they critically mediate the efficacy of MSCT. In this review, we summarize the emerging understanding of apoptosis in mediating MSCT, highlighting the potential of apoEVs as cell-free therapeutics.
Collapse
Affiliation(s)
- Yu Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China.,South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.,Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lei Xiang
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Xutong Yan
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Di Wu
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
27
|
Antunes MA, Braga CL, Oliveira TB, Kitoko JZ, Castro LL, Xisto DG, Coelho MS, Rocha N, Silva-Aguiar RP, Caruso-Neves C, Martins EG, Carvalho CF, Galina A, Weiss DJ, Lapa e Silva JR, Lopes-Pacheco M, Cruz FF, Rocco PRM. Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Front Cell Dev Biol 2021; 9:661385. [PMID: 34136481 PMCID: PMC8202416 DOI: 10.3389/fcell.2021.661385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-β, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1β and TGF-β levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.
Collapse
Affiliation(s)
- Mariana A. Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Cassia L. Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá B. Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Z. Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Inflammation and Immunity, Paulo Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia L. Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Debora G. Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S. Coelho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Rodrigo P. Silva-Aguiar
- Laboratory of Biochemistry and Cell Signaling, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Laboratory of Biochemistry and Cell Signaling, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda G. Martins
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Fernandes Carvalho
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Galina
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J. Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - José R. Lapa e Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Rangasami VK, Nawale G, Asawa K, Kadekar S, Samanta S, Nilsson B, Ekdahl KN, Miettinen S, Hilborn J, Teramura Y, Varghese OP, Oommen OP. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:1980-1989. [PMID: 33813822 PMCID: PMC8154246 DOI: 10.1021/acs.biomac.1c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Mesenchymal stem/stromal
cells (MSCs) evoke great excitement for
treating different human diseases due to their ability to home inflamed
tissues, suppress inflammation, and promote tissue regeneration. Despite
great promises, clinical trial results are disappointing as allotransplantation
of MSCs trigger thrombotic activity and are damaged by the complement
system, compromising their survival and function. To overcome this,
a new strategy is presented by the silencing of tissue factor (TF),
a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed
with the pendant pyridyl disulfide group, which are used to conjugate
TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier
design effectively delivered the payload to MSCs resulting in ∼72%
TF knockdown (KD) without significant cytotoxicity. Hematological
evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood
model revealed a significant reduction in an instant-blood-mediated-inflammatory
reaction as evidenced by reduced platelet aggregation (93% of free
platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived
MSCs) and thrombin–antithrombin complex formation. Effective
TF silencing induced higher MSC differentiation in osteogenic and
adipogenic media and showed stronger paracrine suppression of proinflammatory
cytokines in macrophages and higher stimulation in the presence of
endotoxins. Thus, TF silencing can produce functional cells with higher
fidelity, efficacy, and functions.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Ganesh Nawale
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sandeep Kadekar
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden.,Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Susanna Miettinen
- Adult Stem Cells Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33014, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere 33520, Finland
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Oommen P Varghese
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| |
Collapse
|
29
|
El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors? Front Immunol 2021; 12:643170. [PMID: 33732263 PMCID: PMC7959804 DOI: 10.3389/fimmu.2021.643170] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of the autoimmune rheumatological diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is complex with the involvement of several immune cell populations spanning both innate and adaptive immunity including different T-lymphocyte subsets and monocyte/macrophage lineage cells. Despite therapeutic advances in RA and SLE, some patients have persistent and stubbornly refractory disease. Herein, we discuss stromal cells' dual role, including multipotent mesenchymal stromal cells (MSCs) also used to be known as mesenchymal stem cells as potential protagonists in RA and SLE pathology and as potential therapeutic vehicles. Joint MSCs from different niches may exhibit prominent pro-inflammatory effects in experimental RA models directly contributing to cartilage damage. These stromal cells may also be key regulators of the immune system in SLE. Despite these pro-inflammatory roles, MSCs may be immunomodulatory and have potential therapeutic value to modulate immune responses favorably in these autoimmune conditions. In this review, the complex role and interactions between MSCs and the haematopoietically derived immune cells in RA and SLE are discussed. The harnessing of MSC immunomodulatory effects by contact-dependent and independent mechanisms, including MSC secretome and extracellular vesicles, is discussed in relation to RA and SLE considering the stromal immune microenvironment in the diseased joints. Data from translational studies employing MSC infusion therapy against inflammation in other settings are contextualized relative to the rheumatological setting. Although safety and proof of concept studies exist in RA and SLE supporting experimental and laboratory data, robust phase 3 clinical trial data in therapy-resistant RA and SLE is still lacking.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dennis McGonagle
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Elena Jones
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
30
|
Kamm JL, Riley CB, Parlane N, Gee EK, McIlwraith CW. Interactions Between Allogeneic Mesenchymal Stromal Cells and the Recipient Immune System: A Comparative Review With Relevance to Equine Outcomes. Front Vet Sci 2021; 7:617647. [PMID: 33521090 PMCID: PMC7838369 DOI: 10.3389/fvets.2020.617647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Despite significant immunosuppressive activity, allogeneic mesenchymal stromal cells (MSCs) carry an inherent risk of immune rejection when transferred into a recipient. In naïve recipients, this immune response is initially driven by the innate immune system, an immediate reaction to the foreign cells, and later, the adaptive immune system, a delayed response that causes cell death due to recognition of specific alloantigens by host cells and antibodies. This review describes the actions of MSCs to both suppress and activate the different arms of the immune system. We then review the survival and effectiveness of the currently used allogeneic MSC treatments.
Collapse
Affiliation(s)
- J Lacy Kamm
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christopher B Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Natalie Parlane
- Hopkirk Laboratory, AgResearch, Palmerston North, New Zealand
| | - Erica K Gee
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medical Institute, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
31
|
Najar M, Martel-Pelletier J, Pelletier JP, Fahmi H. Novel insights for improving the therapeutic safety and efficiency of mesenchymal stromal cells. World J Stem Cells 2020; 12:1474-1491. [PMID: 33505596 PMCID: PMC7789128 DOI: 10.4252/wjsc.v12.i12.1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted great interest in the field of regenerative medicine. They can home to damaged tissue, where they can exert pro-regenerative and anti-inflammatory properties. These therapeutic effects involve the secretion of growth factors, cytokines, and chemokines. Moreover, the functions of MSCs could be mediated by extracellular vesicles (EVs) that shuttle various signaling messengers. Although preclinical studies and clinical trials have demonstrated promising therapeutic results, the efficiency and the safety of MSCs need to be improved. After transplantation, MSCs face harsh environmental conditions, which likely dampen their therapeutic efficacy. A possible strategy aiming to improve the survival and therapeutic functions of MSCs needs to be developed. The preconditioning of MSCs ex vivo would strength their capacities by preparing them to survive and to better function in this hostile environment. In this review, we will discuss several preconditioning approaches that may improve the therapeutic capacity of MSCs. As stated above, EVs can recapitulate the beneficial effects of MSCs and may help avoid many risks associated with cell transplantation. As a result, this novel type of cell-free therapy may be safer and more efficient than the whole cell product. We will, therefore, also discuss current knowledge regarding the therapeutic properties of MSC-derived EVs.
Collapse
Affiliation(s)
- Mehdi Najar
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Johanne Martel-Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean Pierre Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
32
|
Li Y, Altemus J, Lightner AL. Mesenchymal stem cells and acellular products attenuate murine induced colitis. Stem Cell Res Ther 2020; 11:515. [PMID: 33256827 PMCID: PMC7706051 DOI: 10.1186/s13287-020-02025-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a well-established immunomodulatory agent which can also promote tissue repair and regeneration. Recent studies have demonstrated MSCs as a novel therapeutic for inflammatory bowel disease (IBD), a chronic idiopathic inflammatory disorder of the gastrointestinal tract. However, the precise role of MSCs in regulating immune responses is controversial, and its significance in the pathogenesis remains IBD undefined. In addition, MSCs’ acellular product, extracellular vesicles (EVs), may also play an important role in the armamentarium of therapeutics, but how EVs compare to MSCs remains unknown due to the lack of side-by-side comparative investigation. We herein compared MSCs and MSC-derived EVs for the treatment of IBD using a DSS-induced colitis model. Methods A DSS-induced colitis model was used. At day 4, mice received adipose-derived MSCs, MSC-derived EVs, or placebo. Weight loss, stool consistency, and hematochezia was charted. At day 8, murine colons were harvested, histologic analysis performed, and serum/tissue cytokine analysis conducted. Results MSCs and EVs demonstrated equivalent immunosuppressive function in DSS-treated mice through decreased colonic lymphocyte infiltration and attenuated disease severity after both MSC and EV treatment. Furthermore, both MSCs and EVs have an equivalent ability to inhibit inflammation in the DSS colitis model by inhibiting JAK, JNK 1/2, and STAT3 signaling. Conclusions These results suggest that (i) both MSCs and EVs are effective therapeutic candidates for a DSS-induced mouse colitis model, (ii) MSCs and EVs have similar immunosuppressive and anti-inflammatory functions, and (iii) EVs may present a novel future therapeutic for the treatment of IBD.
Collapse
Affiliation(s)
- Yan Li
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jessica Altemus
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amy L Lightner
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
33
|
Ringdén O, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells in Pediatric Hematopoietic Cell Transplantation a Review and a Pilot Study in Children Treated With Decidua Stromal Cells for Acute Graft-versus-Host Disease. Front Immunol 2020; 11:567210. [PMID: 33193339 PMCID: PMC7604265 DOI: 10.3389/fimmu.2020.567210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are rare precursors in all organs of the body. MSCs have profound anti-inflammatory effects and reduce alloreactivity in vitro and in vivo. In pediatric allogeneic hematopoietic cell transplantation (HCT), MSCs have mainly been used to treat acute graft-versus-host disease (GVHD). MSCs are commercially available for this indication in Canada, Japan, and New Zeeland. More rare indications for MSCs in pediatric patients include graft failure and chronic GVHD. MSCs from bone marrow, adipose tissue, umbilical cord, Wharton's jelly, placenta tissue, and decidua have been used, but the optimal clinical stromal cell source has not been compared in clinical trials. More experimental clinical indications using MSCs, such as sepsis, acute respiratory distress syndrome, hemorrhages, pneumo-mediastinum, and neuroinflammation have primarily been explored in animal models or adult HCT patients. MSCs have almost no if any side-effects. In this pilot study we report the outcome of six children treated with decidua stromal cells (DSCs) for steroid refractory acute GVHD. At 6 months, complete response was seen in four patients and partial response in two patients. One child with high-risk ALL died from relapse and a boy with sickle cell disease died from a cerebral hemorrhage. Five-year survival was 67% and all survivors showed a Lansky score of 100%. To conclude, MSCs from various organs are well-tolerated and have shown an encouraging outcome for acute GVHD in pediatric patients.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Najar M, Martel-Pelletier J, Pelletier JP, Fahmi H. Mesenchymal Stromal Cell Immunology for Efficient and Safe Treatment of Osteoarthritis. Front Cell Dev Biol 2020; 8:567813. [PMID: 33072752 PMCID: PMC7536322 DOI: 10.3389/fcell.2020.567813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy represents a promising approach for the treatment of osteoarthritis (OA). MSCs can be readily isolated from multiple sources and expanded ex vivo for possible clinical application. They possess a unique immunological profile and regulatory machinery that underline their therapeutic effects. They also have the capacity to sense the changes within the tissue environment to display the adequate response. Indeed, there is a close interaction between MSCs and the host cells. Accordingly, MSCs demonstrate encouraging results for a variety of diseases including OA. However, their effectiveness needs to be improved. In this review, we selected to discuss the importance of the immunological features of MSCs, including the type of transplantation and the immune and blood compatibility. It is important to consider MSC immune evasive rather than immune privileged. We also highlighted some of the actions/mechanisms that are displayed during tissue healing including the response of MSCs to injury signals, their interaction with the immune system, and the impact of their lifespan. Finally, we briefly summarized the results of clinical studies reporting on the application of MSCs for the treatment of OA. The research field of MSCs is inspiring and innovative but requires more knowledge about the immunobiological properties of these cells. A better understanding of these features will be key for developing a safe and efficient medicinal product for clinical use in OA.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center, Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
35
|
Zilberman-Itskovich S, Efrati S. Mesenchymal Stromal Cell Uses for Acute Kidney Injury-Current Available Data and Future Perspectives: A Mini-Review. Front Immunol 2020; 11:1369. [PMID: 32793191 PMCID: PMC7385060 DOI: 10.3389/fimmu.2020.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence concerning the potential use of mesenchymal stromal cells (MSCs) for different tissue injuries. Initially, the intended physiological use of MSCs was due to their ability to differentiate and replace damaged cells. However, MSCs have multiple effects, including being able to significantly modulate immunological responses. MSCs are currently being tested for neurodegenerative diseases, graft vs. host disease, kidney injury, and other chronic unremitting tissue damage. Using MSCs in acute tissue damage is only now being studied. Acute kidney injury (AKI) is a common cause of morbidity and mortality. After the primary insult, overactivation of the immune system culminates in additional secondary potentially permanent kidney damage. MSCs have the potential to ameliorate the secondary damage, and recent studies have shed important light on their mechanisms of action. This article summarizes the basics of MSCs therapy, the newly discovered mechanisms of action, and their potential application in the setting of AKI.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
36
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
37
|
Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. Mesenchymal Stromal Cells for Graft Versus Host Disease: Mechanism-Based Biomarkers. Front Immunol 2020; 11:1338. [PMID: 32670295 PMCID: PMC7330053 DOI: 10.3389/fimmu.2020.01338] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive activity of mesenchymal stromal cells (MSCs) in graft versus host disease (GvHD) is well-documented, but their therapeutic benefit is rather unpredictable. Prospective randomized clinical trials remain the only means to address MSC clinical efficacy. However, the imperfect understanding of MSC biological mechanisms has undermined patients' stratification and the successful design of clinical studies. Furthermore, although MSC efficacy seems to be dependent on patient-associated factors, the role of patients' signature to predict and/or monitor clinical outcomes remains poorly elucidated. The analysis of GvHD patient serum has identified a set of molecules that are associated with high mortality. However, despite their importance in defining GvHD severity, their role in predicting or monitoring response to MSCs has not been confirmed. A new perspective on the use of MSCs for GvHD has been prompted by the recent findings that MSCs are actively induced to undergo apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. This discovery has not only reconciled the conundrum between MSC efficacy and their lack of engraftment, but also highlighted the determinant role of the patient in promoting and delivering MSC immunosuppression. In this review we will revisit the extensive use of MSCs for the treatment of GvHD and will elaborate on the need that future clinical trials must depend on mechanistic approaches that facilitate the development of robust and consistent assays to stratify patients and monitor clinical outcomes.
Collapse
Affiliation(s)
- Tik Shing Cheung
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Giuliana Minani Bertolino
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Chiara Giacomini
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | | | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Antonio Galleu
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
39
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2019; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self‐renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self‐overattack. These cells express many immune suppressors to switch them from a pro‐inflammatory phenotype to an anti‐inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune‐suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Li Y, Lin F. Decoy nanoparticles bearing native C5a receptors as a new approach to inhibit complement-mediated neutrophil activation. Acta Biomater 2019; 99:330-338. [PMID: 31446047 DOI: 10.1016/j.actbio.2019.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Complement-activated neutrophils are integrally involved in many pathological conditions as well as in dampening the efficacy of cell-based therapies. Mesenchymal stem cells (MSCs) hold promise for regenerative medicine and inflammatory disease therapy, but current MSC-based therapies still require further improvements to ensure success. We recently reported that immediately upon delivery to the bloodstream, MSCs activate complement to produce C5a, which binds to its receptor, C5aR, on neutrophils and thus activates these cells to damage MSCs. Thus, blocking this C5a-C5aR interaction should yield improvements in MSC survival and treatment efficacy. In this project, we developed decoy nanoparticles with surface displaying native C5aR by coating membrane vesicles derived from macrophages expressing high levels of C5aR onto poly(lactic-co-glycolic acid) (PLGA) cores. These C5aR-displaying decoy nanoparticles effectively inhibited neutrophil activation and thus reduced sequential injury to MSCs upon exposure to blood both in vitro and in vivo. Consequently, survival and treatment potency of the MSCs were significantly improved by these decoy nanoparticles. This finding suggests that the C5aR-displaying decoy nanoparticles represent a unique approach toward improving current MSC-based therapies. Additionally, these decoy nanoparticles can be useful as a new reagent for the treatment of other pathological conditions that involve C5a-C5aR signaling. STATEMENT OF SIGNIFICANCE: Complement C5aR has been implied in the pathogenesis of many disorders and is emerging as a new target for the development of therapeutics. So far all the inhibitors of C5aR are either biologicals or small compounds with various shortcomings. Since C5aR is a G-protein coupled receptor that features a multi-loop binding interface with its ligand, C5a, soluble forms of C5aR as decoys for cell surface C5aR are unlikely. We believe this is the first evidence suggesting that C5aR decoy nanoparticles can be developed to treat various C5aR-mediated pathological conditions.
Collapse
Affiliation(s)
- Yan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
41
|
Gavin C, Meinke S, Heldring N, Heck KA, Achour A, Iacobaeus E, Höglund P, Le Blanc K, Kadri N. The Complement System Is Essential for the Phagocytosis of Mesenchymal Stromal Cells by Monocytes. Front Immunol 2019; 10:2249. [PMID: 31616424 PMCID: PMC6763726 DOI: 10.3389/fimmu.2019.02249] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy is a promising tool in the treatment of chronic inflammatory diseases. This has been ascribed to the capacity of MSC to release a large variety of immune-modulatory factors. However, all aspects of the mode of therapeutic MSC action in different diseases remain unresolved, mainly because most of the infused MSC are undetectable in the circulation within hours after infusion. The aim of this study was to elucidate the fate of MSC after contact with plasma. We found that upon contact with blood, complement proteins including C3b/iC3b are deposited on MSC. Importantly, we also found that complement bound to MSC enhanced their phagocytosis by classical and intermediate monocytes via a mechanism that involves C3 but not C5. Thus, we describe for the first time a mechanism which might explain, at least partly, why MSC are not found in the blood circulation after infusion. Our results indicate that MSC immune-modulatory effects could be mediated by monocytes that have phagocytosed them.
Collapse
Affiliation(s)
- Caroline Gavin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nina Heldring
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen Anne Heck
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ellen Iacobaeus
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Center of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Reichhardt MP, Lundin K, Lokki AI, Recher G, Vuoristo S, Katayama S, Tapanainen JS, Kere J, Meri S, Tuuri T. Complement in Human Pre-implantation Embryos: Attack and Defense. Front Immunol 2019; 10:2234. [PMID: 31620138 PMCID: PMC6759579 DOI: 10.3389/fimmu.2019.02234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
It is essential for early human life that mucosal immunological responses to developing embryos are tightly regulated. An imbalance of the complement system is a common feature of pregnancy complications. We hereby present the first full analysis of the expression and deposition of complement molecules in human pre-implantation embryos. Thus, far, immunological imbalance has been considered in stages of pregnancy following implantation. We here show that complement activation against developing human embryos takes place already at the pre-implantation stage. Using confocal microscopy, we observed deposition of activation products on healthy developing embryos, which highlights the need for strict complement regulation. We show that embryos express complement membrane inhibitors and bind soluble regulators. These findings show that mucosal complement targets human embryos, and indicate potential adverse pregnancy outcomes, if regulation of activation fails. In addition, single-cell RNA sequencing revealed cellular expression of complement activators. This shows that the embryonic cells themselves have the capacity to express and activate C3 and C5. The specific local embryonic expression of complement components, regulators, and deposition of activation products on the surface of embryos suggests that complement has immunoregulatory functions and furthermore may impact cellular homeostasis and differentiation at the earliest stages of life.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Gaëlle Recher
- Institut d'Optique Graduate School, CNRS - Université de Bordeaux, Talence, France
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden.,School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Stem Cells and Metabolism Research Program, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Zilberman-Itskovich S, Abu-Hamad R, Zarura R, Sova M, Hachmo Y, Stark M, Neuman S, Slavin S, Efrati S. Human mesenchymal stromal cells ameliorate complement induced inflammatory cascade and improve renal functions in a rat model of ischemia-reperfusion induced acute kidney injury. PLoS One 2019; 14:e0222354. [PMID: 31513644 PMCID: PMC6741994 DOI: 10.1371/journal.pone.0222354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Introduction The primary rational for using mesenchymal stromal cells (MSCs) to rejuvenate damaged tissue is mostly based on their capacity to trans-differentiate and repair injured organs. However, previous studies have demonstrated that MSCs are beneficial even at very early stages, before differentiation and proliferation can be expected. The aim of the current study was to investigate the multifaceted immunological effects of systemically administrating MSCs in the setting of acute kidney injury (AKI) induced by ischemic-reperfusion (I/R). Methods A rat model of I/R induced AKI was used. The rats underwent a unilateral nephrectomy with simultaneously clamping the contralateral kidney for 60 minutes. Four treatment groups received intravenously, increasing doses of human MSCs and after 48 hours, the rats were sacrificed. Blood was taken to evaluate renal functions and to measure systemic inflammatory markers. Kidneys were taken for histopathologic examinations and evaluations of intra-renal complement activation and inflammatory mediators. Results Renal functions improved in U shaped dose dependent manner. Mean serum creatinine levels were 4.5, 2.9, 2.6, 1.7 and 4.1 mg/dL in I/R + placebo, I/R + 150x103 cells, I/R + 250x103 cells, I/R + 500x103 cells and I/R + 1,000x103 cells respectfully (p-values<0.05). Urea demonstrated consistent results with the same U shape improvement manner. The extensive activation of the complement system was ameliorated in the MSCs treatment groups. In addition, MSCs significantly decreased intra-renal levels of IL-1β and TNF-α. It should be noted that the highest doses of MSCs induced renal hypoxia, marked by the Hypoxy-probe staining. Conclusions The early beneficial effect of MSCs in the setting of AKI may be attributed to their immunomodulatory effects. Safe treatment with MSCs can block the deleterious activation of the complement cascade and alleviate the hazardous inflammatory mediator-related cascade.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Ramzia Abu-Hamad
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Rina Zarura
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Marina Sova
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Yafit Hachmo
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Moshe Stark
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Sara Neuman
- Biotherapy International, The Center for Innovative Cancer Immunotherapy & Regenerative Medicine, Weizmann Center, Tel Aviv, Israel
| | - Shimon Slavin
- Biotherapy International, The Center for Innovative Cancer Immunotherapy & Regenerative Medicine, Weizmann Center, Tel Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
44
|
Ménard C, Dulong J, Roulois D, Hébraud B, Verdière L, Pangault C, Sibut V, Bezier I, Bescher N, Monvoisin C, Gadelorge M, Bertheuil N, Flécher E, Casteilla L, Collas P, Sensebé L, Bourin P, Espagnolle N, Tarte K. Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells 2019; 38:146-159. [PMID: 31502731 DOI: 10.1002/stem.3077] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Clinical-grade mesenchymal stromal cells (MSCs) can be expanded from bone marrow and adipose tissue to treat inflammatory diseases and degenerative disorders. However, the influence of their tissue of origin on their functional properties, including their immunosuppressive activity, remains unsolved. In this study, we produced paired bone marrow-derived mesenchymal stromal cell (BM-MSC) and adipose-derived stromal cell (ASC) batches from 14 healthy donors. We then compared them using transcriptomic, phenotypic, and functional analyses and validated our results on purified native MSCs to infer which differences were really endowed by tissue of origin. Cultured MSCs segregated together owing to their tissue of origin based on their gene expression profile analyzed using differential expression and weighted gene coexpression network analysis. This translated into distinct immune-related gene signatures, phenotypes, and functional cell interactions. Importantly, sorted native BM-MSCs and ASCs essentially displayed the same distinctive patterns than their in vitro-expanded counterparts. As a whole, ASCs exhibited an immune profile consistent with a stronger inhibition of immune response and a lower immunogenicity, supporting the use of adipose tissue as a valuable source for clinical applications.
Collapse
Affiliation(s)
- Cédric Ménard
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Joëlle Dulong
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - David Roulois
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Benjamin Hébraud
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Léa Verdière
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Céline Pangault
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,Pôle Biologie, CHU Rennes, Rennes, France
| | - Vonick Sibut
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Isabelle Bezier
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Nadège Bescher
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Céline Monvoisin
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Mélanie Gadelorge
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Nicolas Bertheuil
- SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France.,Department of Plastic Surgery, CHU Rennes, Rennes, France
| | - Erwan Flécher
- Department of Thoracic and Cardiac Surgery, CHU Rennes, Rennes, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Luc Sensebé
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | | | - Nicolas Espagnolle
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Karin Tarte
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| |
Collapse
|
45
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front Immunol 2019; 10:1645. [PMID: 31417542 PMCID: PMC6685059 DOI: 10.3389/fimmu.2019.01645] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.
Collapse
Affiliation(s)
- Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mitchell George
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela Wenzel
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
46
|
Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front Immunol 2019; 10:1228. [PMID: 31214185 PMCID: PMC6557974 DOI: 10.3389/fimmu.2019.01228] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid progress is occurring in understanding the mechanisms underlying mesenchymal stromal cell (MSC)-based cell therapies (MSCT). However, the results of clinical trials, while demonstrating safety, have been varied in regard to efficacy. Recent data from different groups have shown profound and significant influences of the host inflammatory environment on MSCs delivered systemically or through organ-specific routes, for example intratracheal, with subsequent actions on potential MSC efficacies. Intriguingly in some models, it appears that dead or dying cells or subcellular particles derived from them, may contribute to therapeutic efficacy, at least in some circumstances. Thus, the broad cellular changes that accompany MSC death, autophagy, pre-apoptotic function, or indeed the host response to these processes may be essential to therapeutic efficacy. In this review, we summarize the existing literature concerning the necrobiology of MSCs and the available evidence that MSCs undergo autophagy, apoptosis, transfer mitochondria, or release subcellular particles with effector function in pathologic or inflammatory in vivo environments. Advances in understanding the role of immune effector cells in cell therapy, especially macrophages, suggest that the reprogramming of immunity associated with MSCT has a weighty influence on therapeutic efficacy. If correct, these data suggest novel approaches to enhancing the beneficial actions of MSCs that will vary with the inflammatory nature of different disease targets and may influence the choice between autologous or allogeneic or even xenogeneic cells as therapeutics.
Collapse
Affiliation(s)
- Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Anna Krasnodembskaya
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Johana M. Isaza-Correa
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Ian J. Hawthorne
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Bernard P. Mahon
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| |
Collapse
|
47
|
Haque N, Khan IM, Abu Kasim NH. Survival and immunomodulation of stem cells from human extracted deciduous teeth expanded in pooled human and foetal bovine sera. Cytokine 2019; 120:144-154. [PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022]
Abstract
The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia; Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ilyas M Khan
- Centre for NanoHealth, Swansea University Medical School, Swansea, UK
| | - Noor Hayaty Abu Kasim
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
48
|
Bang OY, Kim EH. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front Neurol 2019; 10:211. [PMID: 30915025 PMCID: PMC6422999 DOI: 10.3389/fneur.2019.00211] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Stroke is the leading cause of physical disability among adults. Stem cells such as mesenchymal stem cells (MSCs) secrete a variety of bioactive substances, including trophic factors and extracellular vesicles (EVs), into the injured brain, which may be associated with enhanced neurogenesis, angiogenesis, and neuroprotection. EVs are circular membrane fragments (30 nm−1 μm) that are shed from the cell surface and harbor proteins, microRNAs, etc. Since 2013 when it was first reported that intravenous application of MSC-derived EVs in a stroke rat model improved neurological outcomes and increased angiogenesis and neurogenesis, many preclinical studies have shown that stem cell-derived EVs can be used in stroke therapy, as an alternative approach to stem cell infusion. Although scientific research regarding MSC-derived EV therapeutics is still at an early stage, research is rapidly increasing and is demonstrating a promising approach for patients with severe stroke. MSC therapies have already been tested in preclinical studies and clinical trials, and EV-mediated therapy has unique advantages over cell therapies in stroke patients, in terms of biodistribution (overcoming the first pass effect and crossing the blood-brain-barrier), cell-free paradigm (avoidance of cell-related problems such as tumor formation and infarcts caused by vascular occlusion), whilst offering an off-the-shelf approach for acute ischemic stroke. Recently, advances have been made in the understanding of the function and biogenesis of EVs and EVs therapeutics for various diseases. This review presents the most recent advances in MSC-derived EV therapy for stroke, focusing on the application of this strategy for stroke patients.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea.,Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
49
|
Allogeneic ADSCs induce CD8 T cell-mediated cytotoxicity and faster cell death after exposure to xenogeneic serum or proinflammatory cytokines. Exp Mol Med 2019; 51:1-10. [PMID: 30858365 PMCID: PMC6412000 DOI: 10.1038/s12276-019-0231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/02/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
This study examined the induction of recipient T-cell cytotoxicity after exposure to allogeneic adipose-derived mesenchymal stem cells (ADSCs). ADSCs pre-exposed to xenogeneic serum significantly induced cytotoxicity through CD8 T-cell granzyme B secretion after allogeneic antigen stimulation, and this effect was increased with prolonged reaction time. ADSCs pretreated with proinflammatory cytokines also induced cytotoxicity through granzyme B secretion and significantly increased human leukocyte antigen (HLA)-ABC expression. T-cell cytotoxicity towards ADSCs grown in xeno-free medium (XF-ADSCs) was lower than that towards ADSCs exposed to xenogeneic serum or proinflammatory cytokines, but XF-ADSCs still induced cytotoxicity. We further investigated the causes of T-cell cytotoxicity towards XF-ADSCs. XF-ADSC death was effectively inhibited by HLA-blocking antibodies, suggesting that ADSC HLAs are a major cause of alloreactive T-cell generation. These results indicated that culturing of allogeneic ADSCs with recipient serum may alleviate alloreactive CD8 T-cell cytotoxicity. Ultimately, development of therapeutic agents using autologous ADSCs would be a suitable way to avoid immunogenicity and CD8 T cell-mediated cytotoxicity, but more attention should be paid to the potential immunogenicity of allogeneic ADSCs, which could perhaps be mitigated through the use of immunosuppressants. The conditions under which donor stem cells are cultured can limit attack by the recipient’s immune system after transplantation. Adult stem cells taken from donors who are genetically similar to recipients show promise as therapeutic agents for various conditions, from cardiac to immunity-related diseases. However, patients’ immune systems will often attack and destroy the transplanted cells. Chung-Gyu Park and Sung-Ho Chang at Seoul National University, South Korea, explored methods of growing stem cells so that they are less likely to be destroyed by the patient’s T-cells. The team found that human T-cells will attack stem cells grown in media containing bovine serum or those pre-treated with pro-inflammatory proteins. T-cell activity was weaker against stem cells grown in media with autologous serum.
Collapse
|
50
|
Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplant 2019; 27:31-44. [PMID: 29562786 PMCID: PMC6434482 DOI: 10.1177/0963689717742819] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.
Collapse
Affiliation(s)
- Marta Magatti
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Silini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy.,2 Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|