1
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
2
|
Neidemire-Colley L, Khanal S, Braunreiter KM, Gao Y, Kumar R, Snyder KJ, Weber MA, Surana S, Toirov O, Karunasiri M, Duszynski ME, Chi M, Malik P, Kalyan S, Chan WK, Naeimi Kararoudi M, Choe HK, Garzon R, Ranganathan P. CRISPR/Cas9 deletion of MIR155HG in human T cells reduces incidence and severity of acute GVHD in a xenogeneic model. Blood Adv 2024; 8:947-958. [PMID: 38181781 PMCID: PMC10877121 DOI: 10.1182/bloodadvances.2023010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Shrijan Khanal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Kara M. Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rathan Kumar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Katiri J. Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Margot A. Weber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Simran Surana
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Olimjon Toirov
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Malith Karunasiri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Molly E. Duszynski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonu Kalyan
- Department of Pathology, New York University Langone Health, Long Island, NY
| | - Wing K. Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Hannah K. Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
3
|
Pedraza A, Salas MQ, Rodríguez-Lobato LG, Escribano-Serrat S, Suárez-Lledo M, Martínez-Cebrian N, Solano MT, Arcarons J, Rosiñol L, Gutiérrez-García G, Fernández-Avilés F, Moreno-Castaño AB, Molina P, Pino M, Carreras E, Díaz-Ricart M, Rovira M, Palomo M, Martínez C. Easix Score Correlates With Endothelial Dysfunction Biomarkers and Predicts Risk of Acute Graft-Versus-Host Disease After Allogeneic Transplantation. Transplant Cell Ther 2024; 30:187.e1-187.e12. [PMID: 38000709 DOI: 10.1016/j.jtct.2023.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Plasma biomarkers of endothelial dysfunction have been postulated for the diagnosis and prognosis of acute graft-versus-host disease (aGVHD). However, their use is not validated in clinical practice yet. The endothelial activation and stress index (EASIX), a simple score based on routine laboratory parameters, is considered to be an indirect marker of endothelial damage. High value of EASIX was correlated with worse non-relapse mortality (NRM) and overall survival (OS) and a high risk of sinusoidal obstructive syndrome and transplant-associated thrombotic microangiopathy (TA-TMA). This study investigates the predictive value of plasma biomarkers and the EASIX score for the prediction of aGVHD. We assessed vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor receptor 1 (TNFR1), and VWF:Ag plasma levels and the EASIX score before allogeneic hematopoietic stem cell transplantation (allo-HSCT) and on days 0, 3, 7, 14, and 21 in an experimental cohort (n = 33). EASIX was transformed to a base-2 logarithm to perform the analysis. For the most relevant biomarkers, we estimate the optimal cutoff values and the discriminatory ability to differentiate patients with high-risk of aGVHD. The conclusions obtained in the experimental cohort were validated in a large cohort of 321 patients at the same institution. Plasma biomarkers and EASIX showed similar post-transplantation dynamics consisting of a progressive increase. Multivariate analysis showed an association between high TNFR1 levels and Log-2 EASIX score on day 7 after transplantation with an increased likelihood of developing aGVHD (hazard ratio [HR] = 1, P = .002; HR = 2.31, P = .013, respectively). Patients with TNFR1 ≥1300 ng/mL (HR = 7.19, P = .006) and Log2-EASIX ≥3 (HR = 14.7, P <.001) at day 7 after transplantation were more likely to develop aGVHD with high predictive accuracy (C-index of 74% and 81%, respectively). In the validation cohort, patients with Log2-EASIX ≥3 on day 7 after transplantation presented a significantly higher incidence of grade II-IV aGVHD (HR = 1.94, P = .004) independent of GVHD prophylaxis (HR = 0.38, P = .004), conditioning regimen (HR = 0.59, P =.02) and type of donor (HR = 2.38, P = .014). Differential degree of endothelial damage can be measured using both EASIX score and plasma biomarkers in the early post-transplantation period. Patients at risk of developing aGVHD could be easily identified by a high EASIX score. Both indicators of endothelial activation represent a promising approach to predict aGVHD.
Collapse
Affiliation(s)
- Alexandra Pedraza
- Blood Bank Department, Biomedical Diagnostic Center, Banc de Sang i Teixits, Hospital Clínic Barcelona, Spain.
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain
| | - María Suárez-Lledo
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Nuria Martínez-Cebrian
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - María Teresa Solano
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Jordi Arcarons
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Laura Rosiñol
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Gonzalo Gutiérrez-García
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain
| | - Patricia Molina
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain
| | - Marc Pino
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain
| | - Enric Carreras
- Fundació i Institut de Recerca Josep Carreras contra la Leucèmia (Campus Clínic), Barcelona
| | - Maribel Díaz-Ricart
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain; Fundació i Institut de Recerca Josep Carreras contra la Leucèmia (Campus Clínic), Barcelona
| | - Marta Palomo
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Spain; Haematology External Quality Assessment Laboratory, Biomedical Diagnostic Center, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carmen Martínez
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases Hospital Clínic de Barcelona, IDIBAPS, Josep Carreras Institute, Barcelona, Spain; Fundació i Institut de Recerca Josep Carreras contra la Leucèmia (Campus Clínic), Barcelona
| |
Collapse
|
4
|
Squillaci D, Marcuzzi A, Rimondi E, Riccio G, Barbi E, Zanon D, Maximova N. Defibrotide impact on the acute GVHD disease incidence in pediatric hematopoietic stem cell transplant recipients. Life Sci Alliance 2023; 6:e202201786. [PMID: 36878639 PMCID: PMC9990457 DOI: 10.26508/lsa.202201786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Despite advances in acute graft-versus-host disease (aGVHD) prophylaxis, current pharmacological approaches fail to prevent aGVHD. The protective effect of defibrotide on GVHD incidence and GVHD-free survival has not been sufficiently studied. 91 pediatric patients included in this retrospective study were divided into two groups based on defibrotide use. We compared the incidence of aGVHD and chronic GVHD-free survival between the defibrotide and control groups. The incidence and severity of aGVHD were significantly lower in patients who received defibrotide prophylactic administration than in the control group. This improvement was observed in the liver and intestinal aGVHD. No defibrotide prophylaxis benefit was observed in the prevention of chronic GVHD. The pro-inflammatory cytokine levels were significantly higher in the control group. Our findings suggest that prophylactic administration of defibrotide in pediatric patients significantly reduces the incidence and severity of aGVHD, with a modification of cytokine pattern, both strongly coherent with the protective drug's action. This evidence adds to pediatric retrospective studies and preclinical data suggesting a possible defibrotide role in this setting.
Collapse
Affiliation(s)
- Domenica Squillaci
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Guglielmo Riccio
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Egidio Barbi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Davide Zanon
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
5
|
Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft-versus-host disease (GVHD). J Cell Physiol 2022; 237:3480-3495. [PMID: 35842836 DOI: 10.1002/jcp.30830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a functional therapy for a plethora of hematologic malignancies and immune disorders. Graft-versus-host disease (GVHD), on the other hand, is one of the major complications ahead of a successful HSCT, contributing to transplant-associated morbidity and mortality. Notably, little is known about the underlying mechanism of this event; therefore, exploring precise biomarkers and uncovering the molecular pathogenesis of GVHD is valuable for early diagnosis and treatment optimization. Thanks to the advances in sequencing techniques, the noncoding sequences of the human genome-formerly considered "junk"-are now identified as functional molecules. Noncoding RNAs (ncRNA) control cellular responses by regulating gene expression, and previous studies have shown that these tiny molecules, especially microRNAs (miRNAs), can affect allogeneic T cell responses in both animal models and clinical experiments. The present study gives an overview of the functions of various miRNAs in regulating T cell responses in GVHD. We also provide an outlook on miRNAs and long noncoding RNAs (lncRNAs) potential role in GVHD with the hope of providing a future research direction for expanding their application as the sensitive and noninvasive diagnostic or prognostic biomarkers and also the promising therapeutic targets for improving outcomes after allogeneic HSCT.
Collapse
Affiliation(s)
- Mahdi K Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lia G, Di Vito C, Bruno S, Tapparo M, Brunello L, Santoro A, Mariotti J, Bramanti S, Zaghi E, Calvi M, Comba L, Fascì M, Giaccone L, Camussi G, Boyle EM, Castagna L, Evangelista A, Mavilio D, Bruno B. Extracellular Vesicles as Biomarkers of Acute Graft-vs.-Host Disease After Haploidentical Stem Cell Transplantation and Post-Transplant Cyclophosphamide. Front Immunol 2022; 12:816231. [PMID: 35145514 PMCID: PMC8821147 DOI: 10.3389/fimmu.2021.816231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Even with high-dose post-transplant cyclophosphamide (PT-Cy) which was initially introduced for graft-versus-host disease (GvHD) prevention in the setting of HLA-haploidentical transplantation, both acute and chronic GvHDs remain a major clinical challenge. Despite improvements in the understanding of the pathogenesis of both acute and chronic GvHDs, reliable biomarkers that predict their onset have yet to be identified. We recently studied the potential correlation between extracellular vesicles (EVs) and the onset of acute (a)GvHD in transplant recipients from related and unrelated donors. In the present study, we further investigated the role of the expression profile of membrane proteins and their microRNA (miRNA) cargo (miRNA100, miRNA155, and miRNA194) in predicting the onset of aGvHD in haploidentical transplant recipients with PT-Cy. Thirty-two consecutive patients were included. We evaluated the expression profile of EVs, by flow cytometry, and their miRNA cargo, by real-time PCR, at baseline, prior, and at different time points following transplant. Using logistic regression and Cox proportional hazard models, a significant association between expression profiles of antigens such as CD146, CD31, CD140a, CD120a, CD26, CD144, and CD30 on EVs, and their miRNA cargo with the onset of aGvHD was observed. Moreover, we also investigated a potential correlation between EV expression profile and cargo with plasma biomarkers (e.g., ST2, sTNFR1, and REG3a) that had been associated with aGVHD previously. This analysis showed that the combination of CD146, sTNFR1, and miR100 or miR194 strongly correlated with the onset of aGvHD (AUROC >0.975). A large prospective multicenter study is currently in progress to validate our findings.
Collapse
Affiliation(s)
- Giuseppe Lia
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Stefania Bruno
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lucia Brunello
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Armando Santoro
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Bramanti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Lorenzo Comba
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Martina Fascì
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Eileen M. Boyle
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Luca Castagna
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Evangelista
- Clinical Epidemiology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- *Correspondence: Benedetto Bruno,
| |
Collapse
|
7
|
Yang F, Hayashi I, Sato S, Saijo-Ban Y, Yamane M, Fukui M, Shimizu E, He J, Shibata S, Mukai S, Asai K, Ogawa M, Lan Y, Zeng Q, Hirakata A, Tsubota K, Ogawa Y. Eyelid blood vessel and meibomian gland changes in a sclerodermatous chronic GVHD mouse model. Ocul Surf 2021; 26:328-341. [PMID: 34715372 DOI: 10.1016/j.jtos.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate pathological changes in blood vessels and meibomian glands (MGs) in the eyelids of sclerodermatous chronic graft-versus-host disease (cGVHD) model mice. METHODS We used an established major histocompatibility complex compatible, multiple minor histocompatibility antigen-mismatched sclerodermatous cGVHD mouse model. Blood vessels and MGs of eyelids from allogeneic bone marrow transplantation (allo-BMT) recipient mice and syngeneic bone marrow transplantation (syn-BMT) recipient mice were assessed by histopathology, immunohistochemistry and transmission electron microscopy. Peripheral blood samples from the recipients were examined by flow cytometry. RESULTS Allo-BMT samples showed dilating, tortuous and branching vessels and shrunk MGs in the eyelids; showed significantly higher expression of VEGFR2 (p = 0.029), CD133 (p = 0.016), GFP (p = 0.006), and α-SMA (p = 0.029) in the peripheral MG area; showed endothelial damage and activation, fibrotic change, and immune cell infiltration into MGs compared with syn-BMT samples. Fewer Ki-67+ cells were observed in allo- and syn-BMT samples than in wild-type samples (p = 0.030). Ultrastructural changes including endothelial injury and activation, fibroblast activation, granulocyte degranulation, immune cell infiltration into MGs, and necrosis, apoptosis of MG basal cells were found in allo-BMT samples compared with syn-BMT samples. CONCLUSION A series of our studies indicated that cGVHD can cause eyelid vessel and MGs changes, including endothelial injury and activation, neovascularization, early fibrotic changes, immune cell infiltration, MG basal cell necrosis and apoptosis, and resultant MG atrophy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China
| | - Isami Hayashi
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yumiko Saijo-Ban
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mio Yamane
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Masaki Fukui
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Jingliang He
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Kazuki Asai
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyan Zeng
- Aier Eye Hosoital of Wuhan University, Wuhan, Hubei province, China
| | - Akito Hirakata
- Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Coron E, Esnaud E, Chevallier P, Bessard A, Perez Cuadrado-Robles E, David G, Bossard C, Brégéon J, Jarry A, Neunlist M, Quénéhervé L. Early remodeling of the colonic mucosa after allogeneic hematopoietic stem cells transplantation: An open-label controlled pilot study on 19 patients. United European Gastroenterol J 2021; 9:955-963. [PMID: 34431618 PMCID: PMC8498402 DOI: 10.1002/ueg2.12128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Graft‐versus‐host disease (GVHD), particularly acute digestive GVHD (aDGVHD), is a severe complication of allogeneic hematopoietic stem cell transplantation (allo‐HSCT). It is necessary to identify predictive factors of GVHD to adapt prophylactic treatment. Objective In this context, our pilot study aimed (i) to determine whether an early remodeling of the colonic mucosa occurred after allo‐HSCT and (ii) to identify potential predictive mucosal markers of aDGVHD after allo‐HSCT. Methods Between day 21 and day 28 after the allo‐HSCT, 19 allo‐HSCT patients were included and had a rectosigmoidoscopy with probe‐based confocal laser endomicroscopy (pCLE) recording and biopsies. Sixteen patients were included in the control group. Morphological (pCLE), functional (intestinal permeability), and inflammatory parameters (cytokine multiplex immunoassay) were assessed. Results Among allo‐HSCT patients, 11 patients developed GVHD, and 6 of them developed aDGVHD. Morphological and functional changes of the colonic mucosa occurred after allo‐HSCT. Indeed, the perimeter of colonic crypts was significantly increased in allo‐HSCT patients compared to controls as well as crypt lumen fluorescein leakage (53% vs. 9%), whereas crypts sphericity, roundness, Feret diameter, and mean vessel area were significantly decreased in allo‐HSCT patients compared to the control group. In addition, interleukin‐6 (IL‐6), IL‐33, and IL‐15 levels in the supernatants of 24 h explant cultures of colonic biopsies were significantly increased in allo‐HSCT patients compared to controls. Finally, there was no difference in pCLE parameters, intestinal permeability, and inflammatory cytokines between patients who developed aDGVHD and those who did not. Conclusion This pilot study identified early colonic mucosa remodeling after allo‐HSCT conditioning therapy, that is morphological and functional mucosal alterations as well as mucosal inflammation. As to whether these changes are first steps in GVHD initiation and could be considered as predictive biomarkers of aDGVHD need to be determined in a larger cohort of patients.
Collapse
Affiliation(s)
- Emmanuel Coron
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - Elise Esnaud
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - Patrice Chevallier
- Service d'Hématologie, CHU de Nantes, Hôpital Hôtel Dieu, Nantes, France
| | - Anne Bessard
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Enrique Perez Cuadrado-Robles
- Service de Gastroentérologie, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Grégoire David
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologique, Université de Nantes, CHU Nantes, Inserm, CRCINA, Nantes, France
| | - Jérémy Brégéon
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Anne Jarry
- Université de Nantes, Inserm, CRCINA, Nantes, France
| | - Michel Neunlist
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| | - Lucille Quénéhervé
- Université de Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France
| |
Collapse
|
9
|
Shimizu S, Sato S, Taniguchi H, Shimizu E, He J, Hayashi S, Negishi K, Ogawa Y, Shimmura S. Observation of Chronic Graft-Versus-Host Disease Mouse Model Cornea with In Vivo Confocal Microscopy. Diagnostics (Basel) 2021; 11:diagnostics11081515. [PMID: 34441450 PMCID: PMC8394898 DOI: 10.3390/diagnostics11081515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication after hematopoietic stem cell transplantation (HSCT), and ocular GVHD can cause severe dry eye disease that can lead to visual impairment. Epithelial damage, vascular invasion, corneal fibrosis, and corneal perforation may occur in severe cases. It is generally accepted that inflammatory cells such as dendritic cells and T cells contribute to this pathological condition. However, it is still unknown what pathological condition occurs on the ocular surface after HSCT, and when. We therefore observed the dynamics of inflammatory cells in the cornea of chronic GVHD (cGVHD) model mice from 1 to 4 weeks after bone marrow transplantation (BMT) by in vivo confocal microscopy (IVCM) and considered the relationship with the pathophysiology of ocular GVHD (tear volume, corneal epithelial damage). In the allogeneic group, neovascularization occurred in all eyes at 1 week after BMT, although almost all vessels disappeared at 2 weeks after BMT. In addition, we revealed that infiltration of globular cells, and tortuosity and branching of nerves in the cornea occurred in both cGVHD mice and human cGVHD patients. Thus, we consider that cGVHD mouse model study by IVCM reproduces the state of ocular GVHD and may contribute to elucidating the pathological mechanism for ocular GVHD.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
- Correspondence: (S.S.); (Y.O.); Tel.: +81-3-3353-1211 (S.S. & Y.O.)
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| | - Jingliang He
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shunsuke Hayashi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
- Correspondence: (S.S.); (Y.O.); Tel.: +81-3-3353-1211 (S.S. & Y.O.)
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.S.); (H.T.); (E.S.); (J.H.); (S.H.); (K.N.); (S.S.)
| |
Collapse
|
10
|
Circulating miR-455-3p, miR-5787, and miR-548a-3p as potential noninvasive biomarkers in the diagnosis of acute graft-versus-host disease: a validation study. Ann Hematol 2021; 100:2621-2631. [PMID: 34247256 DOI: 10.1007/s00277-021-04573-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Currently, acute graft-versus-host disease (aGVHD) diagnosis is based on clinical features and pathological findings. Until now, there is no non-invasive diagnostic test for aGVHD. MicroRNAs may act as promising predictive, diagnostic, or prognostic biomarkers for aGVHD. The purpose of the current study was to validate circulating microRNAs as diagnostic biomarkers to assist clinicians in promptly diagnosing aGVHD, so that treatment can be initiated earlier. In the present study, we evaluated six microRNAs (miR-455-3p, miR-5787, miR-6729-5p, miR-6776-5p, miR-548a-3p, and miR-6732-5p) selected from miRNA array data in 40 aGVHD patients compared to 40 non-GVHD patients with RT-qPCR. Target genes of differentially expressed microRNAs (DEMs) were predicted using Targetscan, miRanda, miRDB, miRWalk, PICTAR5, miRmap, DIANA, and miRTarBase algorithms, and their functions were analyzed using EnrichNet, Metascape, and DIANA-miRPath databases. The expressions of plasma miR-455-3p and miR-5787 were significantly downregulated, whereas miR-548a-3p was significantly upregulated in aGVHD patients compared to non-GVHD patients. Moreover, DEMs showed potentially high diagnostic accuracy for aGVHD. In silico analysis of DEMs provided valuable information on the role of DEMs in GVHD, immune regulation, and inflammatory response. Our study suggested that miR-455-3p, miR-5787, and miR-548a-3p could be used as potential noninvasive biomarkers in the diagnosis of aGVHD in addition to possible therapeutic targets in aGVHD.
Collapse
|
11
|
Lia G, Giaccone L, Leone S, Bruno B. Biomarkers for Early Complications of Endothelial Origin After Allogeneic Hematopoietic Stem Cell Transplantation: Do They Have a Potential Clinical Role? Front Immunol 2021; 12:641427. [PMID: 34093530 PMCID: PMC8170404 DOI: 10.3389/fimmu.2021.641427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell (EC) dysfunction causes a number of early and life-threatening post hematopoietic stem cell transplant (HCT) complications that result in a rapid clinical decline. The main early complications are graft-vs.-host disease (GVHD), transplant associated thrombotic microangiopathy (TA-TMA), and sinusoidal obstruction syndrome (SOS). Post-HCT endothelial dysfunction occurs as a result of chemotherapy, infections, and allogeneic reactivity. Despite major advances in transplant immunology and improvements in supportive care medicine, these complications represent a major obstacle for successful HCT. In recent years, different biomarkers have been investigated for early detection of post-transplant endothelial cell dysfunction, but few have been validated. In this review we will define GVHD, TA-TMA and SOS, summarize the current data available in HCT biomarker research and identify promising biomarkers for detection and diagnosis of early HCT complications.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sarah Leone
- Department of Internal Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University Langone Health, New York, NY, United States
| |
Collapse
|
12
|
Crossland RE, Perutelli F, Bogunia-Kubik K, Mooney N, Milutin Gašperov N, Pučić-Baković M, Greinix H, Weber D, Holler E, Pulanić D, Wolff D, Dickinson AM, Inngjerdingen M, Grce M. Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease. Front Immunol 2020; 11:602547. [PMID: 33424849 PMCID: PMC7786047 DOI: 10.3389/fimmu.2020.602547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Prognostic, diagnostic or predictive biomarkers are urgently needed for assessment of chronic graft-versus-host disease (cGvHD), a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. The main goal of this review generated within the COST Action EUROGRAFT "Integrated European Network on Chronic Graft Versus Host Disease" was to identify potential novel biomarkers for cGvHD besides the widely accepted molecular and cellular biomarkers. Thus, the focus was on cellular biomarkers, alloantibodies, glycomics, endothelial derived particles, extracellular vesicles, microbiome, epigenetic and neurologic changes in cGvHD patients. Both host-reactive antibodies in general, and particularly alloantibodies have been associated with cGvHD and require further consideration. Glycans attached to IgG modulate its activity and represent a promising predictive and/or stratification biomarker for cGVHD. Furthermore, epigenetic changes such as microRNAs and DNA methylation represent potential biomarkers for monitoring cGvHD patients and novel targets for developing new treatment approaches. Finally, the microbiome likely affects the pathophysiology of cGvHD; bacterial strains as well as microbial metabolites could display potential biomarkers for dysbiosis and risk for the development of cGvHD. In summary, although there are no validated biomarkers currently available for clinical use to better inform on the diagnosis, prognosis or prediction of outcome for cGvHD, many novel sources of potential markers have shown promise and warrant further investigation using well characterized, multi-center patient cohorts.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Perutelli
- Department of Molecular Biotechnology and Health Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Katarzyna Bogunia-Kubik
- Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Nuala Mooney
- INSERM U976, Human Immunology, Pathophysiology and Immunotherapies, Hôpital Saint Louis, Paris, France
| | | | | | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Weber
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Dražen Pulanić
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - Daniel Wolff
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
13
|
Chen S, Zeiser R. Novel Biomarkers for Outcome After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:1854. [PMID: 33013836 PMCID: PMC7461883 DOI: 10.3389/fimmu.2020.01854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established curative treatment for various malignant hematological diseases. However, its clinical success is substantially limited by major complications including graft-vs.-host disease (GVHD) and relapse of the underlying disease. Although these complications are known to lead to significant morbidity and mortality, standardized pathways for risk stratification of patients undergoing allo-HSCT are lacking. Recent advances in the development of diagnostic and prognostic tools have allowed the identification of biomarkers in order to predict outcome after allo-HSCT. This review will provide a summary of clinically relevant biomarkers that have been studied to predict the development of acute GVHD, the responsiveness of affected patients to immunosuppressive treatment and the risk of non-relapse mortality. Furthermore, biomarkers associated with increased risk of relapse and subsequent mortality will be discussed.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Immunology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States.,Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Zeiser R. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol 2019; 187:563-572. [PMID: 31588560 DOI: 10.1111/bjh.16190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Acute graft-versus-host disease (GVHD) remains a major complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). The emergence of different immuno-prophylaxis strategies, such as post-transplant cyclophosphamide or anti-thymocyteglobulin has reduced the incidence of acute GVHD in recent years. The biology of the acute GVHD we observe in the clinic may change due to the use of novel immuno-stimulatory agents, including immune checkpoint inhibitors or anti-neoplastic immune-modifiers, like lenalidomide, given before or after allo-HSCT. Here we discuss the recent advances in our understanding of acute GVHD with a focus on early events of the disease, including tissue damaging factors, innate immune cells, costimulatory pathways, immune cell signalling, immuno-regulatory cell types, biomarkers of GVHD and regenerative approaches. New insight in the pathogenesis of acute GVHD has revealed the role of pro-inflammatory intracellular signalling, defects in intestinal tissue regeneration and anti-bacterial defence, as well as a reduced diversity of the microbiome, which will be the basis for the development of novel therapies.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| |
Collapse
|
15
|
Liu Y, Huang A, Chen Q, Chen X, Fei Y, Zhao X, Zhang W, Hong Z, Zhu Z, Yang J, Chai Y, Wang J, Hu X. A distinct glycerophospholipid metabolism signature of acute graft versus host disease with predictive value. JCI Insight 2019; 5:129494. [PMID: 31343987 DOI: 10.1172/jci.insight.129494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a major factor that limits the successful outcomes of allogeneic hematopoietic cell transplantation (alloHSCT). Currently there are few validated biomarkers that can help predict the risk of aGvHD in clinical settings. METHODS We performed an integrated metabolomics and transcriptomics study and identified biomarkers that distinguish alloHSCT recipients with aGvHD from alloHSCT recipients without aGvHD in two separate cohorts. RESULTS Pathway analysis of 38 significantly altered metabolites and 1148 differentially expressed genes uncovered a distinctly altered glycerophospholipid (GPL) metabolism network. Subsequently, we developed an aGvHD risk score (GRS) based on 5 metabolites markers from GPL metabolism to predict the risk of aGvHD. GRS showed a positive predictive value of 92.2% and 89.6% in the training and validation cohorts, respectively. In addition, high GRS was correlated with poor overall survival. Gene expressions of GPL-related lipases were significantly altered in aGvHD samples, leading to dysregulated GPLs. CONCLUSIONS Using integrative "Omic" analysis, we unraveled a comprehensive view of the molecular perturbations underlying the pathogenesis of aGvHD. Our work represents an initial investigation of a unique metabolic and transcriptomic network that may help identify aGvHD at an early stage and facilitate preemptive therapy. FUNDING National Natural Science Foundation of China (NSFC; 81530047, 81870143, 81470321, 81770160, 81270567, 81270638, 81573396, 81703674). Shanghai Sailing Program from Science and Technology Commission Shanghai Municipality (17YF1424700). Scholarship from Shanghai Municipal Health and Family Planning Commission (2017BR012). Special Clinical Research in Health Industry in Shanghai (20184Y0054).
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Qi Chen
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy
| | - Yang Fei
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Xiaoming Zhao
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, School of Pharmacy
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| | - Xiaoxia Hu
- Department of Hematology, Institute of Hematology, Changhai Hospital, and
| |
Collapse
|
16
|
Palomo M, Diaz-Ricart M, Carreras E. Endothelial Dysfunction in Hematopoietic Cell Transplantation. Clin Hematol Int 2019; 1:45-51. [PMID: 34595410 PMCID: PMC8432381 DOI: 10.2991/chi.d.190317.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
The goal of this review is to look at the role of endothelial damage and dysfunction in the initiation and development of early complications that appear after hematopoietic cell transplantation (HCT). These early complications share overlapping clinical manifestations and the suspicion of underlying endothelial damage. Several studies using different approaches, such as animal and in vitro models, the analysis of soluble biomarkers and clinical findings have provided evidence of this endothelial dysfunction. Historically, the first complication in which the role of endothelial damage was elucidated was the veno-oclusive disease/sinusoidal obstructive syndrome. In the last two decades, increasing evidence of the implication of the endothelium in the pathophysiology of other syndromes such as capillary leak syndrome, transplant-associated microangiopathy, or even graft versus host disease has accumulated. This knowledge opens up potential pharmacologic interventions to prevent/and/or treat endothelial damage and, therefore, to improve the outcome of patients receiving HCT.
Collapse
Affiliation(s)
- Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Maribel Diaz-Ricart
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team
| |
Collapse
|
17
|
Zitzer NC, Garzon R, Ranganathan P. Toll-Like Receptor Stimulation by MicroRNAs in Acute Graft-vs.-Host Disease. Front Immunol 2018; 9:2561. [PMID: 30455702 PMCID: PMC6230675 DOI: 10.3389/fimmu.2018.02561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
Acute graft-vs.-host disease (aGVHD) is a frequent complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT), accounting for substantial morbidity and mortality associated with this treatment modality. The pathogenesis of aGVHD involves a complex cascade of humoral and cellular interactions in which donor T cells target HLA mismatched host tissues, causing tissue injury through secretion of pro-inflammatory cytokines and induction of direct cytotoxicity. Toll-like receptors (TLRs) are key components of the innate immune system that recognize endogenous danger-associated molecular patterns (DAMPs) and exogenous pathogen-associated molecular patterns (PAMPs). Patients receiving conditioning chemotherapy and/or whole-body irradiation prior to all-HSCT are prone to gastrointestinal damage and translocation of microbiota across compromised intestinal epithelium, resulting in release of PAMPs and DAMPs. These “danger signals” play critical roles in disease pathogenesis by both initiating and propagating aGVHD through dendritic cell maturation and alloreactive T cell responses. There are 10–15 TLRs identified in mammalian species, a subset of which recognize single-stranded RNA (ssRNA) and serve as a key component of viral immunity. Recently, ssRNAs other than those of viral origin have been investigated as potential ligands of TLRs. MicroRNAs (miRs) are short (19–24 nt) non-coding RNAs that play critical roles in a variety of diseases. While traditionally miRs post-translationally modulate gene expression, non-canonical functions such as regulating TLR stimulation by acting as TLR ligands have been described. Here, we review the role of TLRs in aGVHD pathogenesis, the function of miRs in TLR stimulation, and the recent literature describing miRs as TLR ligands in aGVHD.
Collapse
Affiliation(s)
- Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Reshef R, Ganetsky A, Acosta EP, Blauser R, Crisalli L, McGraw J, Frey NV, Hexner EO, Hoxie JA, Loren AW, Luger SM, Mangan J, Stadtmauer EA, Mick R, Vonderheide RH, Porter DL. Extended CCR5 Blockade for Graft-versus-Host Disease Prophylaxis Improves Outcomes of Reduced-Intensity Unrelated Donor Hematopoietic Cell Transplantation: A Phase II Clinical Trial. Biol Blood Marrow Transplant 2018; 25:515-521. [PMID: 30315941 DOI: 10.1016/j.bbmt.2018.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Abstract
Graft-versus-host disease (GVHD) remains the most common treatment-related complication after allogeneic hematopoietic cell transplantation (allo-HCT). Lymphocyte migration plays a critical role in the pathogenesis of GVHD. A previous phase I/II trial demonstrated that CCR5 blockade with maraviroc in the first 30days after allo-HCT resulted in a low incidence of early acute GVHD, primarily in visceral organs, but with no impact on late acute or chronic GVHD. We conducted a phase II trial to examine the efficacy of an extended course of maraviroc, administered through post-transplantation day +90 in addition to standard prophylaxis in 37 recipients of reduced-intensity-conditioned unrelated donor allo-HCT performed to treat hematologic malignancies. Extended maraviroc treatment was safe and feasible. The primary study endpoint, day +180 rate of grade II-IV acute GVHD, was 22 ± 7%, liver GVHD was not observed, and gut GVHD was uncommon. The day +180 rate of grade III-IV acute GVHD was 5 ± 4%. The 1-year rate of moderate to severe chronic GVHD was 8 ± 5% and that of disease relapse was 30 ± 8%. Overall survival at 1 year was 70 ± 8%. Compared with the previously studied short course of maraviroc, the extended course resulted in a significantly higher GVHD-free, relapse-free survival (adjusted hazard ratio [HR], .45; 95% confidence interval [CI], .25 to .82; P = .009) and overall survival (adjusted HR, .48; 95% CI, .24 to .96; P = .037). A combined analysis of both trials showed that high maraviroc trough concentrations on the day of hematopoietic cell infusion were associated with lower rates of acute GVHD. An extended course of maraviroc after reduced-intensity-conditioned unrelated donor allo-HCT is safe and effective in preventing acute and chronic GVHD and is associated with favorable survival.
Collapse
Affiliation(s)
- Ran Reshef
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology and Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Alex Ganetsky
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Robin Blauser
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lisa Crisalli
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica McGraw
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth O Hexner
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James A Hoxie
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison W Loren
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selina M Luger
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Mangan
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward A Stadtmauer
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rosemarie Mick
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Porter
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Atarod S, Norden J, Bibby LA, Janin A, Ratajczak P, Lendrem C, Pearce KF, Wang XN, O'Reilly S, Van Laar JM, Collin M, Dickinson AM, Crossland RE. Differential MicroRNA Expression Levels in Cutaneous Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:1485. [PMID: 30042760 PMCID: PMC6048189 DOI: 10.3389/fimmu.2018.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGvHD) is a major complication affecting 40-70% of all transplant patients, whereby the earliest and most frequent presentation is in the skin. MicroRNAs play a role in varied biological process and have been reported as potential biomarkers for aGvHD. More recently, microRNAs have received added attention as circulatory biomarkers that can be detected in biofluids. In this study, we performed global microRNA expression profiling using a discovery cohort of diagnostic cutaneous aGvHD biopsies (n = 5, stages 1-3) and healthy volunteers (n = 4), in order to identify a signature list of microRNAs that could be used as diagnostic biomarkers for cutaneous aGvHD. Candidate microRNAs (n = 8) were then further investigated in a validation cohort of post-HSCT skin biopsies (n = 17), pre-HSCT skin biopsies (n = 6) and normal controls (n = 6) for their association with aGvHD. Expression of let-7c (p = 0.014), miR-503-5p (p = 0.003), miR-365a-3p (p = 0.02), miR-34a-5p (p < 0.001) and miR-34a-3p (p = 0.006) were significantly differentially expressed between groups and significantly associated with survival outcome in post-HSCT patients (miR-503-5p ROC AUC = 0.83 p = 0.021, Log Rank p = 0.003; miR-34a-3p ROC AUC = 0.93, p = 0.003, Log Rank p = 0.004). There was no association with relapse. A statistical interaction between miR-34a-3p and miR-503-5p (p = 0.016) was diagnostic for aGvHD. Expression levels of the miR-34a-5p protein target p53 were assessed in the epidermis of the skin, and an inverse correlation was identified (r2 = 0.44, p = 0.039). Expression of the validated candidate microRNAs was also assessed at day 28 post-HSCT in the sera of transplant recipients, in order to investigate their potential as circulatory microRNA biomarkers. Expression of miR-503-5p (p = 0.001), miR-34a-5p (p = 0.005), and miR-34a-3p (p = 0.004) was significantly elevated in the sera of patients who developed aGvHD versus no-aGvHD (n = 30) and miR-503-5p was associated with overall survival (OS) (ROC AUC = 0.80, p = 0.04, Log Rank p = 0.041). In conclusion, this investigation reports that microRNA expression levels in clinical skin biopsies, obtained at the time of cutaneous aGvHD onset, show potential as diagnostic biomarkers for aGvHD and as predictive biomarkers for OS. In addition, the same microRNAs can be detected in the circulation and show predictive association with post-HSCT outcomes.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newborn Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, United States
| | - Jean Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis A Bibby
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Janin
- Université Paris Diderot, INSERM, UMR_S1165, Paris, France
| | | | - Clare Lendrem
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kim F Pearce
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jacob M Van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Matthew Collin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel E Crossland
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Koenecke C, Krueger A. MicroRNA in T-Cell Development and T-Cell Mediated Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:992. [PMID: 29867969 PMCID: PMC5949326 DOI: 10.3389/fimmu.2018.00992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) is still a major cause of treatment-related mortality after allogeneic stem cell transplantation. Allo-antigen recognition of donor T cells after transplantation account for the onset and persistence of this disease. MicroRNAs (miRNAs) are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation. Thus, miRNAs also contribute to pathological T-cell function during GvHD. Given their capacity of fine-tuning T-cell function, miRNAs have emerged as promising therapeutic targets to curtail acute GvHD, but simultaneously maintain T-cell-mediated graft-versus-tumor effects. Here, we review the role of key miRNAs contributing to the pathophysiology of GvHD. We focus on those miRNAs acting in T cells and for which a role in GvHD has been established in preclinical models. Finally, we provide an outlook for clinical application of this new therapeutic target for GvHD prevention and treatment.
Collapse
Affiliation(s)
- Christian Koenecke
- Clinic for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Zitzer NC, Snyder K, Meng X, Taylor PA, Efebera YA, Devine SM, Blazar BR, Garzon R, Ranganathan P. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function. THE JOURNAL OF IMMUNOLOGY 2018; 200:4170-4179. [PMID: 29720426 DOI: 10.4049/jimmunol.1701465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/10/2018] [Indexed: 02/01/2023]
Abstract
MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155-/-) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8+ T cells and conventional CD4+ CD25- T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8+ donor T cells and promoting exhaustion in donor CD4+ T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155-/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration.
Collapse
Affiliation(s)
- Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Katiri Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Xiamoei Meng
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Patricia A Taylor
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and.,Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bruce R Blazar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and.,Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
22
|
Biomarkers for posttransplantation outcomes. Blood 2018; 131:2193-2204. [PMID: 29622549 DOI: 10.1182/blood-2018-02-791509] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
During the last decade, the development of biomarkers for the complications seen after allogeneic hematopoietic stem cell transplantation has expanded tremendously, with the most progress having been made for acute graft-versus-host disease (aGVHD), a common and often fatal complication. Although many factors are known to determine transplant outcome (including the age of the recipient, comorbidity, conditioning intensity, donor source, donor-recipient HLA compatibility, conditioning regimen, posttransplant GVHD prophylaxis), they are incomplete guides for predicting outcomes. Thanks to the advances in genomics, transcriptomics, proteomics, and cytomics technologies, blood biomarkers have been identified and validated for us in promising diagnostic tests, prognostic tests stratifying for future occurrence of aGVHD, and predictive tests for responsiveness to GVHD therapy and nonrelapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. However, such blood tests are not yet available for routine clinical care. This article provides an overview of the candidate biomarkers for clinical evaluation and outlines a path from biomarker discovery to first clinical correlation, to validation in independent cohorts, to a biomarker-based clinical trial, and finally to general clinical application. This article focuses on biomarkers discovered with a large-scale proteomics platform and validated with the same reproducible assay in at least 2 independent cohorts with sufficient sample size according to the 2014 National Institutes of Health consensus on biomarker criteria, as well as on biomarkers as tests for risk stratification of outcomes, but not on their pathophysiologic contributions, which have been reviewed recently.
Collapse
|
23
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
24
|
Zhao XS, Wang YN, Lv M, Kong Y, Luo HX, Ye XY, Wu Q, Zhao TF, Hu YH, Zhang HY, Huo MR, Wan J, Huang XJ. miR-153-3p, a new bio-target, is involved in the pathogenesis of acute graft-versus-host disease via inhibition of indoleamine- 2,3-dioxygenase. Oncotarget 2018; 7:48321-48334. [PMID: 27340781 PMCID: PMC5217020 DOI: 10.18632/oncotarget.10220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Therefore, seeking reliable biomarkers and delineating the potential biological mechanism are important for optimizing treatment strategies and improving their curative effect. In this study, using a microRNA polymerase chain reaction (PCR)-based chip assay, microRNA-153-3p (miR-153-3p) was screened and selected as a potential biomarker of aGVHD. The elevated plasma miR-153-3p levels at +7 d after transplant could be used to predict the upcoming aGVHD. The area under the receiver operating characteristic curve for aGVHD+/aGVHD- patients receiving haploidentical transplant was 0.808 (95% confidence interval, 0.686-0.930) in a training set and 0.809 (95% confidence interval, 0.694-0.923) in a validation set. Interestingly, bioinformatics analysis indicated that indoleamine-2,3-dioxygenase (IDO) is a potential target of miR-153-3p. In vitro study confirmed that IDO could be directly inhibited by miR-153-3p. In a GVHD model, recipient mice injected with a miR-153-3p antagomir exhibited higher IDO expression levels at the early stage after transplantation, as well as delayed aGVHD and longer survival, indicating that the miR-153-3p level at +7 d post-transplant is a good predictor of aGVHD. miR-153-3p participates in aGVHD development by inhibiting IDO expression and might be a novel bio-target for aGVHD intervention.
Collapse
Affiliation(s)
- Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yi-Nuo Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hong-Xue Luo
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiao-Yang Ye
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qi Wu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tong-Feng Zhao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yue-Huan Hu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hong-Yu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Rui Huo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
25
|
MicroRNA-17-92 is required for T-cell and B-cell pathogenicity in chronic graft-versus-host disease in mice. Blood 2018. [PMID: 29530952 DOI: 10.1182/blood-2017-06-789321] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is characterized as autoimmune-like fibrosis and antibody production mediated by pathogenic T cells and B cells. MicroRNA-17-92 (miR-17-92) influences the survival, differentiation, and function of lymphocytes in cancer, infections, and autoimmunity. To determine whether miR-17-92 regulates T- and B-cell responses in cGVHD, we generated mice conditionally deficient for miR-17-92 in T cells, B cells, or both. Using murine models of allogeneic bone marrow transplantation, we demonstrate that expression of miR-17-92 in donor T and B cells is essential for the induction of both scleroderma and bronchiolitis obliterans in cGVHD. Mechanistically, miR-17-92 expressed in T cells not only enhances the differentiation of pathogenic T helper 1 (Th1) and Th17 cells, but also promotes the generation of follicular Th cells, germinal center (GC) B cells, and plasma cells. In B cells, miR-17-92 expression is required for autoantibody production and immunoglobulin G deposition in the skin. Furthermore, we evaluated a translational approach using antagomirs specific for either miR-17 or miR-19, key members in miR-17-92 cluster. In a lupus-like cGVHD model, systemic administration of anti-miR-17, but not anti-miR-19, alleviates clinical manifestations and proteinuria incidence in recipients through inhibiting donor lymphocyte expansion, B-cell activation, and GC responses. Blockade of miR-17 also ameliorates skin damage by reducing Th17 differentiation in a scleroderma-cGVHD model. Taken together, our work reveals that miR-17-92 is required for T-cell and B-cell differentiation and function, and thus for the development of cGVHD. Furthermore, pharmacological inhibition of miR-17 represents a potential therapeutic strategy for the prevention of cGVHD.
Collapse
|
26
|
Zeiser R. Immune modulatory effects of statins. Immunology 2018; 154:69-75. [PMID: 29392731 DOI: 10.1111/imm.12902] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Despite major advances in recent years, immunosuppressive regimens for multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and graft-versus-host disease still have major adverse effects and immunomodulation rather than immune paralysis would be desirable. Statins inhibit the rate-limiting enzyme of the l-mevalonate pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. It was shown that blocking the l-mevalonate pathway reduces inflammation through effects on downstream metabolites of the pathway including farnesylpyrophosphates and geranylgeranylpyrophosphates, which are essential for the attachment of GTPases like RhoA, Rac and Ras to the cell membrane. Therefore, l-mevalonate pathway downstream products play critical roles in the different steps of an immune response including immune cell activation, migration, cytokine production, immune metabolism and survival. This review discusses the relevance of the different metabolites for the immunomodulatory effect of statins and connects preclinical results with data from clinical studies that tested statins for the treatment of different inflammatory diseases.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Centre, Freiburg, Germany
| |
Collapse
|
27
|
Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood 2018; 131:1858-1869. [PMID: 29463561 DOI: 10.1182/blood-2017-10-812891] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Conditioning-induced damage of the intestinal tract plays a critical role during the onset of acute graft-versus-host disease (GVHD). Therapeutic interference with these early events of GVHD is difficult, and currently used immunosuppressive drugs mainly target donor T cells. However, not donor T cells but neutrophils reach the sites of tissue injury first, and therefore could be a potential target for GVHD prevention. A detailed analysis of neutrophil fate during acute GVHD and the effect on T cells is difficult because of the short lifespan of this cell type. By using a novel photoconverter reporter system, we show that neutrophils that had been photoconverted in the ileum postconditioning later migrated to mesenteric lymph nodes (mLN). This neutrophil migration was dependent on the intestinal microflora. In the mLN, neutrophils colocalized with T cells and presented antigen on major histocompatibility complex (MHC)-II, thereby affecting T cell expansion. Pharmacological JAK1/JAK2 inhibition reduced neutrophil influx into the mLN and MHC-II expression, thereby interfering with an early event in acute GVHD pathogenesis. In agreement with this finding, neutrophil depletion reduced acute GVHD. We conclude that neutrophils are attracted to the ileum, where the intestinal barrier is disrupted, and then migrate to the mLN, where they participate in alloantigen presentation. JAK1/JAK2-inhibition can interfere with this process, which provides a potential therapeutic strategy to prevent early events of tissue damage-related innate immune cell activation and, ultimately, GVHD.
Collapse
|
28
|
Chen S, Zeiser R. The Role of MicroRNAs in Myeloid Cells during Graft-versus-Host Disease. Front Immunol 2018; 9:4. [PMID: 29410665 PMCID: PMC5787138 DOI: 10.3389/fimmu.2018.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
The successful treatment of various hematologic diseases with allogeneic hematopoietic cell transplantation is often limited by the occurrence of graft-versus-host disease (GvHD). Several microRNAs (miRs) have recently been shown to impact the biology of GvHD by regulating pro- as well as anti-inflammatory target genes. There is increasing evidence that a single miR can have different effects by preferentially targeting certain genes depending on the cell type that the miR is analyzed in. This review will focus on the role of miRs in myeloid cells during the development of acute and chronic GvHD and autoimmune diseases. Because miRs act on the expression of multiple target genes and may thereby influence the immune system at different functional levels, they are potentially attractive targets for the modification of allogeneic immune responses using miR mimics and inhibitors.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
29
|
Janszky N, Süsal C. Circulating and urinary microRNAs as possible biomarkers in kidney transplantation. Transplant Rev (Orlando) 2017; 32:110-118. [PMID: 29366537 DOI: 10.1016/j.trre.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/03/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Noémi Janszky
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany.
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany
| |
Collapse
|
30
|
Lia G, Brunello L, Bruno S, Carpanetto A, Omedè P, Festuccia M, Tosti L, Maffini E, Giaccone L, Arpinati M, Ciccone G, Boccadoro M, Evangelista A, Camussi G, Bruno B. Extracellular vesicles as potential biomarkers of acute graft-vs-host disease. Leukemia 2017; 32:765-773. [PMID: 28852198 DOI: 10.1038/leu.2017.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Acute graft-vs-host disease (GVHD) is a serious complication after allografting. We carried out an exploratory study to investigate a potential correlation of surface antigens on extracellular vesicles (EVs) and acute GVHD. EVs were extracted from serum samples from 41 multiple myeloma patients who underwent allografting. EVs were characterized by flow cytometry using a panel of 13 antibodies against specific membrane proteins that were reported to be predictive of acute GVHD. We observed a correlation between three potential biomarkers expressed on EV surface and acute GVHD onset by both logistic regression analysis and Cox proportional hazard model. In our study, CD146 (MCAM-1) was correlated with an increased risk-by almost 60%-of developing GVHD, whereas CD31 and CD140-α (PECAM-1 and PDGFR-α) with a decreased risk-by almost 40 and 60%, respectively. These biomarkers also showed a significant change in signal level from baseline to the onset of acute GVHD. Our novel study encourages future investigations into the potential correlation between EVs and acute GVHD. Larger prospective multicenter studies are currently in progress.
Collapse
Affiliation(s)
- G Lia
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Brunello
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - S Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - A Carpanetto
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - P Omedè
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy
| | - M Festuccia
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Tosti
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - E Maffini
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - L Giaccone
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - M Arpinati
- Dipartimento di Ematologia e Scienze Oncologiche 'L. e A. Seràgnoli', Università di Bologna, Bologna, Italy
| | - G Ciccone
- A.O.U. Città della Salute e della Scienza di Torino, Epidemiologia Clinica, Torino, Italy
| | - M Boccadoro
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| | - A Evangelista
- A.O.U. Città della Salute e della Scienza di Torino, Epidemiologia Clinica, Torino, Italy
| | - G Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Torino, Italy
| | - B Bruno
- A.O.U. Città della Salute e della Scienza di Torino, Dipartimento di Oncologia, SSD Trapianto Allogenico di Cellule Staminali, Torino, Italy.,Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, School of Medicine, Torino, Italy
| |
Collapse
|
31
|
Abstract
Endothelial cells (ECs) are confirmed as important regulators of vascular integrity, particularly in relation to angiogenesis, wound repair post-injury, and during embryogenesis. Futher, miRNAs have been implicated in EC function and proliferation. Moreover, knockdown of these miRNAs resulted in altered expressions of several important regulators of endothelial biology and angiogenesis including vascular endothelial growth factor receptor 2, endothelial nitric oxide synthase and tubule formation capacity. Several miRNAs have been identified to play a role in the regulation of function, proliferation and growth of vascular ECs. These miRNAs may be important therapeutic targets in the treatment of a range of ischemic diseases, as well as in the regulation of angiogenesis during cancer and tumour progression. The present review discuss some of the important miRNAs having confirmed regulatory role in EC in connection espically with cardiovascular disease.
Collapse
Affiliation(s)
- Yong Cao
- Department of Cardiology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
32
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and Other HSCT-Related Major Complications. Front Immunol 2017; 8:79. [PMID: 28373870 PMCID: PMC5357769 DOI: 10.3389/fimmu.2017.00079] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
For over 60 years, hematopoietic stem cell transplantation has been the major curative therapy for several hematological and genetic disorders, but its efficacy is limited by the secondary disease called graft versus host disease (GvHD). Huge advances have been made in successful transplantation in order to improve patient quality of life, and yet, complete success is hard to achieve. This review assimilates recent updates on pathophysiology of GvHD, prophylaxis and treatment of GvHD-related complications, and advances in the potential treatment of GvHD.
Collapse
Affiliation(s)
- Sakhila Ghimire
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Emily Mavin
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Xiao Nong Wang
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Anne Mary Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Ernst Holler
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| |
Collapse
|
34
|
Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman S, Ruppert AS, Volinia S, Hofstetter J, Efebera YA, Devine SM, Blazar BR, Fabbri M, Garzon R. Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. THE JOURNAL OF IMMUNOLOGY 2017; 198:2500-2512. [PMID: 28159900 DOI: 10.4049/jimmunol.1601778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Acute graft-versus-host disease (aGVHD) continues to be a frequent and devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT), posing as a significant barrier against the widespread use of HSCTs as a curative modality. Recent studies suggested serum/plasma microRNAs (miRs) may predict aGVHD onset. However, little is known about the functional role of circulating miRs in aGVHD. In this article, we show in two independent cohorts that miR-29a expression is significantly upregulated in the serum of allogeneic HSCT patients at aGVHD onset compared with non-aGVHD patients. Serum miR-29a is also elevated as early as 2 wk before time of diagnosis of aGVHD compared with time-matched control subjects. We demonstrate novel functional significance of serum miR-29a by showing that miR-29a binds and activates dendritic cells via TLR7 and TLR8, resulting in the activation of the NF-κB pathway and secretion of proinflammatory cytokines TNF-α and IL-6. Treatment with locked nucleic acid anti-miR-29a significantly improved survival in a mouse model of aGVHD while retaining graft-versus-leukemia effects, unveiling a novel therapeutic target in aGVHD treatment or prevention.
Collapse
Affiliation(s)
- Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Apollinaire Ngankeu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - PierPaolo Leoncini
- Department of Oncohematology, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Xueyan Yu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Lucia Casadei
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Kishore Challagundla
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Dawn K Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Sabrina Garman
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Amy S Ruppert
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefano Volinia
- Department of Anatomy, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Jessica Hofstetter
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Muller Fabbri
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
35
|
Initiation of acute graft-versus-host disease by angiogenesis. Blood 2017; 129:2021-2032. [PMID: 28096092 DOI: 10.1182/blood-2016-08-736314] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/08/2017] [Indexed: 01/06/2023] Open
Abstract
The inhibition of inflammation-associated angiogenesis ameliorates inflammatory diseases by reducing the recruitment of tissue-infiltrating leukocytes. However, it is not known if angiogenesis has an active role during the initiation of inflammation or if it is merely a secondary effect occurring in response to stimuli by tissue-infiltrating leukocytes. Here, we show that angiogenesis precedes leukocyte infiltration in experimental models of inflammatory bowel disease and acute graft-versus-host disease (GVHD). We found that angiogenesis occurred as early as day+2 after allogeneic transplantation mainly in GVHD typical target organs skin, liver, and intestines, whereas no angiogenic changes appeared due to conditioning or syngeneic transplantation. The initiation phase of angiogenesis was not associated with classical endothelial cell (EC) activation signs, such as Vegfa/VEGFR1+2 upregulation or increased adhesion molecule expression. During early GVHD at day+2, we found significant metabolic and cytoskeleton changes in target organ ECs in gene array and proteomic analyses. These modifications have significant functional consequences as indicated by profoundly higher deformation in real-time deformability cytometry. Our results demonstrate that metabolic changes trigger alterations in cell mechanics, leading to enhanced migratory and proliferative potential of ECs during the initiation of inflammation. Our study adds evidence to the hypothesis that angiogenesis is involved in the initiation of tissue inflammation during GVHD.
Collapse
|
36
|
Conditioning with Fludarabine-Busulfan versus Busulfan-Cyclophosphamide Is Associated with Lower aGVHD and Higher Survival but More Extensive and Long Standing Bone Marrow Damage. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3071214. [PMID: 27843940 PMCID: PMC5098055 DOI: 10.1155/2016/3071214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 09/18/2016] [Indexed: 11/18/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a major cause of nonrelapse mortality after allo-HSCT. A conditioning regimen plays a pivotal role in the development of aGVHD. To provide a platform for studying aGVHD and evaluating the impact of different conditioning regimens, we established a murine aGVHD model that simulates the clinical situation and can be conditioned with Busulfan-Cyclophosphamide (Bu-Cy) and Fludarabine-Busulfan (Flu-Bu). In our study, BALB/c mice were conditioned with Bu-Cy or Flu-Bu and transplanted with 2 × 107 bone marrow cells and 2 × 107 splenocytes from either allogeneic (C57BL/6) or syngeneic (BALB/c) donors. The allogeneic recipients conditioned with Bu-Cy had shorter survivals (P < 0.05), more severe clinical manifestations, and higher hepatic and intestinal pathology scores, associated with increased INF-γ expression and diminished IL-4 expression in serum, compared to allogeneic recipients conditioned with Flu-Bu. Moreover, higher donor-derived T-cell infiltration and severely impaired B-cell development were seen in the bone marrow of mice, exhibiting aGVHD and conditioned with Flu-Bu. Our study showed that the conditioning regimen with Bu-Cy resulted in more severe aGVHD while the Flu-Bu regimen was associated with more extensive and long standing bone marrow damage.
Collapse
|
37
|
MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp Cell Res 2016; 347:312-21. [DOI: 10.1016/j.yexcr.2016.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 01/27/2023]
|
38
|
Zeiser R, Socié G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation. Br J Haematol 2016; 175:191-207. [PMID: 27619472 DOI: 10.1111/bjh.14295] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication of allogeneic haematopoietic cell transplantation (allo-HCT). Here we discuss the aGVHD pathophysiology initiated by multiple signals that cause alloreactive T-cell activation. The outcome of such donor T-cell activation is influenced by T-cell receptor-signal strength, anatomical location, co-stimulatory/co-inhibitory signals and differentiation stage (naive, effector/memory) of T-cells. Additionally, cross-priming of T cells to antigens expressed by pathogens can contribute to aGVHD-mediated tissue injury. In addition to the properties of donor T-cell activation, highly specialized tissue resident cell types, such as innate lymphoid cells, antigen-presenting cells, immune regulatory cells and various intestinal cell populations are critically involved in aGVHD pathogenesis. The role of the thymus and secondary lymphoid tissue injury, non-haematopoietic cells, intestinal microflora, cytokines, chemokines, microRNAs, metabolites and kinases in aGVHD pathophysiology will be highlighted. Acute GVHD pathogenic mechanisms will be connected to novel therapeutic approaches under development for, and tested in, the clinic.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Centre, Freiburg, Germany.
| | - Gerard Socié
- Haematology Stem cell transplant Unit, Saint Louis Hospital, APHP, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Zhang C, Bai N, Huang W, Zhang P, Luo Y, Men S, Wen T, Tong H, Wang S, Tian YP. The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays. Ann Hematol 2016; 95:1833-43. [DOI: 10.1007/s00277-016-2781-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
|
40
|
Tatekawa S, Kohno A, Ozeki K, Watamoto K, Ueda N, Yamaguchi Y, Kobayashi T, Yokota I, Teramukai S, Taniwaki M, Kuroda J, Morishita Y. A Novel Diagnostic and Prognostic Biomarker Panel for Endothelial Cell Damage-Related Complications in Allogeneic Transplantation. Biol Blood Marrow Transplant 2016; 22:1573-1581. [PMID: 27246373 DOI: 10.1016/j.bbmt.2016.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022]
Abstract
Noninfectious transplantation-related complications (TRCs), such as graft-versus-host disease or TRC with endothelial cell damage (TRC-EC), remain as the major obstacle for successful allogeneic hematopoietic cell transplantation (allo-HCT). However, the diagnosis and prognosis for the emergence of these complications are difficult to define during the early post allo-HCT period. Here, we tried to generate a novel diagnostic system for TRC-EC by analyzing 188 adult patients who received allo-HCT. Our study found that the peripheral blood levels of angiopoietin 2 (ANG2), C-reactive protein (CRP), D-dimer, and thrombomodulin (TM) at the onset of TRCs were significantly associated with the development of TRC-EC. We next developed a composite biomarker panel incorporating the risk values of ANG2, CRP, D-dimer, and TM at the onset of TRCs, which classified these patients into 3 risk groups: low, intermediate, and high risk. As a result, the panel was useful not only for the diagnosis of TRC-EC with high specificity and sensitivity, but also for the prediction of the patients' long-term outcome. The 5-year overall survival (OS) rates of patients in the low-, intermediate-, and high-risk groups since the occurrence from TRCs were 76.2%, 54.9%, and 26.9%, respectively, and the high-risk score was significantly associated with both poor OS (hazard ratio [HR], 5.60; 95% confidence interval [CI], 2.81 to 11.20; P < .01) and frequent nonrelapse mortality (HR, 19.75; 95% CI, 5.59 to 69.77; P < .01). Thus, the composite panel proposed in this study provides a powerful tool for the diagnosis of TRC-EC and for the prediction of survival for patients with TRC-EC after allo-HCT.
Collapse
Affiliation(s)
- Shotaro Tatekawa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan
| | - Akio Kohno
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan
| | - Kazutaka Ozeki
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan
| | - Koichi Watamoto
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan; Department of Hematology, Komaki City Hospital, Aichi, Japan
| | - Norihiro Ueda
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yohei Yamaguchi
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan; Department of Hematology and Oncology, Japanese Red Cross Nagoya Daini Hospital, Aichi, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yoshihisa Morishita
- Division of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Aichi, Japan; Department of Internal Medicine, Seirei Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
41
|
Mining for genes related to choroidal neovascularization based on the shortest path algorithm and protein interaction information. Biochim Biophys Acta Gen Subj 2016; 1860:2740-9. [PMID: 26987808 DOI: 10.1016/j.bbagen.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is a serious eye disease that may cause visual loss, especially for older people. Many factors have been proven to induce this disease including age, gender, obesity, and so on. However, until now, we have had limited knowledge on CNV's pathogenic mechanism. Discovering the genes that underlie this disease and performing extensive studies on them can help us to understand how CNV occurs and design effective treatments. METHODS In this study, we designed a computational method to identify novel CNV-related genes in a large protein network constructed using the protein-protein interaction information in STRING. The candidate genes were first extracted from the shortest paths connecting any two known CNV-related genes and then filtered by a permutation test and using knowledge of their linkages to known CNV-related genes. RESULTS A list of putative CNV-related candidate genes was accessed by our method. These genes are deemed to have strong relationships with CNV. CONCLUSIONS Extensive analyses of several of the putative genes such as ANK1, ITGA4, CD44 and others indicate that they are related to specific biological processes involved in CNV, implying they may be novel CNV-related genes. GENERAL SIGNIFICANCE The newfound putative CNV-related genes may provide new insights into CNV and help design more effective treatments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
42
|
Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood 2016; 127:1930-9. [PMID: 26837700 DOI: 10.1182/blood-2015-09-672428] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/30/2016] [Indexed: 12/12/2022] Open
Abstract
Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo.
Collapse
|
43
|
Klämbt V, Wohlfeil SA, Schwab L, Hülsdünker J, Ayata K, Apostolova P, Schmitt-Graeff A, Dierbach H, Prinz G, Follo M, Prinz M, Idzko M, Zeiser R. A Novel Function for P2Y2 in Myeloid Recipient-Derived Cells during Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:5795-804. [PMID: 26538394 DOI: 10.4049/jimmunol.1501357] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/11/2015] [Indexed: 11/19/2022]
Abstract
Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. During the initiation phase of acute GvHD, endogenous danger signals such as ATP are released and inform the innate immune system via activation of the purinergic receptor P2X7 that a noninfectious damage has occurred. A second ATP-activated purinergic receptor involved in inflammatory diseases is P2Y2. In this study, we used P2y2(-/-) mice to test the role of this receptor in GvHD. P2y2(-/-) recipients experienced reduced GvHD-related mortality, IL-6 levels, enterocyte apoptosis, and histopathology scores. Chimeric mice with P2y2 deficiency restricted to hematopoietic tissues survived longer after GvHD induction than did wild-type mice. P2y2 deficiency of the recipient was connected to lower levels of myeloperoxidase in the intestinal tract of mice developing GvHD and a reduced myeloid cell signature. Selective deficiency of P2Y2 in inflammatory monocytes decreased GvHD severity. Mechanistically, P2y2(-/-) inflammatory monocytes displayed defective ERK activation and reactive oxygen species production. Compatible with a role of P2Y2 in human GvHD, the frequency of P2Y2(+) cells in inflamed GvHD lesions correlated with histopathological GvHD severity. Our findings indicate a novel function for P2Y2 in ATP-activated recipient myeloid cells during GvHD, which could be exploited when targeting danger signals to prevent GvHD.
Collapse
Affiliation(s)
- Verena Klämbt
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Sebastian A Wohlfeil
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Lukas Schwab
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Jan Hülsdünker
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Petya Apostolova
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | | | - Heide Dierbach
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Gabriele Prinz
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Marie Follo
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, 79106 Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
44
|
Hu B, Huang S, Liang Y. [Advances in microRNA and graft-versus-host disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:894-6. [PMID: 26477777 PMCID: PMC7364950 DOI: 10.3760/cma.j.issn.0253-2727.2015.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bin Hu
- Institute of Hematology, the Fourth Military Medical University, Tang Du Hospital, Xi'an 710038, China
| | - Siyong Huang
- Institute of Hematology, the Fourth Military Medical University, Tang Du Hospital, Xi'an 710038, China
| | - Yingmin Liang
- Institute of Hematology, the Fourth Military Medical University, Tang Du Hospital, Xi'an 710038, China
| |
Collapse
|
45
|
MicroRNA-17-92 controls T-cell responses in graft-versus-host disease and leukemia relapse in mice. Blood 2015; 126:1314-23. [PMID: 26138686 DOI: 10.1182/blood-2015-02-627356] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) play important roles in orchestrating many aspects of the immune response. The miR-17-92 cluster, which encodes 6 miRs including 17, 18a, 19a, 20a, 19b-1, and 92-1, is among the best characterized of these miRs. The miR-17-92 cluster has been shown to regulate a variety of immune responses including infection, tumor, and autoimmunity, but the role of this cluster in T-cell response to alloantigens has not been previously explored. By using major histocompatibility complex (MHC)-matched, -mismatched, and haploidentical murine models of allogeneic bone marrow transplantation (allo-BMT), we demonstrate that the expression of miR-17-92 on donor T cells is essential for the induction of graft-versus-host disease (GVHD), but dispensable for the graft-versus-leukemia (GVL) effect. The miR-17-92 plays a major role in promoting CD4 T-cell activation, proliferation, survival, and Th1 differentiation, while inhibiting Th2 and iTreg differentiation. Alternatively, miR-17-92 may promote migration of CD8 T cells to GVHD target organs, but has minimal impact on CD8 T-cell proliferation, survival, or cytolytic function, which could contribute to the preserved GVL effect mediated by T cells deficient for miR-17-92. Furthermore, we evaluated a translational approach and found that systemic administration of antagomir to block miR-17 or miR-19b in this cluster significantly inhibited alloreactive T-cell expansion and interferon-γ (IFNγ) production, and prolonged the survival in recipients afflicted with GVHD while preserving the GVL effect. Taken together, the current work provides a strong rationale and demonstrates the feasibility to target miR-17-92 for the control of GVHD while preserving GVL activity after allo-BMT.
Collapse
|
46
|
Serum MicroRNA-99a Helps Detect Acute Rejection in Renal Transplantation. Transplant Proc 2015; 47:1683-7. [DOI: 10.1016/j.transproceed.2015.04.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
|
47
|
Plasma microRNA-586 is a new biomarker for acute graft-versus-host disease. Ann Hematol 2015; 94:1505-14. [DOI: 10.1007/s00277-015-2414-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/30/2015] [Indexed: 02/06/2023]
|
48
|
Holtan SG, Verneris MR, Schultz KR, Newell LF, Meyers G, He F, DeFor TE, Vercellotti GM, Slungaard A, MacMillan ML, Cooley SA, Blazar BR, Panoskaltsis-Mortari A, Weisdorf DJ. Circulating angiogenic factors associated with response and survival in patients with acute graft-versus-host disease: results from Blood and Marrow Transplant Clinical Trials Network 0302 and 0802. Biol Blood Marrow Transplant 2015; 21:1029-36. [PMID: 25759146 PMCID: PMC4426052 DOI: 10.1016/j.bbmt.2015.02.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Abstract
Circulating angiogenic factors (AF) reflect tissue healing capacity, although some AF can also contribute to inflammation and are indicative of endothelial dysfunction. The AF milieu in acute graft-versus-host disease (aGVHD) has not been broadly characterized. We hypothesized that patients with abundant AF involved in repair/regeneration versus those mediating damage/inflammation would have improved outcomes. Circulating AF known predominantly for repair/regeneration (epidermal growth factor [EGF], fibroblast growth factor-1 and -2, heparin binding-EGF-like growth factor, and vascular endothelial growth factor-A [VEGF-A], -C, and -D) and for damage/inflammation (angiopoietin-2, endothelin-1, soluble endoglin [sEng], follistatin [FS], leptin, and placental growth factor [PlGF]) were measured in a discovery set of hematopoietic cell recipients with grade III and IV aGVHD and compared with controls, then validated in 2 aGVHD cohorts enrolled in Blood and Marrow Transplant Clinical Trials Network (BMT CTN) trials 0302 (n = 105, serum) and 0802 (n = 158, plasma) versus controls without aGVHD (n = 53, serum). Levels of EGF and VEGF-A were lower than in controls at the onset of aGVHD in both trials and higher with complete response to first-line aGVHD therapy in CTN 0802. FS and PlGF were elevated in aGVHD measured in either serum or plasma. At day 28 after initial aGVHD therapy, elevated FS was an independent negative prognostic factor for survival in both cohorts (hazard ratio, 9.3 in CTN 0302; 2.8 in CTN 0802). These data suggest that circulating AF are associated with clinical outcomes after aGVHD and, thus, may contribute to both pathogenesis and recovery.
Collapse
Affiliation(s)
- Shernan G Holtan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota.
| | - Michael R Verneris
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Kirk R Schultz
- Division of Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, University of British Columbia; Blood and Marrow Transplant Clinical Trials Network, Rockville, Maryland
| | - Laura F Newell
- Blood and Marrow Transplant Program, Oregon Health & Science University, Portland, Oregon
| | - Gabrielle Meyers
- Blood and Marrow Transplant Program, Oregon Health & Science University, Portland, Oregon
| | - Fiona He
- School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Todd E DeFor
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Arne Slungaard
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L MacMillan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Cooley
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | | | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota; Blood and Marrow Transplant Clinical Trials Network, Rockville, Maryland
| |
Collapse
|
49
|
MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood 2015; 126:103-12. [PMID: 25972159 DOI: 10.1182/blood-2014-12-617258] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/03/2015] [Indexed: 01/07/2023] Open
Abstract
The successful treatment of acute leukemias with allogeneic hematopoietic cell transplantation (allo-HCT) is limited by acute graft-versus-host disease (GVHD). Because microRNA-155 (miR-155) regulates activation of the innate immune system, we aimed to determine its function in dendritic cells (DCs) during GVHD in an experimental model. We observed that miR-155 deficiency of the recipient led to improved survival, reduced serum levels of proinflammatory cytokines, and lower GVHD histopathology scores. In addition, miR-155(-/-) bone marrow chimeric mice receiving allo-HCT and miR-155(-/-) DCs showed that miR-155 deficiency in the DC compartment was responsible for protection from GVHD. Activated miR-155(-/-) DCs displayed lower expression of various purinergic receptors and impaired migration toward adenosine triphosphate (ATP). Microarray analysis of lipopolysaccharide/ATP-stimulated miR-155(-/-) DCs revealed mitogen-activated protein kinase pathway dysregulation and reduced inflammasome-associated gene expression. Consistent with this gene expression data, we observed reduced ERK activation, caspase-1 cleavage, and IL-1β production in miR-155(-/-) DCs. The connection between miR-155 and inflammasome activation was supported by the fact that Nlrp3/miR-155 double-knockout allo-HCT recipient mice had no increased protection from GVHD compared with Nlrp3(-/-) recipients. This study indicates that during GVHD, miR-155 promotes DC migration toward sites of ATP release accompanied by inflammasome activation. Inhibiting proinflammatory miR-155 by antagomir treatment could help reduce this complication of allo-HCT.
Collapse
|
50
|
Tomuleasa C, Fuji S, Cucuianu A, Kapp M, Pileczki V, Petrushev B, Selicean S, Tanase A, Dima D, Berindan-Neagoe I, Irimie A, Einsele H. MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation. Ann Hematol 2015; 94:1081-92. [PMID: 25900787 DOI: 10.1007/s00277-015-2369-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/27/2015] [Indexed: 01/15/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is a well-established treatment for many malignant and non-malignant hematological disorders. As frequent complication in up to 50 % of all patients, graft-versus-host disease (GVHD) is still the main cause for morbidity and non-relapse mortality. Diagnosis of GVHD is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally recognized consensus has yet been established. Here, microRNAs (miRs) represent an interesting tool since miRs have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we could assume that miRs play a key role in the pathogenesis of acute GVHD, and their detection might be an interesting possibility in the early diagnosis and monitoring of acute GVHD. Recent studies additionally demonstrated the implication of miRs in the pathogenesis of acute GVHD. In this review, we aim to summarize the previous reports of miRs, focusing on the pathogenesis of acute GVHD and possible implications in diagnostic approaches.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Iuliu Hatieganu University of Medicine and Pharmacy, Bulevardul 21 Decembrie 1918 Nr. 73, 400124, Cluj Napoca, Romania,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|