1
|
Li S, Gui J, Karagas MR, Passarelli MN. Transcriptome-wide association study identifies genes associated with bladder cancer risk. Sci Rep 2025; 15:1390. [PMID: 39789109 PMCID: PMC11718161 DOI: 10.1038/s41598-025-85565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Genome-wide association studies (GWAS) have detected several susceptibility variants for urinary bladder cancer, but how gene regulation affects disease development remains unclear. To extend GWAS findings, we conducted a transcriptome-wide association study (TWAS) using PrediXcan to predict gene expression levels in whole blood using genome-wide genotype data for 6180 bladder cancer cases and 5699 controls included in the database of Genotypes and Phenotypes (dbGaP). Logistic regression was used to estimate adjusted gene-level odds ratios (OR) per 1-standard deviation higher expression with 95% confidence intervals (CI) for bladder cancer risk. We further assessed associations for individual single-nucleotide polymorphisms (SNPs) used to predict expression levels and proximal loci for genes identified in gene-level analyses with false-discovery rate (FDR) correction. TWAS identified four genes for which expression levels were associated with bladder cancer risk: SLC39A3 (OR = 0.91, CI = 0.87-0.95, FDR = 0.015), ZNF737 (OR = 0.91, CI = 0.88-0.95, FDR = 0.016), FAM53A (OR = 1.09, CI = 1.05-1.14, FDR = 0.022), and PPP1R2 (OR = 1.09, CI = 1.05-1.13, FDR = 0.049). Findings from this TWAS enhance our understanding of how genetically-regulated gene expression affects bladder cancer development and point to potential prevention and treatment targets.
Collapse
Affiliation(s)
- Siting Li
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
2
|
Wang Z, Xu H, Xue B, Liu L, Tang Y, Wang Z, Yao K. MSC-derived exosomal circMYO9B accelerates diabetic wound healing by promoting angiogenesis through the hnRNPU/CBL/KDM1A/VEGFA axis. Commun Biol 2024; 7:1700. [PMID: 39725699 DOI: 10.1038/s42003-024-07367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/17/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a common but devastating complication of diabetes mellitus and might ultimately lead to amputation. Elucidating the regulatory mechanism of wound healing in DFU is quite important for developing DFU management strategies. Here, we show, mecenchymal stem cell (MSC)-derived exosomes promoted the proliferation, migration and angiogenesis of high glucose-treated endothelial cells and reduced cell apoptosis. These effects were further enhanced by MSC-derived exosomes carrying circMYO9B overexpression. Mechanistically, circMYO9B promoted the translocation of hnRNPU from nucleus to cytoplasm and consequently destabilized CBL, thereby reducing the ubiquitination and degradation of KDM1A to promote VEGFA expression in endothelial cells. MSC-derived exosomes carrying circMYO9B promotes angiogenesis and thus accelerates diabetic wound healing through regulating the hnRNPU/CBL/KDM1A/VEGFA axis, indicating potential therapeutic targets and strategies for DFU treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Hongbo Xu
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Bichen Xue
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Lian Liu
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Yulin Tang
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Zhichao Wang
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China
| | - Kai Yao
- Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China.
| |
Collapse
|
3
|
Wen T, Zhang X, Gao Y, Tian H, Fan L, Yang P. SOX4-BMI1 axis promotes non-small cell lung cancer progression and facilitates angiogenesis by suppressing ZNF24. Cell Death Dis 2024; 15:698. [PMID: 39349443 PMCID: PMC11442842 DOI: 10.1038/s41419-024-07075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The incidence of lung cancer has become the highest among all cancer types globally, also standing as a leading cause of cancer-related deaths. Lung cancer is broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with the latter accounting for 85% of total cases. SRY-box transcription factor 4 (SOX4), a crucial transcription factor, has been found to play a key role in the development of various cancers. However, the association between SOX4 and NSCLC is still unclear. This study investigated the clinical relevance of SOX4 and its potential mechanisms in the progression of NSCLC. Analysis of our NSCLC patient cohort revealed a significant increase in SOX4 levels in cancerous tissues, indicating its role as an independent prognostic indicator for NSCLC. In vitro experiments demonstrated that elevated SOX4 expression facilitated NSCLC cell migration, invasion, and EMT. Functionally, SOX4 drives NSCLC progression by enhancing the transcription and expression of B-cell-specific moloney leukemia virus insertion site 1 (BMI1). The oncogenic impact of SOX4-induced BMI1 expression on NSCLC advancement was validated through both in vivo and in vitro studies. In addition, our findings showed that BMI1 promoted the ubiquitination of histone H2A (H2Aub), leading to decreased zinc finger protein 24 (ZNF24) expression, which subsequently triggered vascular endothelial growth factor A (VEGF-A) secretion in NSCLC cells, thereby promoting NSCLC angiogenesis. Moreover, we evaluated the therapeutic potential of a BMI1 inhibitor in combination with Bevacizumab for NSCLC treatment using orthotopic models. The data presented in our study reveal a previously unrecognized role of the SOX4-BMI1 axis in promoting NSCLC progression and angiogenesis. This research significantly contributes to our knowledge of the interplay between SOX4 and BMI1 in NSCLC, potentially paving the way for the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Ting Wen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Xiao Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yun Gao
- Department of Internal Medicine, Shandong Provincial Taishan Hospital, Taian, Shandong, 271000, China
| | - Hong Tian
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Lufeng Fan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| | - Ping Yang
- Department of Oncology, Qingdao Endocrine and Diabetes Hospital & Institute, Qingdao, Shandong, 266000, China.
| |
Collapse
|
4
|
Castillejo-López C, Bárcenas-Walls JR, Cavalli M, Larsson A, Wadelius C. A regulatory element associated to NAFLD in the promoter of DIO1 controls LDL-C, HDL-C and triglycerides in hepatic cells. Lipids Health Dis 2024; 23:48. [PMID: 38365720 PMCID: PMC10870585 DOI: 10.1186/s12944-024-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - José Ramón Bárcenas-Walls
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC.
| |
Collapse
|
5
|
Li Q, Tang X, Li W. Potential diagnostic markers and biological mechanism for osteoarthritis with obesity based on bioinformatics analysis. PLoS One 2023; 18:e0296033. [PMID: 38127891 PMCID: PMC10735003 DOI: 10.1371/journal.pone.0296033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous observational studies have shown that obesity (OB) is a significant risk factor in the occurrence and progression of osteoarthritis (OA), but the underlying molecular mechanism between them remains unclear. The study aimed to identify the key genes and pathogeneses for OA with OB. We obtained two OA and two OB datasets from the gene expression omnibus (GEO) database. First, the identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify key genes for diagnosing OA with OB, and then the nomogram and receiver operating characteristic (ROC) curve were conducted to assess the diagnostic value of key genes. Second, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the pathogenesis of OA with OB. Third, CIBERSORT was created to investigate immunocyte dysregulation in OA and OB. In this study, two genes (SOD2, ZNF24) were finally identified as key genes for OA with OB. These two key genes had high diagnostic values via nomogram and ROC curve calculation. Additionally, functional analysis emphasized that oxidative stress and inflammation response were shared pathogenesis of OB and AD. Finally, in OA and OB, immune infiltration analysis showed that SOD2 closely correlated to M2 macrophages, regulatory T cells, and CD8 T cells, and ZNF24 correlated to regulatory T cells. Overall, our findings might be new biomarkers or potential therapeutic targets for OA and OB comorbidity.
Collapse
Affiliation(s)
- Qiu Li
- Department of Cardiovascular, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Xijie Tang
- Department of Orthopedics, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430061, China
| | - Weihua Li
- Department of Cardiovascular, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| |
Collapse
|
6
|
Meng F, Ai C, Yan G, Wang G. Tumor-suppressive zinc finger protein 24 (ZNF24) sensitizes colorectal cancer cells to 5-fluorouracil by inhibiting the Wnt pathway and activating the p53 signaling. Exp Cell Res 2023; 433:113796. [PMID: 37774763 DOI: 10.1016/j.yexcr.2023.113796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Carcinogenesis and colorectal cancer (CRC) development are associated with dysregulation of various pathways, including Wnt and p53. 5-fluorouracil (5-FU) is a common chemotherapeutic agent for CRC treatment, but its efficacy is restricted by drug resistance. Doxycycline is an orally active tetracycline antibiotic known for its antimicrobial and anticancer cell proliferation activities. This study intends to delineate the potential role of bioinformatically predicted ZNF24 in the 5-FU resistance of CRC cells. The expression of ZNF24 was measured in clinically collected CRC tissues and cells. Afterward, ectopic ZNF24 expression was induced by DOX to evaluate the viability, colony-forming ability and sphere-forming ability of CRC cells. It was found that ZNF24 was validated to be poorly expressed in CRC tissues, and ectopic expression of ZNF24 was revealed to restrict the malignant phenotypes of CRC cells. In addition, restored ZNF24 attenuated 5-FU resistance of CRC cells by inhibiting the Wnt pathway and activating p53 signaling. Furthermore, an inhibitor of Wnt production 2 (IWP-2) treatment was an alternative to ZNF24 up-regulation in sensitizing CRC cells to 5-FU treatment. In conclusion, our results indicate that ZNF24 inhibits 5-FU resistance of CRC cells by suppressing the Wnt pathway and activating p53 signaling, which offers a potential strategy for managing chemoresistance in CRC.
Collapse
Affiliation(s)
- Fanqi Meng
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Chunlong Ai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
7
|
Quanrud GM, Lyu Z, Balamurugan SV, Canizal C, Wu HT, Genereux JC. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles. ACS Chem Biol 2023; 18:1661-1676. [PMID: 37427419 PMCID: PMC10367052 DOI: 10.1021/acschembio.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sunil V. Balamurugan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Carolina Canizal
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Liu L, Lei Y, Chen W, Zhou Q, Zheng Z, Zeng G, Liu W, Feng P, Zhang Z, Yu L, Chen L. In vivo genome-wide CRISPR screening identifies ZNF24 as a negative NF-κB modulator in lung cancer. Cell Biosci 2022; 12:193. [PMID: 36457047 PMCID: PMC9717477 DOI: 10.1186/s13578-022-00933-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Systemic identification of tumor suppressor genes (TSGs) and elucidation of their signaling provide a new angle for understanding of tumorigenesis, which is important for developing successful treatment for lung cancer patients. In our current work, we conducted an in vivo screen for lung cancer TSGs through CRISPR/Cas9 mediated knockout of genes at genome-wide scale. We found that ZNF24 was a potent and clinically relevant TSG of lung cancer. Ectopic expression of ZNF24 arrested lung cancer cells in S phase. Mechanistically, ZNF24 bound to promoter region of P65 to negatively regulate its transcription and thereby the signaling activity of NF-κB pathway. This signaling cascade is clinically relevant. Importantly, we found that combinational inhibition of KRAS, NF-κB, and PD-1 effectively shrank autochthonous KrasG12D/ZNF24-/- lung cancers in transgenic mouse model. Our current work thus revealed an important role played by loss of function of ZNF24 in lung tumorigenesis and shed new light in precision medicine for a portion of lung cancer patients.
Collapse
Affiliation(s)
- Lu Liu
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Yuxi Lei
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Wensheng Chen
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Qian Zhou
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Zongyao Zheng
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Guandi Zeng
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Wanting Liu
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Pengju Feng
- grid.258164.c0000 0004 1790 3548Department of Chemistry, Jinan University, Guangzhou, 510632 China
| | - Zhiyi Zhang
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Lei Yu
- grid.24696.3f0000 0004 0369 153XBeijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Liang Chen
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
9
|
Thomas JM, Sasankan D, Abraham M, Surendran S, Kartha CC, Rajavelu A. DNA methylation signatures on vascular differentiation genes are aberrant in vessels of human cerebral arteriovenous malformation nidus. Clin Epigenetics 2022; 14:127. [PMID: 36229855 PMCID: PMC9563124 DOI: 10.1186/s13148-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Dhakshmi Sasankan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India, 695011
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Chandrasekharan C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
10
|
Roy R, Yang J, Shimura T, Merritt L, Alluin J, Man E, Daisy C, Aldakhlallah R, Dillon D, Pories S, Chodosh LA, Moses MA. Escape from breast tumor dormancy: The convergence of obesity and menopause. Proc Natl Acad Sci U S A 2022; 119:e2204758119. [PMID: 36191215 PMCID: PMC9564105 DOI: 10.1073/pnas.2204758119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is associated with an increased risk of, and a poor prognosis for, postmenopausal (PM) breast cancer (BC). Our goal was to determine whether diet-induced obesity (DIO) promotes 1) shorter tumor latency, 2) an escape from tumor dormancy, and 3) an acceleration of tumor growth and to elucidate the underlying mechanism(s). We have developed in vitro assays and PM breast tumor models complemented by a noninvasive imaging system to detect vascular invasion of dormant tumors and have used them to determine whether obesity promotes the escape from breast tumor dormancy and tumor growth by facilitating the switch to the vascular phenotype (SVP) in PM BC. Obese mice had significantly higher tumor frequency, higher tumor volume, and lower overall survival compared with lean mice. We demonstrate that DIO exacerbates mammary gland hyperplasia and neoplasia, reduces tumor latency, and increases tumor frequency via an earlier acquisition of the SVP. DIO establishes a local and systemic proangiogenic and inflammatory environment via the up-regulation of lipocalin-2 (LCN2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) that may promote the escape from tumor dormancy and tumor progression. In addition, we show that targeting neovascularization via a multitargeted receptor tyrosine kinase inhibitor, sunitinib, can delay the acquisition of the SVP, thereby prolonging tumor latency, reducing tumor frequency, and increasing tumor-free survival, suggesting that targeting neovascularization may be a potential therapeutic strategy in obesity-associated PM BC progression. This study establishes the link between obesity and PM BC and, for the first time to our knowledge, bridges the dysfunctional neovascularization of obesity with the earliest stages of tumor development.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Jiang Yang
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Takaya Shimura
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Lauren Merritt
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Justine Alluin
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Emily Man
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Deborah Dillon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Susan Pories
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA 02138
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
11
|
Zhang M, Wu K, Wang M, Bai F, Chen H. CASP9 As a Prognostic Biomarker and Promising Drug Target Plays a Pivotal Role in Inflammatory Breast Cancer. Int J Anal Chem 2022; 2022:1043445. [PMID: 36199443 PMCID: PMC9527435 DOI: 10.1155/2022/1043445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is one of the most rare and aggressive subtypes of primary breast cancer (BC). Our study aimed to explore hub genes related to the pathogenesis of IBC, which could be considered as novel molecular biomarkers for IBC diagnosis and prognosis. Material and Methods. Two datasets from gene expression omnibus database (GEO) were selected. Enrichment analysis and protein-protein interaction (PPI) network for the DEGs were performed. We analyzed the prognostic values of hub genes in the Kaplan-Meier Plotter. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) was used to find candidate small molecules capable to reverse the gene status of IBC. Results 157 DEGs were selected in total. We constructed the PPI network with 154 nodes interconnected by 128 interactions. The KEGG pathway analysis indicated that the DEGs were enriched in apoptosis, pathways in cancer and insulin signaling pathway. PTEN, PSMF1, PSMC6, AURKB, FZR1, CASP9, CASP6, CASP8, BAD, AKR7A2, ZNF24, SSX2IP, SIGLEC1, MS4A4A, and VSIG4 were selected as hub genes based on the high degree of connectivity. Six hub genes (PSMC6, AURKB, CASP9, BAD, ZNF24, and SSX2IP) that were significantly associated with the prognosis of breast cancer. The expression of CASP9 protein was associated with prognosis and immune cells infiltration of breast cancer. CASP9- naringenin (NGE) is expected to be the most promising candidate gene-compound interaction for the treatment of IBC. Conclusion Taken together, CASP9 can be used as a prognostic biomarker and a novel therapeutic target in IBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen J, Guo J, Yuan Y, Wang Y. Zinc Finger Protein 24 is a Prognostic Factor in Ovarian Serous Carcinoma. Appl Immunohistochem Mol Morphol 2022; 30:136-144. [PMID: 34608874 DOI: 10.1097/pai.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE As a member of the zinc finger protein family, zinc finger protein 24 (ZNF24) contains a Cys2His2 zinc finger domain and acts as a transcription factor. ZNF24 has been reported to be downregulated in gastric cancer and breast cancer. However, little is known about its expression and function in ovarian serous carcinoma (OSC). PATIENTS AND METHODS We collected 117 OSC patients during 2011 to 2017 and retrospectively retrieved their clinicopathologic characteristics as well as their survival data. Protein level was analyzed by immunohistochemistry, mRNA level was evaluated by RT-qPCR assay, and transcriptional data was obtained from TCGA data sets. The correlations between ZNF24 expression and patients' features were assessed using χ2 test. Univariate and multivariate analyses were used to identify the prognosis predicative potential of ZNF24 in OSC. The function of ZNF24 in the epithelial ovarian cancer cells was also verified by in vitro cellular experiments. RESULTS Among the 117 cases, ZNF24 was downregulated in 52 OSC samples (44.6%) and significantly correlated with tumor stages. According to univariate and multivariate analyses, ZNF24 can act as an independent prognostic indicator for the overall survival of OSC patients, whose lower expression was associated with poorer clinical outcomes. Ectopic overexpression and knockdown assays indicated that ZNF24 can negatively regulate the OSC cell viability. CONCLUSIONS OSC patients with low level of ZNF24 have worse overall survival compared with those possess high-ZNF24 expression. Downregulated ZNF24 may be involved in the proliferation of OSC, and ZNF24 expression can serve as an independent survival predictor.
Collapse
Affiliation(s)
- Jia Chen
- Department of Obstetrics and Gynecology, Chongqing University Central Hospital, Chongqing Emergency Medical Center
| | - Juan Guo
- Department of Obstetrics and Gynecology, The Fifth People Hospital of Chongqing
| | | | - Yadong Wang
- Breast, Chongqing Traditional Chinese Medical Hospital, Chongqing, China
| |
Collapse
|
13
|
Bai L, Yang G, Qin Z, Lyu J, Wang Y, Feng J, Liu M, Gong T, Li X, Li Z, Li J, Qin J, Yang W, Ding C. Proteome-Wide Profiling of Readers for DNA Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101426. [PMID: 34351703 PMCID: PMC8498917 DOI: 10.1002/advs.202101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Indexed: 05/13/2023]
Abstract
DNA modifications, represented by 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), play important roles in epigenetic regulation of biological processes. The specific recognition of DNA modifications by the transcriptional protein machinery is thought to be a potential mechanism for epigenetic-driven gene regulation, and many modified DNA-specific binding proteins have been uncovered. However, the panoramic view of the roles of DNA modification readers at the proteome level remains largely unclear. Here, a recently developed concatenated tandem array of consensus transcription factor (TF) response elements (catTFREs) approach is employed to profile the binding activity of TFs at DNA modifications. Modified DNA-binding activity is quantified for 1039 TFs, representing 70% of the TFs in the human genome. Additionally, the modified DNA-binding activity of 600 TFs is monitored during the mouse brain development from the embryo to the adult stages. Readers of these DNA modifications are predicted, and the hierarchical networks between the transcriptional protein machinery and modified DNA are described. It is further demonstrated that ZNF24 and ZSCAN21 are potential readers of 5fC-modified DNA. This study provides a landscape of TF-DNA modification interactions that can be used to elucidate the epigenetic-related transcriptional regulation mechanisms under physiological conditions.
Collapse
Affiliation(s)
- Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Guojian Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jiacheng Lyu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Mingwei Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Tongqing Gong
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Xianju Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| | - Jun Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)Institute of LifeomicsBeijing102206China
| | - Wenjun Yang
- Department of Pediatric OrthopedicsXin Hua Hospital AffiliatedShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and DevelopmentSchool of Life SciencesInstitute of Biomedical SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200433China
| |
Collapse
|
14
|
Li W, Han S, Hu P, Chen D, Zeng Z, Hu Y, Xu F, Tang J, Wang F, Zhao Y, Huang M, Zhao G. LncRNA ZNFTR functions as an inhibitor in pancreatic cancer by modulating ATF3/ZNF24/VEGFA pathway. Cell Death Dis 2021; 12:830. [PMID: 34480024 PMCID: PMC8417266 DOI: 10.1038/s41419-021-04119-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/16/2023]
Abstract
The majority of long non-coding RNAs (lncRNAs) have been discovered to be overexpressed in pancreatic cancer (PC) and served as promoters in the tumorigenesis of PC, while the inhibitory functions of lncRNAs in the development of PC have not been fully elucidated yet. LncRNA microarray was adopted to analyze the differential expression of lncRNAs in PC tissues and that in normal peritumoral (NP) tissues. Functional role of lncRNA BM466146.1 on PC was evaluated by gain- and loss-of-function experiments in vivo and in vitro. RNA pull-down, RNA immunoprecipitation, luciferase reporter, and Chromatin-immunoprecipitation assays were performed to assess the mechanism of ZNFTR, respectively. The correlation between the expression of ZNFTR and various clinicopathological characteristics was accessed in PC specimens. This study displayed lncRNA BM466146.1 was downregulated in PC tissues and functioned as a suppressor through regulating the expression of adjacent gene Zinc finger protein 24 (ZNF24), which was assigned as ZNFTR. Mechanistically, ZNFTR interacted with activating transcription factor 3 (ATF3) and sequestered ATF3 away from the ZNF24 promoter, which consequently increased the expression of ZNF24. Further, ZNF24 inhibited the proliferative, metastatic, and pro-angiogenic abilities of PC cells by suppressing transcription of vascular endothelial growth factor A (VEGFA). Therefore, the downregulation of ZNFTR in PC led to the decreased expression of ZNF24, which further resulted in the upregulation of VEGFA to facilitate the development of PC. Meanwhile, ZNFTR was transcriptionally inhibited by the HIF-1α/HDAC1 complex-mediated deacetylation. Clinical results further demonstrated that the low expression of ZNFTR was associated with poor overall survival time. Taken together, our results implicated that ZNFTR was a hypoxia-responsive lncRNA, and functioned as an inhibitor by modulating ATF3/ZNF24/VEGFA pathway in PC.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ding Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fengyu Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengqi Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Hazem RM, Mohamed AA, Ghareb N, Mehanna ET, Mesbah NM, Abo-Elmatty DM, Elgawish MS. Anti-cancer activity of two novel heterocyclic compounds through modulation of VEGFR and miR-122 in mice bearing Ehrlich ascites carcinoma. Eur J Pharmacol 2020; 892:173747. [PMID: 33232730 DOI: 10.1016/j.ejphar.2020.173747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Metastasis in breast cancer is a leading cause of mortality among women in many countries. This study investigated the anti-cancer role of benzoimidazoquinazoline and benzimidazotriazin; two novel compounds that were designed, synthesized, structurally elucidated, and biologically evaluated as potent anti-angiogenic agents that act through inhibition of vascular endothelial growth factor receptor-2 (VEGFR2). Breast cancer was induced by inoculation of Ehrlich Ascites Carcinoma (EAC) cells. Seventy swiss albino mice were randomly divided into 7 groups, 10 animals each: (1) normal, (2) control EAC group, (3) cisplatin treated group, (4&5) benzoimidazoquinazoline treated (5 mg/kg and 10 mg/kg), (6&7) benzimidazotriazin treated (5 mg/kg and 10 mg/kg). The expression of miR-122 was assessed in the tumor tissue by quantitative PCR, and the VEGF level was determined in serum by ELISA. VEGFR2 and cluster of differentiation (CD)34 were assessed by immunohistochemistry. Serum ALT, AST, creatinine, and urea were measured. Treatment with benzoimidazoquinazoline and benzimidazotriazin decreased tumor weight and serum levels of VEGF, and down-regulated expression of VEGFR2 and CD34 in the tumor tissue. miR-122 was upregulated, particularly in the benzimidazotriazin (10 mg/kg) group. Relative to cisplatin, the novel compounds were less toxic to kidneys. Benzoimidazoquinazoline and benzimidazotriazin are promising anti-cancer agents that act through inhibition of angiogenesis and thus provide a new strategy for advancement of chemotherapy.
Collapse
Affiliation(s)
- Reem M Hazem
- Department of Pharmacology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Anhar A Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagat Ghareb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Saleh Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt; Center for Molecular Spectroscopy and Dynamic, Institute for Basic Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Huang M, Huang X, Jiang B, Zhang P, Guo L, Cui X, Zhou S, Ren L, Zhang M, Zeng J, Huang X, Liang P. linc00174-EZH2-ZNF24/Runx1-VEGFA Regulatory Mechanism Modulates Post-burn Wound Healing. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:824-836. [PMID: 32805486 PMCID: PMC7452087 DOI: 10.1016/j.omtn.2020.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Preservation of denatured dermis exerts promotive functions in wound healing and improves the appearance and function of skin. Angiogenesis is crucial for wound healing during burn injury. However, the potential molecular mechanism of angiogenesis in the recovery after burn injury remains to be elucidated. Herein, RNA chromatin immunoprecipitation (ChIP) sequencing analysis revealed upregulation of long intergenic non-coding RNA 00174 (linc00174) in the post-burn tissues. linc00174 overexpression promoted angiogenic activities of human umbilical vein endothelial cells (HUVECs) in the heat-denatured cell model, characterized by the promotion of cell proliferation, migration, and tube formation. Mechanistically, linc00174 directly bound to enhancer of zeste homolog 2 (EZH2), thus stimulating the protein level of trimethylation at lysine 27 of histone H3 (H3K27me3). Moreover, inhibition of EZH2 resulted in downregulation of ZNF24 and Runx1, as well as a decline of vascular endothelial growth factor A (VEGFA). Furthermore, EZH2 modulated epigenetic repression of ZNF24 and Runx1 through the promoter of H3K27me3. Additionally, ZNF24 and Runx1 both functioned as transcriptional inhibitors of VEGFA. Taken together, these findings uncover that linc00174 epigenetically inhibits ZNF24 and Runx1 expression through binding to EZH2, thus attenuating the suppression of VEGFA, contributing to the facilitation of angiogenesis during the recovery of heat-denatured endothelial cells.
Collapse
Affiliation(s)
- Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.
| |
Collapse
|
17
|
Helleboid P, Heusel M, Duc J, Piot C, Thorball CW, Coluccio A, Pontis J, Imbeault M, Turelli P, Aebersold R, Trono D. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J 2019; 38:e101220. [PMID: 31403225 PMCID: PMC6745500 DOI: 10.15252/embj.2018101220] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023] Open
Abstract
Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) are encoded in the hundreds by the genomes of higher vertebrates, and many act with the heterochromatin-inducing KAP1 as repressors of transposable elements (TEs) during early embryogenesis. Yet, their widespread expression in adult tissues and enrichment at other genetic loci indicate additional roles. Here, we characterized the protein interactome of 101 of the ~350 human KZFPs. Consistent with their targeting of TEs, most KZFPs conserved up to placental mammals essentially recruit KAP1 and associated effectors. In contrast, a subset of more ancient KZFPs rather interacts with factors related to functions such as genome architecture or RNA processing. Nevertheless, KZFPs from coelacanth, our most distant KZFP-encoding relative, bind the cognate KAP1. These results support a hypothetical model whereby KZFPs first emerged as TE-controlling repressors, were continuously renewed by turnover of their hosts' TE loads, and occasionally produced derivatives that escaped this evolutionary flushing by development and exaptation of novel functions.
Collapse
Affiliation(s)
| | - Moritz Heusel
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Julien Duc
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Cécile Piot
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Christian W Thorball
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrea Coluccio
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Julien Pontis
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Michaël Imbeault
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Priscilla Turelli
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Didier Trono
- School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
18
|
Huang M, Chen Y, Han D, Lei Z, Chu X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res 2019; 9:816-836. [PMID: 31218096 PMCID: PMC6556609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023] Open
Abstract
Transcription factors are key determinants of gene expression that recognize and bind to short DNA sequence motifs, thereby regulating many biological processes including differentiation, development, and metabolism. Transcription factors are increasingly recognized for their roles in cancer progression. Here, we describe a subfamily of zinc finger transcription factors named zinc finger and SCAN domain containing (ZSCAN) transcription factors. In this review, we summarize the identified members of the ZSCAN family of transcription factors and their roles in cancer progression. Due to the complex regulation mechanisms, ZSCAN transcription factors may show promotive or prohibitive efforts in angiogenesis, cell apoptosis, cell differentiation, cell migration and invasion, cell proliferation, stem cell properties, and chemotherapy sensitivity. The upstream regulation mechanisms of their varied expression levels may include gene mutation, DNA methylation, alternative splicing, and miRNA regulation. What's more, to clarify their diverse functions, we summarize the modulation mechanisms of their activity in downstream genes transcription, including protein-protein interactions mediated by their SCAN box, recruitment of co-regulating molecules and post-translational modifications. A better understanding of the widespread regulatory mode of these transcription factors will provide further insight into the mechanism of transcriptional regulation and suggest novel therapeutic strategies against tumor progression.
Collapse
Affiliation(s)
- Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
19
|
van den Broek E, Krijgsman O, Sie D, Tijssen M, Mongera S, van de Wiel MA, Belt EJT, den Uil SH, Bril H, Stockmann HBAC, Ylstra B, Carvalho B, Meijer GA, Fijneman RJA. Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget 2018; 7:73876-73887. [PMID: 27729614 PMCID: PMC5342020 DOI: 10.18632/oncotarget.12510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Tumor profiling of DNA alterations, i.e. gene point mutations, somatic copy number aberrations (CNAs) and structural variants (SVs), improves insight into the molecular pathology of cancer and clinical outcome. Here, associations between genomic aberrations and disease recurrence in stage II and III colon cancers were investigated. A series of 114 stage II and III microsatellite stable colon cancer samples were analyzed by high-resolution array-comparative genomic hybridization (array-CGH) to detect CNAs and CNA-associated chromosomal breakpoints (SVs). For 60 of these samples mutation status of APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS was determined using targeted massive parallel sequencing. Loss of chromosome 18q12.1-18q12.2 occurred more frequently in tumors that relapsed than in relapse-free tumors (p < 0.001; FDR = 0.13). In total, 267 genes were recurrently affected by SVs (FDR < 0.1). CNAs and SVs were not associated with disease-free survival (DFS). Mutations in APC and TP53 were associated with increased CNAs. APC mutations were associated with poor prognosis in (5-fluorouracil treated) stage III colon cancers (p = 0.005; HR = 4.1), an effect that was further enhanced by mutations in MAPK pathway (KRAS, NRAS, BRAF) genes. We conclude that among multiple genomic alterations in CRC, strongest associations with clinical outcome were observed for common mutations in APC.
Collapse
Affiliation(s)
- Evert van den Broek
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marianne Tijssen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sandra Mongera
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Mathematics, VU University, Amsterdam, The Netherlands
| | - Eric J Th Belt
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University, Amsterdam, The Netherlands
| | - Sjoerd H den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University, Amsterdam, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Beatriz Carvalho
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Huang J, Guo P, Moses MA. A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells. J Vis Exp 2018. [PMID: 29553530 DOI: 10.3791/57035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The acquisition of the angiogenic phenotype is an essential component of the escape from tumor dormancy. Although several classic in vitro assays (e.g., proliferation, migration, and others) and in vivo models have been developed to investigate and characterize angiogenic and non-angiogenic cell phenotypes, these methods are time and labor intensive, and often require expensive reagents and instruments, as well as significant expertise. In a recent study, we used a novel quantitative phase imaging (QPI) technique to conduct time-lapse and labeling-free characterizations of angiogenic and non-angiogenic human osteosarcoma KHOS cells. A panel of cellular parameters, including cell morphology, proliferation, and motility, were quantitatively measured and analyzed using QPI. This novel and quantitative approach provides the opportunity to continuously and non-invasively study relevant cellular processes, behaviors, and characteristics of cancer cells and other cell types in a simple and integrated manner. This report describes our experimental protocol, including cell preparation, QPI acquisition, and data analysis.
Collapse
Affiliation(s)
- Jing Huang
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Peng Guo
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital;
| |
Collapse
|
21
|
Kheirouri S, Naghizadeh S, Alizadeh M. Zinc supplementation does not influence serum levels of VEGF, BDNF, and NGF in diabetic retinopathy patients: a randomized controlled clinical trial. Nutr Neurosci 2018; 22:718-724. [PMID: 29421993 DOI: 10.1080/1028415x.2018.1436236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: This study was aimed to evaluate the effects of zinc (Zn) supplementation on serum levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in patients with diabetic retinopathy (DR). Methods: In this randomized clinical trial, 50 patients with DR were allocated into the Zn (n = 25) and placebo (n = 25) groups to receive 30 mg Zn gluconate or maltose dextrin per day, respectively, for three months. Metabolic parameters and blood pressure were measured. Serum levels of Zn were assessed by atomic absorption spectrophotometry and serum levels of VEGF, BDNF and NGF by ELISA. Results: Forty-five patients completed the intervention. Levels of VEGF, BDNF and NGF were not affected by the Zn supplementation. Levels of VEGF correlated negatively with levels of Zn and positively with BDNF and NGF. There was also a positive correlation between BDNF and NGF. Serum levels of VEGF, BDNF and NGF were negatively correlated with serum levels of the diabetic parameters measured. Conclusions: Strong positive relationship between the growth factors and their inverse association with metabolic factors is possibly suggesting the contribution of these factors in the pathogenesis of DR through acting in a same biological pathway.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Siamak Naghizadeh
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
22
|
Liao SY, Chiang CW, Hsu CH, Chen YT, Jen J, Juan HF, Lai WW, Wang YC. CK1δ/GSK3β/FBXW7α axis promotes degradation of the ZNF322A oncoprotein to suppress lung cancer progression. Oncogene 2017; 36:5722-5733. [PMID: 28581525 DOI: 10.1038/onc.2017.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Overexpression of Cys2His2 zinc-finger 322A (ZNF322A) oncogenic transcription factor is associated with lung tumorigenesis. However, the mechanism of ZNF322A overexpression remains poorly understood. Here, we discover that protein stability of ZNF322A is regulated by coordinated phosphorylation and ubiquitination through the CK1δ/GSK3β/FBXW7α axis. CK1δ and GSK3β kinases sequentially phosphorylate ZNF322A at serine-396 and then serine-391. Moreover, the doubly phosphorylated ZNF322A protein creates a destruction motif for the ubiquitin ligase FBXW7α leading to ZNF322A protein destruction. Overexpression of FBXW7α induces ZNF322A protein degradation, thereby blocks ZNF322A transcription activity and suppresses ZNF322A-induced tumor growth and metastasis in vitro and in vivo. Clinically, overexpression of ZNF322A correlates with low FBXW7α or defective CK1δ/GSK3β-mediated phosphorylation in lung cancer patients. Multivariate Cox regression analysis indicates that patients with ZNF322A high/FBXW7 low expression profile can be used as an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of ZNF322A oncoprotein destruction regulated by the CK1δ/GSK3β/FBXW7α axis. Deregulation of this signaling axis results in ZNF322A overexpression and promotes cancer progression.
Collapse
Affiliation(s)
- S-Y Liao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-W Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-H Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Y-T Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H-F Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - W-W Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-C Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Guo P, Huang J, Moses MA. Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry A 2017; 91:424-432. [PMID: 28314083 DOI: 10.1002/cyto.a.23083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
Abstract
The switch of tumor cells from a dormant, non-angiogenic phenotype to an active, angiogenic phenotype is a critical step in early cancer progression. To date, relatively little is known about the cellular behaviors of angiogenic and non-angiogenic tumor cell phenotypes. In this study, holographic imaging cytometry, a quantitative phase imaging (QPI) technique was used to continuously and non-invasively analyze, quantify, and compare a panel of fundamental cellular behaviors of angiogenic and non-angiogenic human osteosarcoma cells (KHOS) in a simple and economical way. Results revealed that angiogenic KHOS cells (KHOS-A) have significantly higher cell motility speeds than their non-angiogenic counterpart (KHOS-N) while no difference in their cell proliferation rates and cell cycle lengths were observed. KHOS-A cells were also found to have significantly smaller cell areas and greater cell optical thicknesses when compared with the non-angiogenic KHOS-N cells. No difference in average cell volumes was observed. These studies demonstrate that the morphology and behavior of angiogenic and non-angiogenic cells can be continuously, efficiently, and non-invasively monitored using a simple, quantitative, and economical system that does not require tedious and time-consuming assays to provide useful information about tumor dormancy. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| |
Collapse
|
24
|
Liu X, Ge X, Zhang Z, Zhang X, Chang J, Wu Z, Tang W, Gan L, Sun M, Li J. MicroRNA-940 promotes tumor cell invasion and metastasis by downregulating ZNF24 in gastric cancer. Oncotarget 2016; 6:25418-28. [PMID: 26317898 PMCID: PMC4694841 DOI: 10.18632/oncotarget.4456] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2015] [Indexed: 01/10/2023] Open
Abstract
Growing evidence indicates that microRNA (miRNA) plays a vital role in progression and metastasis of gastric cancer (GC). However, the underlying mechanism of miRNA-mediated metastasis has not been fully understood. Recently, miRNA-940 (miR-940) was found to be overexpressed in GC, which correlated with malignant progression and poor survival. Mechanistically, we found that miR-940 promoted GC cell migration, invasion, and metastasis in vivo by directly and functionally repressing the expression of Zinc Finger Transcription Factor 24 (ZNF24). Importantly, upregulation of ZNF24 could re-inhibit miR-940-induced migration and invasion. Hence, we demonstrated the oncogenic role of miR-940 in GC, finding that miR-940 promoted GC progression by directly downregulating ZNF24 expression, and targeting miR-940 could serve as a novel strategy for future GC therapy.
Collapse
Affiliation(s)
- Xinyang Liu
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Xiaoxiao Ge
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Jinjia Chang
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Zheng Wu
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Wenbo Tang
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Lu Gan
- Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Jin Li
- Department of Medical Oncology, Shanghai Tianyou Hospital of Tongji University, Shanghai, 200032, P.R. China
| |
Collapse
|
25
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
26
|
Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, Yang S. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS One 2016; 11:e0148774. [PMID: 26882471 PMCID: PMC4755590 DOI: 10.1371/journal.pone.0148774] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
Although zinc finger E-box binding homeobox 1 (ZEB1) has been identified as a key factor in the regulation of breast cancer differentiation and metastasis, its potential role in modulating tumor angiogenesis has not been fully examined. Here, we present the novel finding that conditioned medium derived from ZEB1-expressing MDA-MB-231 cells significantly increased the capillary tube formation of human umbilical vein endothelial cells (HUVECs), whereas ZEB1 knockdown by RNA interference had the opposite effect. ZEB1 caused marked upregulation of the expression of vascular endothelial growth factor A (VEGFA) at both mRNA and protein levels. Pre-incubation of HUVECs with anti-VEGFA neutralized antibody attenuated ZEB1-mediated tube formation of HUVECs. In breast cancer tissues, expression of ZEB1 was positively correlated with those of VEGFA and CD31. At the molecular level, ZEB1 activated VEGFA transcription by increasing SP1 recruitment to its promoter, which was mediated via the activation of PI3K and p38 pathways. Using a nude mouse xenograft model, we demonstrated that elevated expression of ZEB1 promotes in vivo tumorigenesis and angiogenesis in breast cancer. Collectively, we found that ZEB1-expressing breast cancer cells increase VEGFA production and thus stimulate tumor growth and angiogenesis via a paracrine mechanism.
Collapse
Affiliation(s)
- Lingjia Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Qi Tong
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Shuo Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Jianlin Cui
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
- * E-mail: (SY); (WS)
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
- * E-mail: (SY); (WS)
| |
Collapse
|
27
|
Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 2015; 36:1177-90. [PMID: 26364800 PMCID: PMC4648174 DOI: 10.1038/aps.2015.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
Collapse
|
28
|
Moschetta MG, Maschio LB, Jardim-Perassi BV, Gelaleti GB, Lopes JR, Leonel C, Gonçalves NDN, Ferreira LC, Martins GR, Borin TF, Zuccari DAPDC. Prognostic value of vascular endothelial growth factor and hypoxia-inducible factor 1α in canine malignant mammary tumors. Oncol Rep 2015; 33:2345-53. [PMID: 25779537 DOI: 10.3892/or.2015.3856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022] Open
Abstract
Mammary tumors are the most common type of tumor in dogs, with approximately half of these tumors being malignant. Hypoxia, characterized by oxygen levels below normal, is a known adverse factor to cancer treatment. The hypoxia-inducible factor 1α (HIF-1α) is a central regulator of the pathophysiological response of mammalian cells to low oxygen levels. HIF-1α activates the transcription of vascular endothelial growth factor (VEGF), which in turn promotes angiogenesis through its ability to stimulate the growth, migration and invasion of endothelial cells to form new blood vessels, contributing to tumor progression. In this study, we evaluated the serum concentration and gene expression of VEGF and HIF-1α linking them with clinicopathological parameters and survival of dogs with mammary tumors in order to infer the possible prognostic value of these factors. We collected blood and tumor fragments of 24 female dogs with malignant mammary tumors (study group) and 26 non-affected female dogs (control group) to verify the gene expression of VEGF and HIF-1α by quantitative real-time PCR (qPCR) and the serum levels by ELISA (enzyme-linked immunosorbent). The results showed high serum levels of VEGF in the study group and its correlation between abundant vascularization, lymph node involvement, metastasis, death rate and low survival (p<0.05). The serum percentage of HIF-1α in female dogs with mammary neoplasia was lower than that in the control group and higher in female dogs with tumor metastasis and history of tumor recurrence (p<0.05). Regarding gene expression, there was a gene overexpression of VEGFA in female dogs with poor outcome, in contrast to the gene underexpression of HIF-1A. Taken together, these results suggested that VEGF is important in tumor progression and can be used as a potential prognostic marker in the clinic and may be useful in predicting tumor progression in dogs with mammary neoplasia.
Collapse
Affiliation(s)
- Marina Gobbe Moschetta
- PostGraduate Program in Health Sciences, Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Larissa Bazela Maschio
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Gabriela Bottaro Gelaleti
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Juliana Ramos Lopes
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Camila Leonel
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Naiane Do Nascimento Gonçalves
- PostGraduate Program in Health Sciences, Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Lívia Carvalho Ferreira
- Laboratory of Cancer Molecular Investigation (LIMC), Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Gustavo Rodrigues Martins
- PostGraduate Program in Health Sciences, Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Thaiz Ferraz Borin
- PostGraduate Program in Health Sciences, Faculty of Medicine of Sao Jose do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
29
|
Jia D, Huang L, Bischoff J, Moses MA. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. FASEB J 2014; 29:1371-82. [PMID: 25550468 DOI: 10.1096/fj.14-258947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.
Collapse
Affiliation(s)
- Di Jia
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Huang
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce Bischoff
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Marsha A Moses
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Hill CG, Matyunina LV, Walker D, Benigno BB, McDonald JF. Transcriptional override: a regulatory network model of indirect responses to modulations in microRNA expression. BMC SYSTEMS BIOLOGY 2014; 8:36. [PMID: 24666724 PMCID: PMC3987680 DOI: 10.1186/1752-0509-8-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/21/2014] [Indexed: 12/26/2022]
Abstract
Background Documented changes in levels of microRNAs (miRNA) in a variety of diseases including cancer are leading to their development as early indicators of disease, and as a potential new class of therapeutic agents. A significant hurdle to the rational application of miRNAs as therapeutics is our current inability to reliably predict the range of molecular and cellular consequences of perturbations in the levels of specific miRNAs on targeted cells. While the direct gene (mRNA) targets of individual miRNAs can be computationally predicted with reasonable degrees of accuracy, reliable predictions of the indirect molecular effects of perturbations in miRNA levels remain a major challenge in molecular systems biology. Results Changes in gene (mRNA) and miRNA expression levels between normal precursor and ovarian cancer cells isolated from patient tissue samples were measured by microarray. Expression of 31 miRNAs was significantly elevated in the cancer samples. Consistent with previous reports, the expected decrease in expression of the mRNA targets of upregulated miRNAs was observed in only 20-30% of the cancer samples. We present and provide experimental support for a network model (The Transcriptional Override Model; TOM) to account for the unexpected regulatory consequences of modulations in the expression of miRNAs on expression levels of their target mRNAs in ovarian cancer. Conclusions The direct and indirect regulatory effects of changes in miRNA expression levels in vivo are interactive and complex but amenable to systems level modeling. Although TOM has been developed and validated within the context of ovarian cancer, it may be applicable in other biological contexts as well, including of potential future use in the rational design of miRNA-based strategies for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
| | | | | | | | - John F McDonald
- Integrated Cancer Research Center, School of Biology, and Parker H, Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, USA.
| |
Collapse
|
31
|
Nakajima Y, Nakamura Y, Shigeeda W, Tomoyasu M, Deguchi H, Tanita T, Yamauchi K. The role of tumor necrosis factor-α and interferon-γ in regulating angiomotin-like protein 1 expression in lung microvascular endothelial cells. Allergol Int 2013; 62:309-22. [PMID: 23793505 DOI: 10.2332/allergolint.12-oa-0528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/19/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Angiogenesis in the alveolar septa is thought be a critical factor in pulmonary emphysema. Angiomotin-like protein 1 (AmotL1) is involved in angiogenesis via regulating endothelial cell function. However, the role of AmotL1 in the pathogenesis of pulmonary emphysema has not been elucidated. The objective of this study is to evaluate the expression of AmotL1 in lung tissues from a murine model with emphysema, as well as from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we analyzed the regulation of AmotL1 expression by TNF-α and IFN-γ in endothelial cells in vitro. METHODS Nrf2 knockout mice were exposed to cigarette smoke (CS) for 4 weeks, and the down-regulated genes affecting vascularity in the whole lung were identified by microarray analysis. This analysis revealed that the mRNA expression of AmotL1 decreased in response to CS when compared with air exposure. To confirm the protein levels that were indicated in the microarray data, we determined the expression of AmotL1 in lung tissues obtained from patients with COPD and also determined the expression of AmotL1, NFκB and IκBα in cultured normal human lung microvascular endothelial cells (HLMVECs) that were stimulated by TNF-α and IFN-γ. RESULTS We found that the number of AmotL1-positive vessels decreased in the emphysema lungs compared with the normal and bronchial asthmatic lungs. IFN-γ pretreatment diminished the TNF-α-induced AmotL1 in the cultured HLMVECs by blocking the degradation of IκBα. CONCLUSIONS These results suggested that IFN-γ exhibits anti-angiogenesis effects by regulating the expression of TNF-α-induced AmotL1 via NFκB in emphysema lungs.
Collapse
Affiliation(s)
- Yoshio Nakajima
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate 020-8505, Japan
| | | | | | | | | | | | | |
Collapse
|