1
|
Schaer DJ, Schaer CA, Humar R, Vallelian F, Henderson R, Tanaka KA, Levy JH, Buehler PW. Navigating Hemolysis and the Renal Implications of Hemoglobin Toxicity in Cardiac Surgery. Anesthesiology 2024; 141:1162-1174. [PMID: 39159287 PMCID: PMC11560668 DOI: 10.1097/aln.0000000000005109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cardiopulmonary bypass–induced hemolysis is linked to acute kidney injury in cardiac surgery. Emerging therapies targeting cell-free hemoglobin, like haptoglobin, nitric oxide, and antioxidants, show promise in reducing kidney injury, highlighting the need for further research.
Collapse
Affiliation(s)
- Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Institute of Anesthesiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Reney Henderson
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care and Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Ford VJ, Applefeld WN, Wang J, Sun J, Solomon SB, Sidenko S, Feng J, Sheffield C, Klein HG, Yu ZX, Torabi-Parizi P, Danner RL, Sachdev V, Solomon MA, Chen MY, Natanson C. Cardiac Magnetic Resonance Studies in a Large Animal Model That Simulates the Cardiac Abnormalities of Human Septic Shock. J Am Heart Assoc 2024; 13:e034026. [PMID: 39101510 DOI: 10.1161/jaha.123.034026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Septic shock is associated with increases in end-diastolic volume (EDV) and decreases in ejection fraction that reverse within 10 days. Nonsurvivors do not develop EDV increases. The mechanism is unknown. METHODS AND RESULTS Purpose-bred beagles (n=33) were randomized to receive intrabronchial Staphylococcus aureus or saline. Over 96 hours, cardiac magnetic resonance imaging and echocardiograms were performed. Tissue was obtained at 66 hours. From 0 to 96 hours after bacterial challenge, septic animals versus controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%). On histology, the major finding was nonocclusive microvascular injury with edema in myocytes, the interstitium, and endothelial cells. Edema was associated with significant worsening of biventricular ejection fractions, ventricular-arterial coupling, and circumferential strain. Early during sepsis, (0-24 hours), the EDV decreased; significantly more in nonsurvivors (ie, greater diastolic dysfunction). From 24 to 48 hours, septic animals' biventricular chamber sizes increased; in survivors significantly greater than baseline and nonsurvivors, whose EDVs were not different from baseline. Preload, afterload, or heart rate differences did not explain these differential changes. CONCLUSIONS The cardiac dysfunction of sepsis is associated with wall edema. In nonsurvivors, at 0 to 24 hours, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part, explain the EDV increases from 24 to 48 hours because of a potentially reparative process removing damaged wall tissue. Septic cardiomyopathy is most consistent with a nonocclusive microvascular injury resulting in edema causing reversible systolic and diastolic dysfunction with more severe diastolic dysfunction being associated with a decreased EDV and death.
Collapse
MESH Headings
- Animals
- Dogs
- Disease Models, Animal
- Shock, Septic/physiopathology
- Shock, Septic/complications
- Stroke Volume
- Magnetic Resonance Imaging
- Edema, Cardiac/physiopathology
- Edema, Cardiac/pathology
- Edema, Cardiac/diagnostic imaging
- Ventricular Function, Left
- Time Factors
- Humans
- Staphylococcal Infections/complications
- Staphylococcal Infections/physiopathology
- Echocardiography
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Male
Collapse
Affiliation(s)
- Verity J Ford
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
| | - Willard N Applefeld
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
- Division of Cardiology Duke University Medical Center Durham NC USA
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
- Emory University Atlanta GA USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
| | - Steven B Solomon
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
| | - Stanislav Sidenko
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
| | | | - Harvey G Klein
- Department of Transfusion Medicine, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
| | - Zu-Xi Yu
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Vandana Sachdev
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Marcus Y Chen
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center National Institutes of Health, (NIH, CC) Bethesda MD USA
- National Heart Lung and Blood Institute National Institutes of Health Bethesda MD USA
| |
Collapse
|
3
|
Ford VJ, Applefeld WN, Wang J, Sun J, Solomon SB, Klein HG, Feng J, Lertora J, Parizi-Torabi P, Danner RL, Solomon MA, Chen MY, Natanson C. In a Canine Model of Septic Shock, Cardiomyopathy Occurs Independent of Catecholamine Surges and Cardiac Microvascular Ischemia. J Am Heart Assoc 2024; 13:e034027. [PMID: 39101496 DOI: 10.1161/jaha.123.034027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Using a septic shock model that reproduces the reversible cardiomyopathy seen over 10 days associated with human septic shock, we investigated the effects of catecholamines on microcirculatory perfusion and cardiac dysfunction. METHODS AND RESULTS Purpose-bred beagles received intrabronchial Staphylococcus aureus (n=30) or saline (n=6). The septic animals were than randomized to epinephrine (1 μg/kg per minute, n=15) or saline (n=15) infusions from 4 to 44 hours. Serial cardiac magnetic resonance imaging, catecholamine levels, and troponins were collected over 92 hours. Serial adenosine-stress perfusion cardiac magnetic resonance imaging was performed on septic animals randomized to receive saline (n=8 out of 15) or epinephrine (n=8 out of 15). High-dose sedation was given to suppress endogenous catecholamine release. Despite catecholamine levels largely remaining within the normal range throughout, by 48 hours, septic animals receiving saline versus nonseptic animals still developed significant worsening of left ventricular ejection fraction, circumferential strain, and ventricular-aortic coupling. In septic animals that received epinephrine versus saline infusions, plasma epinephrine levels increased 800-fold, but epinephrine produced no significant further worsening of left ventricular ejection fraction, circumferential strain, or ventricular-aortic coupling. Septic animals receiving saline had a significant increase in microcirculatory reserve without troponin elevations. Septic animals receiving epinephrine had decreased edema, blunted microcirculatory perfusion, and elevated troponin levels that persisted for hours after the epinephrine infusion stopped. CONCLUSIONS Cardiac dysfunction during sepsis is not primarily due to elevated endogenous or exogenous catecholamines nor due to decreased microvascular perfusion-induced ischemia. However, epinephrine itself has potentially harmful long-lasting ischemic effects during sepsis including impaired cardiac microvascular perfusion that persists after stopping the infusion.
Collapse
Affiliation(s)
- Verity J Ford
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
| | - Willard N Applefeld
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
- Division of Cardiology Duke University Medical Center Durham NC USA
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
- Emory University Atlanta GA USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
| | - Steven B Solomon
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
| | - Harvey G Klein
- Department of Transfusion Medicine, Clinical Center National Institutes of Health Bethesda MD USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
| | - Juan Lertora
- Pennington Biomedical Research Center Louisiana State University Baton Rouge LA USA
| | - Parizad Parizi-Torabi
- National Heart Lung and Blood Institute, National Institutes of Health Bethesda MD USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
- National Heart Lung and Blood Institute, National Institutes of Health Bethesda MD USA
| | - Marcus Y Chen
- National Heart Lung and Blood Institute, National Institutes of Health Bethesda MD USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD USA
- National Heart Lung and Blood Institute, National Institutes of Health Bethesda MD USA
| |
Collapse
|
4
|
Ford VJ, Applefeld WN, Wang J, Sun J, Solomon SB, Sidenko S, Feng J, Sheffield C, Klein HG, Yu ZX, Torabi-Parizi P, Danner RL, Sachdev V, Solomon MA, Chen MY, Natanson C. Cardiac Magnetic Resonance Studies in a Large Animal Model that Simulates the Cardiac Abnormalities of Human Septic Shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578971. [PMID: 38903100 PMCID: PMC11188083 DOI: 10.1101/2024.02.05.578971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Septic shock, in humans and in our well-established animal model, is associated with increases in biventricular end diastolic volume (EDV) and decreases in ejection fraction (EF). These abnormalities occur over 2 days and reverse within 10 days. Septic non-survivors do not develop an increase in EDV. The mechanism for this cardiac dysfunction and EDV differences is unknown. Methods Purpose-bred beagles randomized to receive intrabronchial Staphylococcus aureus (n=27) or saline (n=6) were provided standard ICU care including sedation, mechanical ventilation, and fluid resuscitation to a pulmonary arterial occlusion pressure of over 10mmHg. No catecholamines were administered. Over 96h, cardiac magnetic resonance imaging, echocardiograms, and invasive hemodynamics were serially performed, and laboratory data was collected. Tissue was obtained at 66h from six septic animals. Results From 0-96h after bacterial challenge, septic animals vs. controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%) which was more pronounced at 48h in non-survivors than survivors. On histology, edema was located predominantly in myocytes, the interstitium, and endothelial cells. Edema was associated with significantly worse biventricular function (lower EFs), ventricular-arterial coupling, and circumferential strain. In septic animals, from 0-24h, the EDV decreased from baseline and, despite cardiac filling pressures being similar, decreased significantly more in non-survivors. From 24-48h, all septic animals had increases in biventricular chamber sizes. Survivors biventricular EDVs were significantly greater than baseline and in non-survivors, where biventricular EDVs were not different from baseline. Preload, afterload, or HR differences did not explain these differential serial changes in chamber size. Conclusion Systolic and diastolic cardiac dysfunction during sepsis is associated with ventricular wall edema. Rather than differences in preload, afterload, or heart rate, structural alterations to the ventricular wall best account for the volume changes associated with outcome during sepsis. In non-survivors, from 0-24h, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part explain, the EDV increases from 24-48h. However, these changes continued and even accelerated into the recovery phase consistent with a reparative process rather than ongoing injury.
Collapse
Affiliation(s)
- Verity J. Ford
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Willard N. Applefeld
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- Emory, 100 Woodruff Circle, Atlanta, GA 30322
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Stanislav Sidenko
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Zu-Xi Yu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Parizad Torabi-Parizi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Robert L. Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Vandana Sachdev
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Michael A. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Marcus Y. Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
5
|
Ross JT, Robles AJ, Mazer MB, Studer AC, Remy KE, Callcut RA. Cell-Free Hemoglobin in the Pathophysiology of Trauma: A Scoping Review. Crit Care Explor 2024; 6:e1052. [PMID: 38352942 PMCID: PMC10863949 DOI: 10.1097/cce.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES Cell-free hemoglobin (CFH) is a potent mediator of endothelial dysfunction, organ injury, coagulopathy, and immunomodulation in hemolysis. These mechanisms have been demonstrated in patients with sepsis, hemoglobinopathies, and those receiving transfusions. However, less is known about the role of CFH in the pathophysiology of trauma, despite the release of equivalent levels of free hemoglobin. DATA SOURCES Ovid MEDLINE, Embase, Web of Science Core Collection, and BIOSIS Previews were searched up to January 21, 2023, using key terms related to free hemoglobin and trauma. DATA EXTRACTION Two independent reviewers selected studies focused on hemolysis in trauma patients, hemoglobin breakdown products, hemoglobin-mediated injury in trauma, transfusion, sepsis, or therapeutics. DATA SYNTHESIS Data from the selected studies and their references were synthesized into a narrative review. CONCLUSIONS Free hemoglobin likely plays a role in endothelial dysfunction, organ injury, coagulopathy, and immune dysfunction in polytrauma. This is a compelling area of investigation as multiple existing therapeutics effectively block these pathways.
Collapse
Affiliation(s)
- James T Ross
- Department of Surgery, University of California Davis, Sacramento, CA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
| | - Anamaria J Robles
- Department of Surgery, University of California Davis, Sacramento, CA
| | - Monty B Mazer
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, UH Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Amy C Studer
- Blaisdell Medical Library, University of California Davis, Sacramento, CA
| | - Kenneth E Remy
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pulmonary Critical Care Medicine, Department of Medicine, University Hospitals of Cleveland, Case Western Reserve School of Medicine, Cleveland, OH
| | - Rachael A Callcut
- Department of Surgery, University of California Davis, Sacramento, CA
| |
Collapse
|
6
|
Isiksacan Z, D’Alessandro A, Wolf SM, McKenna DH, Tessier SN, Kucukal E, Gokaltun AA, William N, Sandlin RD, Bischof J, Mohandas N, Busch MP, Elbuken C, Gurkan UA, Toner M, Acker JP, Yarmush ML, Usta OB. Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine. Proc Natl Acad Sci U S A 2023; 120:e2115616120. [PMID: 37494421 PMCID: PMC10410732 DOI: 10.1073/pnas.2115616120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO80045
| | - Susan M. Wolf
- Law School, Medical School, Consortium on Law and Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN55455
| | - David H. McKenna
- Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | | | - A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Chemical Engineering, Hacettepe University, Ankara06532, Turkey
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
| | - Rebecca D. Sandlin
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA94105
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA94105
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara06800, Turkey
- Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014Oulu, Finland
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd., 90570Oulu, Finland
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Jason P. Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, ABT6G 2R8, Canada
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ08854
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| |
Collapse
|
7
|
Itano H, Akiyama T, Yoshihara M. Clinical efficacy of intraoperative Cell Saver autologous blood salvage in emergency surgery for massive hemothorax. Indian J Thorac Cardiovasc Surg 2023; 39:359-366. [PMID: 37346430 PMCID: PMC10279592 DOI: 10.1007/s12055-023-01489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
The objective of this study was to investigate the efficacy of intraoperative Cell Saver blood salvage during emergency surgery for massive hemothorax on minimizing perioperative allogeneic red blood cell (RBC) transfusion. Fourteen consecutive patients of massive hemothorax with more than 800 cc of intrathoracic bleeding estimated by chest X-ray and/or chest computed tomography (CT) scan at presentation between 2009 and 2021 were retrospectively reviewed. Intraoperative Cell Saver blood salvage was performed in 11 patients (Cell Saver group) with a median volume of 820 cc (range, 421-1700 cc). The amount of perioperative allogeneic RBC transfusion in the Cell Saver group (median, 4 units) was significantly smaller than that in the non-Cell Saver group (median, 10 units) (P = 0.009). The volume of Cell Saver autologous transfusion in 6 patients without preoperative chest tube drainage (median, 1114 cc) was significantly larger than that in 5 patients who had preoperative drainage (median, 660 cc) (P = 0.0173). In conclusion, the utilization of intraoperative blood salvage in emergency surgery for massive hemothorax along with limiting the amount of preoperative chest tube drainage is an efficient strategy to minimize perioperative allogeneic RBC transfusion.
Collapse
Affiliation(s)
- Hideki Itano
- Department of Thoracic Surgery, Daiyu-kai General Hospital, Ichinomiya-shi, Aichi, Japan
- Department of Thoracic Surgery, Uji Tokushu-kai Hospital, Uji-shi, Kyoto, Japan
| | - Takashi Akiyama
- Department of Thoracic Surgery, Daiyu-kai General Hospital, Ichinomiya-shi, Aichi, Japan
| | - Masashi Yoshihara
- Department of Thoracic Surgery, Daiyu-kai General Hospital, Ichinomiya-shi, Aichi, Japan
| |
Collapse
|
8
|
Oh JY, Marques MB, Xu X, Li J, Genschmer KR, Phillips E, Chimento MF, Mobley J, Gaggar A, Patel RP. Different-sized extracellular vesicles derived from stored red blood cells package diverse cargoes and cause distinct cellular effects. Transfusion 2023; 63:586-600. [PMID: 36752125 PMCID: PMC10033430 DOI: 10.1111/trf.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND The formation of extracellular vesicles (EVs) occurs during cold storage of RBCs. Transfusion of EVs may contribute to adverse responses in recipients receiving RBCs. However, EVs are poorly characterized with limited data on whether distinct vesicles are formed, their composition, and potential biological effects. STUDY DESIGN AND METHODS Stored RBC-derived EVs were purified using protocols that separate larger microvesicle-like EVs (LEVs) from smaller exosome-like vesicles (SEVs). Vesicles were analyzed by electron microscopy, content of hemoglobin, heme, and proteins (by mass spectrometry), and the potential to mediate lipid peroxidation and endothelial cell permeability in vitro. RESULTS SEVs were characterized by having an electron-dense double membrane whereas LEVs had more uniform electron density across the particles. No differences in hemoglobin nor heme levels per particle were observed, however, due to smaller volumes, SEVs had higher concentrations of oxyHb and heme. Both particles contained antioxidant proteins peroxiredoxin-2 and copper/zinc superoxide dismutase, these were present in higher molecular weight fractions in SEVs suggesting either oxidized proteins are preferentially packaged into smaller vesicles and/or that the environment associated with SEVs is more pro-oxidative. Furthermore, total glutathione (GSH + GSSG) levels were lower in SEVs. Both EVs mediated oxidation of liposomes that were prevented by hemopexin, identifying heme as the pro-oxidant effector. Addition of SEVs, but not LEVs, induced endothelial permeability in a process also prevented by hemopexin. CONCLUSION These data show that distinct EVs are formed during cold storage of RBCs with smaller particles being more likely to mediate pro-oxidant and inflammatory effects associated with heme.
Collapse
Affiliation(s)
- Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham
| | | | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham
- Department of Program in Protease and Matrix Biology, University of Alabama at Birmingham
| | - Jindong Li
- Department of Medicine, University of Alabama at Birmingham
- Department of Program in Protease and Matrix Biology, University of Alabama at Birmingham
| | | | - Edward Phillips
- Department of High Resolution Imaging Shared Facility, University of Alabama at Birmingham
| | - Melissa F. Chimento
- Department of High Resolution Imaging Shared Facility, University of Alabama at Birmingham
| | - James Mobley
- Department of Anesthesiolgy, University of Alabama at Birmingham
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham
- Department of Program in Protease and Matrix Biology, University of Alabama at Birmingham
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham
- Department of Center for Free Radical Biology, University of Alabama at Birmingham
| |
Collapse
|
9
|
Dilday JC, Martin MJ. Storage Wars: Is It Time to Retire the Myth of the "Storage Lesion" in Red Cell Transfusion? Crit Care Med 2023; 51:427-430. [PMID: 36809267 DOI: 10.1097/ccm.0000000000005786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Joshua C Dilday
- Both authors: Division of Trauma and Acute Care Surgery, Department of Surgery, Los Angeles County + USC Medical Center, Los Angeles, CA
| | | |
Collapse
|
10
|
Berndt M, Buttenberg M, Graw JA. Large Animal Models for Simulating Physiology of Transfusion of Red Cell Concentrates-A Scoping Review of The Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1735. [PMID: 36556937 PMCID: PMC9787038 DOI: 10.3390/medicina58121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Transfusion of red cell concentrates is a key component of medical therapy. To investigate the complex transfusion-associated biochemical and physiological processes as well as potential risks for human recipients, animal models are of particular importance. This scoping review summarizes existing large animal transfusion models for their ability to model the physiology associated with the storage of erythrocyte concentrates. Materials and Methods: The electronic databases PubMed, EMBASE, and Web of Science were systematically searched for original studies providing information on the intravenous application of erythrocyte concentrates in porcine, ovine, and canine animal models. Results: A total of 36 studies were included in the analysis. The majority of porcine studies evaluated hemorrhagic shock conditions. Pig models showed high physiological similarities with regard to red cell physiology during early storage. Ovine and canine studies were found to model typical aspects of human red cell storage at 42 days. Only four studies provided data on 24 h in vivo survival of red cells. Conclusions: While ovine and canine models can mimic typical human erythrocyte storage for up to 42 days, porcine models stand out for reliably simulating double-hit pathologies such as hemorrhagic shock. Large animal models remain an important area of translational research since they have an impact on testing new pharmacological or biophysical interventions to attenuate storage-related adverse effects and allow, in a controlled environment, to study background and interventions in dynamic and severe disease conditions.
Collapse
Affiliation(s)
- Melanie Berndt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Buttenberg
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jan A. Graw
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
11
|
Eisler L, Hassan F, Lenke LG, Chihuri S, Hod EA, Li G. Allogeneic Red Blood Cell Transfusion and Infectious Complications Following Pediatric Spinal Fusion: NSQIP-P Analysis. JB JS Open Access 2022; 7:JBJSOA-D-22-00038. [PMID: 36285249 PMCID: PMC9586922 DOI: 10.2106/jbjs.oa.22.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial bleeding occurs during spinal fusion surgery in the pediatric population, and many patients receive allogeneic red blood cell transfusion (ARBT) for the treatment of resulting perioperative anemia. ARBT is thought to increase vulnerability to postoperative infections following major surgical procedures, but studies of this relationship in children undergoing spinal fusion have yielded conflicting results.
Collapse
Affiliation(s)
- Lisa Eisler
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY,Email for corresponding author:
| | - Fthimnir Hassan
- Department of Orthopedic Surgery, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY
| | - Lawrence G. Lenke
- Department of Orthopedic Surgery, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY
| | - Stanford Chihuri
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY
| | - Guohua Li
- Departments of Anesthesiology and Epidemiology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY
| |
Collapse
|
12
|
Bujok J, Wajman E, Trochanowska-Pauk N, Walski T. Evaluation of selected hematological, biochemical and oxidative stress parameters in stored canine CPDA-1 whole blood. BMC Vet Res 2022; 18:255. [PMID: 35778742 PMCID: PMC9248166 DOI: 10.1186/s12917-022-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Blood transfusions are mainly given to intensive care patients; therefore, additional complications that could arise from storage lesions in preserved blood should be avoided. It has been shown that human stored red blood cells are subject to changes that are considered to be a number of interdependent processes involving metabolic disarrangement and oxidative stress. The aim of our study was to determine alterations in selected hematological and biochemical parameters and to assess whether and when oxidative stress is a significant phenomenon in stored dog CPDA-1 whole blood. Ten ½ unit bags of whole blood donated from dogs and preserved with CPDA-1 (anticoagulant containing citrate, phosphate, dextrose and adenine) were stored for 5 weeks. Each week, a 9 ml sample was drawn aseptically to measure hematological parameters, selected metabolites, free hemoglobin content, osmotic fragility, antioxidant enzyme activity, total antioxidant capacity, malondialdehyde concentration and protein carbonyl content. The results revealed an MCV decrease in the first week of storage and then a gradual increase; osmotic fragility decreased at that time and remained low throughout the study period. Leukodepletion became significant in the fourth week of storage. The free hemoglobin concentration continuously increased, with the greatest changes observed in the last two weeks of storage. The total antioxidant capacity changed in a reverse manner. Superoxide dismutase and glutathione peroxidase activities decreased from week 0 to week 3, and catalase activity tended to decrease over time. The highest malondialdehyde concentrations in blood supernatant were measured in the first week of storage, and the carbonyl concentration increased after 35 days. Hematological changes and oxidative stress are already present in the first week of storage, resulting in depletion of the antioxidant system and subsequent accumulation of oxidation products as well as erythrocyte hemolysis, which are most pronounced at the end of the storage period.
Collapse
Affiliation(s)
- Jolanta Bujok
- Department of Animal Physiology and Biostructure, Division of Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wrocław, Poland.
| | - Eliza Wajman
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Natalia Trochanowska-Pauk
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.,Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
13
|
Morse SA, Mooney ET. Effect of microaggregate filter passage on feline whole blood stored for 35 days. J Feline Med Surg 2022; 24:116-122. [PMID: 33904795 PMCID: PMC10812170 DOI: 10.1177/1098612x211009145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to compare the characteristics of fresh and stored feline red blood cells (RBCs) after passage through an 18 μm microaggregate filter. METHODS Nine cats were recruited for a single blood donation using an open collection system. A simulated transfusion using a syringe driver and microaggregate filter was performed over 2 h with half the blood on the day of donation and the other half after 35 days of storage. Differences in haematological parameters, haemolysis percentage and osmotic fragility (OF) were compared on the day of donation pre-filter passage (D0-) vs day of donation post-filter (D0+) or day 35 storage pre-filter (D35-) and post-filter (D35+). Blood was cultured at D0+ and D35+. RESULTS There were no statistically significant differences in the D0- vs D0+ comparisons. There were statistically significant (P <0.05) increases in haemolysis percentage, red cell distribution width (RDW) percentage and mean OF, and decreases in packed cell volume (PCV), RBC count, haemoglobin and haematocrit for D0- vs D35-. The same was found for D0- vs D35+ with the addition of a significant increase in mean cell haemoglobin (MCH). For D35- vs D35+ only MCH significantly increased. At day 35, 6/9 units had haemolysis percentages that exceeded 1%. This increased to 8/9 of stored units post-filter passage. All blood units cultured negative. CONCLUSIONS AND RELEVANCE Fresh RBCs exhibited no in vitro evidence of injury following passage through an 18 μm microaggregate filter. Increased MCH was observed in the stored blood and may represent haemolysis induced by the filter. All other changes can be explained by storage lesion rather than filter passage. The findings highlight the importance of blood banking quality controls and the need for further research to assess the effects of transfusion technique, specifically filter passage, on storage lesion-affected feline blood.
Collapse
Affiliation(s)
- Sophia A Morse
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Erin T Mooney
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Callan MB, Thawley VJ, Marryott KA, Shabro A, Fernando S, Kahn S, Hudson KE, Hod EA. Hemolytic anemia blunts the cytokine response to transfusion of older red blood cells in mice and dogs. Transfusion 2021; 61:3309-3319. [PMID: 34633666 DOI: 10.1111/trf.16690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Transfusion of red blood cells (RBCs) stored for longer durations induces hemolysis and inflammatory cytokine production in murine and canine models. Despite immune system activation by stored RBCs, human randomized trials suggest that fresher RBC transfusions do not improve clinical outcomes. We hypothesized that underlying recipient hemolysis may affect cytokine responses to older RBC transfusions. STUDY DESIGN AND METHODS C57BL/6 mouse cohorts were infused with anti-TER119 antibody to induce hemolysis, rabbit anti-platelet antiserum to induce immune thrombocytopenia (ITP), or appropriate control antibodies. Two days later, mice were transfused with fresh or stored RBCs. Furthermore, in a prospective, randomized, blinded trial, 38 client-owned dogs with primary autoimmune hemolytic anemia (AIHA) and two dogs with ITP, requiring RBC transfusion, were enrolled and randomized to receive fresh (≤7 days) or old (≥21 days) stored RBC transfusions. Monocyte chemoattractant protein (MCP)-1 levels were assessed at defined times after transfusion. RESULTS Prior immune-mediated hemolysis blunted the MCP-1 response to stored RBC transfusion in mice (361 ± 111 pg/ml vs. 6836 ± 1528 pg/ml in mice with immune hemolysis vs. ITP, respectively; mean ± SD; p < .0001). Although hemolysis markers increased after transfusion of older RBCs, the cytokine response was also muted in dogs with AIHA. No differences in morbidity or mortality were evident comparing dogs randomized to fresh or old RBCs. CONCLUSION These data suggest that underlying hemolysis blunts inflammatory responses to old RBC transfusions. The canine data support randomized trial results suggesting a lack of clinical benefit with fresh RBC transfusions in subjects with underlying, baseline hemolysis.
Collapse
Affiliation(s)
- Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Vincent J Thawley
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kimberly A Marryott
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Aidin Shabro
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Sebastian Fernando
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Stacie Kahn
- Department of Pediatrics, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
16
|
Wang J, Applefeld WN, Sun J, Solomon SB, Feng J, Couse ZG, Risoleo TF, Danner RL, Tejero J, Lertora J, Alipour E, Basu S, Sachdev V, Kim-Shapiro DB, Gladwin MT, Klein HG, Natanson C. Mechanistic insights into cell-free hemoglobin-induced injury during septic shock. Am J Physiol Heart Circ Physiol 2021; 320:H2385-H2400. [PMID: 33989079 DOI: 10.1152/ajpheart.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-free hemoglobin (CFH) levels are elevated in septic shock and are higher in nonsurvivors. Whether CFH is only a marker of sepsis severity or is involved in pathogenesis is unknown. This study aimed to investigate whether CFH worsens sepsis-associated injuries and to determine potential mechanisms of harm. Fifty-one, 10-12 kg purpose-bred beagles were randomized to receive Staphylococcus aureus intrapulmonary challenges or saline followed by CFH infusions (oxyhemoglobin >80%) or placebo. Animals received antibiotics and intensive care support for 96 h. CFH significantly increased mean pulmonary arterial pressures and right ventricular afterload in both septic and nonseptic animals, effects that were significantly greater in nonsurvivors. These findings are consistent with CFH-associated nitric oxide (NO) scavenging and were associated with significantly depressed cardiac function, and worsened shock, lactate levels, metabolic acidosis, and multiorgan failure. In septic animals only, CFH administration significantly increased mean alveolar-arterial oxygenation gradients, also to a significantly greater degree in nonsurvivors. CFH-associated iron levels were significantly suppressed in infected animals, suggesting that bacterial iron uptake worsened pneumonia. Notably, cytokine levels were similar in survivors and nonsurvivors and were not predictive of outcome. In the absence and presence of infection, CFH infusions resulted in pulmonary hypertension, cardiogenic shock, and multiorgan failure, likely through NO scavenging. In the presence of infection alone, CFH infusions worsened oxygen exchange and lung injury, presumably by supplying iron that promoted bacterial growth. CFH elevation, a known consequence of clinical septic shock, adversely impacts sepsis outcomes through more than one mechanism, and is a biologically plausible, nonantibiotic, noncytokine target for therapeutic intervention.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) elevations are a known consequence of clinical sepsis. Using a two-by-two factorial design and extensive physiological and biochemical evidence, we found a direct mechanism of injury related to nitric oxide scavenging leading to pulmonary hypertension increasing right heart afterload, depressed cardiac function, worsening circulatory failure, and death, as well as an indirect mechanism related to iron toxicity. These discoveries alter conventional thinking about septic shock pathogenesis and provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Willard N Applefeld
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steve B Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zoe G Couse
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas F Risoleo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan Lertora
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Vandana Sachdev
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Harvey G Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Antognoni MT, Marenzoni ML, Misia AL, Avellini L, Chiaradia E, Gavazza A, Miglio A. Effect of Leukoreduction on Hematobiochemical Parameters and Storage Hemolysis in Canine Whole Blood Units. Animals (Basel) 2021; 11:ani11040925. [PMID: 33805143 PMCID: PMC8064101 DOI: 10.3390/ani11040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary During the storage of blood units, cells undergo many changes, defined as storage lesions; these are biochemical, morphological and immunological modifications and seem to be responsible for adverse post-transfusion effects in recipients. The pre-storage leukoreduction seems to reduce them. The aims of this study are both to evaluate the human filter effectiveness and the effect of pre-storage leukoreduction in stored canine whole blood units. We tested whole blood units, leukoreduced and not, obtained from seven enrolled subjects, until the 42nd day. The white blood cell (WBC) and platelet (PLT) counts are reported to express the leukoreduction effectiveness. As indicators of storage-induced hemolysis, the lactate dehydrogenase activity (LDH) and sodium, potassium, and chlorine electrolytes were measured in plasma, and the red blood cell (RBC) count, hemoglobin concentration (Hgb), and hematocrit (Hct) were obtained with the complete blood count (CBC). The mean corpuscular volume (MCV) values and morphological index obtained from blood smear evaluation were used as indices of morphological changes. We observed that the leukoreduction filter for human use is equally effective on canine whole blood and that leukoreduction has a partially protective role to prevent some storage lesions. Abstract Storage lesions (SLs) occur when the red blood cell quality is altered during the preservation of blood units. Pre-storage leukoreduction would limit the number of SLs. The aims of this study were to evaluate the effectiveness of a leukoreduction filter for human use and the effect of pre-storage leukoreduction on some ematobiochemical parameters in stored canine whole blood. Seven canine blood units were tested. Each one was divided into two units—one leukoreduced (LRWB) and one non-leukoreduced (nLRWB). On each unit, we determined the complete blood count (CBC), lactate-dehydrogenase (LDH), electrolytes (Na+, K+, Cl−), morphological index (MI) and hemolysis, on storage days 0, 7, 14, 21, 28, 35, and 42. Leukoreduction allowed a 98.30% recovery of the RBC count, retaining 99.69% and 94.91% of WBCs and PLTs, respectively. We detected a significant increase of LDH and MI with strongly higher values in nLRWB compared to LRWB. A progressive increase in electrolytes and LDH concentrations was observed as indices of stored hemolysis. LDH showed significantly lower values in LRWB units compared to nLRWB, suggesting its release from leukocytes. In the majority of units, hemolysis reached 1% on the 42nd day of storage. We assert the human leukoreduction filter effectiveness on canine whole blood, and we recommend using nLRWB before day 14, especially for critically ill patients. The difference of the basal hemolysis (day 0) percentages observed between subjects suggests that more studies should be performed to confirm a possible inter-individual donor biological variability of RBC membrane resistance, as happens in humans.
Collapse
Affiliation(s)
- Maria Teresa Antognoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Ambra Lisa Misia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Alessandra Gavazza
- School of Bioscences and Veterinary Medicine, University of Camerino, 62024 Camerino, Italy;
| | - Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
- Correspondence:
| |
Collapse
|
18
|
Davidow EB, Blois SL, Goy-Thollot I, Harris L, Humm K, Musulin S, Nash KJ, Odunayo A, Sharp CR, Spada E, Thomason J, Walton J, Wardrop KJ. Association of Veterinary Hematology and Transfusion Medicine (AVHTM) Transfusion Reaction Small Animal Consensus Statement (TRACS) Part 2: Prevention and monitoring. J Vet Emerg Crit Care (San Antonio) 2021; 31:167-188. [PMID: 33751789 DOI: 10.1111/vec.13045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To systematically review available evidence to develop guidelines for the prevention of transfusion reactions and monitoring of transfusion administration in dogs and cats. DESIGN Evidence evaluation of the literature (identified through Medline searches through Pubmed and Google Scholar searches) was carried out for identified transfusion reaction types in dogs and cats. Evidence was evaluated using PICO (Population, Intervention, Comparison, Outcome) questions generated for each reaction type. Evidence was categorized by level of evidence (LOE) and quality (Good, Fair, or Poor). Guidelines for prevention and monitoring were generated based on the synthesis of the evidence. Consensus on the final recommendations and a proposed transfusion administration monitoring form was achieved through Delphi-style surveys. Draft recommendations and the monitoring form were made available through veterinary specialty listservs and comments were incorporated. RESULTS Twenty-nine guidelines and a transfusion administration monitoring form were formulated from the evidence review with a high degree of consensus CONCLUSIONS: This systematic evidence evaluation process yielded recommended prevention and monitoring guidelines and a proposed transfusion administration form. However, significant knowledge gaps were identified, demonstrating the need for additional research in veterinary transfusion medicine.
Collapse
Affiliation(s)
- Elizabeth B Davidow
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Canada
| | | | | | - Karen Humm
- Department of Clinical Science and Services, The Royal Veterinary College, London, UK
| | - Sarah Musulin
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Katherine J Nash
- VetMED Emergency and Specialty Veterinary Hospital, Phoenix, Arizona, USA
| | - Adesola Odunayo
- Department of Small Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Claire R Sharp
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Eva Spada
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - John Thomason
- Department of Clinical Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | | | - K Jane Wardrop
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Sharma S, Boston SE, Kotlowski J, Boylan M. Preoperative autologous blood donation and transfusion in dogs undergoing elective surgical oncology procedures with high risk of hemorrhage. Vet Surg 2021; 50:607-614. [PMID: 33634898 DOI: 10.1111/vsu.13598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe preoperative autologous blood donation (PABD) and transfusion in dogs undergoing elective surgical oncology procedures with a high risk of intraoperative hemorrhage. STUDY DESIGN Prospective study. ANIMALS Twelve dogs. METHODS Dogs undergoing surgical oncology procedures associated with a high risk of hemorrhage were enrolled. Blood was collected a minimum of 6 days before surgery and separated into fresh frozen plasma (FFP) and packed red blood cells (pRBC). Dogs received FFP at the start of surgery and pRBC intraoperatively when hemorrhage ensued. The mean packed cell volume/total solids (PCV/TS) were calculated on the day of PABD preoperatively, immediately postoperatively, and 24 hours after transfusion. The dogs were monitored for transfusion-related adverse reactions, including hyperthermia, hypotension, tachycardia, bradycardia, pale mucous membranes, prolonged capillary refill time, or tachypnea/dyspnea. RESULTS Dogs enrolled in the study underwent mandibulectomy, maxillectomy, chest wall resection, and liver lobectomy. Ten of the 12 dogs that underwent PABD received autologous transfusion at first signs of hemorrhage intraoperatively. Iatrogenic anemia was noted in two dogs (PCV 30% and 31%). The mean PCV/TS levels on the day of blood collection, preoperatively, immediately postoperatively (after transfusion), and 24 hours posttransfusion were 45.1%/7.1 g/dL, 42.2%/6.73 g/dL, 33.2%/5.42 g/dL, and 36.5%/5.65 g/dL, respectively. No dog developed transfusion-related complications. CONCLUSION Preoperative autologous blood donation was well tolerated and led to uneventful autologous transfusion in 10 of 12 dogs. CLINICAL SIGNIFICANCE Preoperative autologous blood donation and autologous transfusion are feasible for dogs undergoing elective surgical procedures with a high risk of hemorrhage.
Collapse
Affiliation(s)
- Surabhi Sharma
- Surgical Oncology, VCA 404 Veterinary Emergency and Referral Hospital, Ontario, Canada
| | - Sarah E Boston
- Surgical Oncology, VCA 404 Veterinary Emergency and Referral Hospital, Ontario, Canada
| | - Jerzy Kotlowski
- Surgical Oncology, VCA 404 Veterinary Emergency and Referral Hospital, Ontario, Canada
| | - Matthew Boylan
- Surgical Oncology, VCA 404 Veterinary Emergency and Referral Hospital, Ontario, Canada
| |
Collapse
|
20
|
Bennett-Guerrero E, Rizwan S, Rozensky R, Romeiser JL, Brittelli J, Makaryus R, Lin J, Galanakis DK, Triulzi DJ, Moon RE. Randomized controlled trial of 7, 28, vs 42 day stored red blood cell transfusion on oxygen delivery (VO 2 max) and exercise duration. Transfusion 2020; 61:699-707. [PMID: 33368319 DOI: 10.1111/trf.16237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Few studies have rigorously assessed the impact of red blood cell (RBC) transfusion on oxygen delivery. Several large trials demonstrated no clinical outcome differences between transfusion of shorter-storage vs prolonged-storage RBCs. These trials did not directly assess functional measures of oxygen delivery. Therefore, it is not clear if 42-day stored RBCs deliver oxygen as effectively as 7-day stored RBCs. STUDY DESIGN AND METHODS Leukocyte-reduced RBCs were collected by apheresis in AS-3. Thirty subjects were randomized (1:1:1) to receive 2 units of autologous RBCs at either 7, 28, or 42 days following donation. VO2 max testing, using a standardized protocol to exhaustion, was performed 2 days before (Monday) and 2 days after (Friday) the transfusion visit (Wednesday). The primary endpoint was the percent increase in VO2 max between Monday and Friday. The secondary endpoint was the percent change in duration of exercise for the same time points. RESULTS Hemoglobin levels decreased by 2.8 ± 1.4 g/dL after donation and increased by 2.1 ± 0.6 g/dL after transfusion. This change in hemoglobin was associated with expected decreases (then increases after transfusion) in VO2 max and exercise duration. No differences were observed between 7-day and 42-day RBC transfusion for percent increase in median [IQR] VO2 max (10.5 [0.2-17.3] vs 10.9 [5.7-16.8], P = .41) or for percent increase in exercise duration (5.4 [4.1-6.9] vs 4.9 [2.0-7.2], P = .91), respectively. Results were similar for 28-day RBCs and were consistent across the ITT and per-protocol analysis populations. CONCLUSION These data indicate that 42-day, 28-day, and 7-day RBCs have similar ability to deliver oxygen.
Collapse
Affiliation(s)
| | - Sabeen Rizwan
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Russell Rozensky
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Jamie L Romeiser
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | - John Brittelli
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Rany Makaryus
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Jun Lin
- Stony Brook University Medical Center, Stony Brook, New York, USA
| | | | - Darrell J Triulzi
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Richard E Moon
- Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Reilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, Ramadan M, Luban NLC, Posnack NG. Potential Consequences of the Red Blood Cell Storage Lesion on Cardiac Electrophysiology. J Am Heart Assoc 2020; 9:e017748. [PMID: 33086931 PMCID: PMC7763412 DOI: 10.1161/jaha.120.017748] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.
Collapse
Affiliation(s)
- Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Chantal D. Bruno
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Division of Critical Care MedicineChildren’s National HospitalWashingtonDC
| | - Tomas M. Prudencio
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Raj Nair
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
| | - Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Naomi L. C. Luban
- Division of Hematology and Laboratory MedicineChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of PathologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of Pharmacology & PhysiologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| |
Collapse
|
22
|
Simonova G, Wellburn R, Fung YL, Fraser JF, Tung JP. Ovine red cell concentrates for transfusion research - is the storage lesion comparable to human red cell concentrates? Vox Sang 2020; 116:524-532. [PMID: 33107065 DOI: 10.1111/vox.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Sheep are increasingly being used as a large in vivo animal model of blood transfusion because they provide several advantages over small animals. Understanding the effects of storage duration on ovine (ov) red cell concentrates (RCCs) and how these changes compare with stored human (hu) RCCs is necessary to facilitate clinical translation of research findings. MATERIALS AND METHODS OvRCCs (n = 5) collected and processed in standard human blood collection packs, and equivalent huRCCs provided by Australian Red Cross Lifeblood (n = 5), were stored at 2-6°C for 42 days, with samples collected weekly. Haemolysis index was determined by measuring supernatant haemoglobin concentration. Biochemical parameters were evaluated using a blood gas analyser. Energy metabolites and biologically active lipids were measured using commercial assays. Osmotic fragility was determined by lysis in various saline concentrations. Extracellular vesicles were characterized by nanoparticle tracking analysis. RESULTS Ovine red blood cells (RBCs) are double in number, smaller in size and more fragile than human RBCs. Haematological values were unchanged throughout storage. In contrast, biochemical and metabolic values, and haemolysis index in three of the five ovRCCs exceeded huRCCs licensing criteria by day 42. Accumulation of extracellular vesicles and biologically active lipids was comparable between huRCCs and ovRCCs. CONCLUSION This study documents similarities and differences in the storage lesion of ovRCCs and huRCCs. This new information will guide the design of ovine transfusion models to enhance translation of findings to human transfusion settings.
Collapse
Affiliation(s)
- Gabriela Simonova
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Rebecca Wellburn
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - Yoke Lin Fung
- School of Health and Sports Sciences, University of Sunshine Coast, Sunshine Coast, QLD, Australia
| | - John F Fraser
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John-Paul Tung
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Abstract
Transfusion medicine can be a lifesaving intervention. Component therapy has expanded the availability and blood products available. Patient safety and minimizing risk is important and can be accomplished through proper donor screening, collection, storage, compatibility testing, administration, and monitoring. The pros and cons of available products must be considered and tailored to each individual patient. Recent discoveries include new antigens and blood types, microbial effects on blood type, and the association between blood type and disease prevalence.
Collapse
Affiliation(s)
- Kendon W Kuo
- Emergency and Critical Care, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL 36849-5540, USA
| | - Maureen McMichael
- Emergency and Critical Care, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL 36849-5540, USA.
| |
Collapse
|
24
|
Stefanoni D, Shin HKH, Baek JH, Champagne DP, Nemkov T, Thomas T, Francis RO, Zimring JC, Yoshida T, Reisz JA, Spitalnik SL, Buehler PW, D’Alessandro A. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica 2020; 105:2174-2186. [PMID: 31699790 PMCID: PMC7395274 DOI: 10.3324/haematol.2019.229930] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Macaques are emerging as a critical animal model in transfusion medicine, because of their evolutionary similarity to humans and perceived utility in discovery and translational science. However, little is known about the metabolism of Rhesus macaque red blood cells (RBC) and how this compares to human RBC metabolism under standard blood banking conditions. Metabolomic and lipidomic analyses, and tracing experiments with [1,2,3-13C3]glucose, were performed using fresh and stored RBC (sampled weekly until storage day 42) obtained from Rhesus macaques (n=20) and healthy human volunteers (n=21). These results were further validated with targeted quantification against stable isotope-labeled internal standards. Metabolomic analyses demonstrated inter-species differences in RBC metabolism independent of refrigerated storage. Although similar trends were observed throughout storage for several metabolic pathways, species- and sex-specific differences were also observed. The most notable differences were in glutathione and sulfur metabolites, purine and lipid oxidation metabolites, acylcarnitines, fatty acyl composition of several classes of lipids (including phosphatidylserines), glyoxylate pathway intermediates, and arginine and carboxylic acid metabolites. Species-specific dietary and environmental compounds were also detected. Overall, the results suggest an increased basal and refrigerator-storage-induced propensity for oxidant stress and lipid remodeling in Rhesus macaque RBC cells, as compared to human red cells. The overlap between Rhesus macaque and human RBC metabolic phenotypes suggests the potential utility of a translational model for simple RBC transfusions, although inter-species storage-dependent differences need to be considered when modeling complex disease states, such as transfusion in trauma/hemorrhagic shock models.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Hye Kyung H. Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Devin P. Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University, New York, NY
| | - Richard O. Francis
- Department of Pathology & Cell Biology, Columbia University, New York, NY
| | | | | | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | | | - Paul W. Buehler
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD,PAUL W. BUEHLER,
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO,Department of Medicine, Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA,Correspondence:ANGELO D’ALESSANDRO
| |
Collapse
|
25
|
Rodrigues RR, Kayano CY, Dos Santos VP, Moroz LR, Fantoni DT, Ambrósio AM. Evaluation of hematologic, biochemical, and blood gas variables in stored canine packed red blood cells, and the impact of storage time on blood recipients. Vet Clin Pathol 2020; 49:198-206. [PMID: 32542780 DOI: 10.1111/vcp.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Canine packed red blood cells (pRBCs) can be stored under refrigeration for several days; however, cellular metabolism remains active inside the units, thus producing substances that affect their quality. OBJECTIVES We aimed to evaluate hematologic, biochemical, and blood gas variable alterations that occur in canine pRBCs during storage, and their effects on recipient clinicopathologic parameters. METHODS The study was conducted in two phases. In phase I, 15 pRBC units containing CPDA-1 were stored for 28 days; samples were collected weekly from the units of days 0 to 28 to measure the packed cell volume (PCV), pH, partial pressure carbon dioxide (PCO2 ), partial pressure oxygen (PO2 ), concentrations of lactate and potassium, and the percent hemolysis. In phase II, another 22 canine pRBC units stored for different time periods (maximum of 21 days) were transfused, and the recipients were evaluated before and after transfusion for changes in clinical parameters (heart rate, respiratory rate, systolic arterial pressure, and rectal temperature) and hematologic variables (PCV, lactate and potassium concentrations, pH, PCO2 , the ratio of arterial oxygen partial pressure to fractional inspired oxygen [PO2 /FiO2 ] ratio, oxygen saturation [SaO2 ], base excess, and bicarbonate [HCO3 ]). RESULTS In the pRBC units, the PCV increased from 70% to 78.33%, the lactate concentration increased 627%, the potassium concentration increased 183%, the percent hemolysis reached 0.69%, and the pH decreased 9% after 28 days. However, the dogs who received transfusions were not negatively affected. There was a significant increase in PCVs, and a significant decrease in heart rates. CONCLUSION Canine pRBCs undergo hematologic, blood gas, and biochemical alterations during storage; however, the transfusion of pRBCs stored for up to 21 days increased PCVs without causing harm to the dogs.
Collapse
Affiliation(s)
- Renata R Rodrigues
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| | - Caroline Y Kayano
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| | - Vinícius P Dos Santos
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| | - Ludmila R Moroz
- Laboratory of Clinical Analysis, Bahia Federal University, Salvador, Brazil
| | - Denise T Fantoni
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| | - Aline M Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| |
Collapse
|
26
|
Applefeld WN, Wang J, Sun J, Solomon SB, Feng J, Risoleo T, Cortés-Puch I, Gouél-Cheron A, Klein HG, Natanson C. In canine bacterial pneumonia circulating granulocyte counts determine outcome from donor cells. Transfusion 2020; 60:698-712. [PMID: 32086946 PMCID: PMC10802110 DOI: 10.1111/trf.15727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND In experimental canine septic shock, depressed circulating granulocyte counts were associated with a poor outcome and increasing counts with prophylactic granulocyte colony-stimulating factor (G-CSF) improved outcome. Therapeutic G-CSF, in contrast, did not improve circulating counts or outcome, and therefore investigation was undertaken to determine whether transfusing granulocytes therapeutically would improve outcome. STUDY DESIGN AND METHODS Twenty-eight purpose-bred beagles underwent an intrabronchial Staphylococcus aureus challenge and 4 hours later were randomly assigned to granulocyte (40-100 × 109 cells) or plasma transfusion. RESULTS Granulocyte transfusion significantly expanded the low circulating counts for hours compared to septic controls but was not associated with significant mortality benefit (1/14, 7% vs. 2/14, 14%, respectively; p = 0.29). Septic animals with higher granulocyte count at 4 hours (median [interquartile range] of 3.81 3.39-5.05] vs. 1.77 [1.25-2.50]) had significantly increased survival independent of whether they were transfused with granulocytes. In a subgroup analysis, animals with higher circulating granulocyte counts receiving donor granulocytes had worsened lung injury compared to septic controls. Conversely, donor granulocytes decreased lung injury in septic animals with lower counts. CONCLUSION During bacterial pneumonia, circulating counts predict the outcome of transfusing granulocytes. With low but normal counts, transfusing granulocytes does not improve survival and injures the lung, whereas for animals with very low counts, but not absolute neutropenia, granulocyte transfusion improves lung function.
Collapse
Affiliation(s)
- Willard N. Applefeld
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Irene Cortés-Puch
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis Medical Center, Sacramento, California
| | - Aurélie Gouél-Cheron
- Department of Anesthesiology and Intensive Care, Bichat University Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Effects of aged stored autologous red blood cells on human plasma metabolome. Blood Adv 2020; 3:884-896. [PMID: 30890545 DOI: 10.1182/bloodadvances.2018029629] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Cold storage of blood for 5 to 6 weeks has been shown to impair endothelial function after transfusion and has been associated with measures of end-organ dysfunction. Although the products of hemolysis, such as cell-free plasma hemoglobin, arginase, heme, and iron, in part mediate these effects, a complete analysis of transfused metabolites that may affect organ function has not been evaluated to date. Blood stored for either 5 or 42 days was collected from 18 healthy autologous volunteers, prior to and after autologous transfusion into the forearm circulation, followed by metabolomics analyses. Significant metabolic changes were observed in the plasma levels of hemolytic markers, oxidized purines, plasticizers, and oxidized lipids in recipients of blood stored for 42 days, compared with 5 days. Notably, transfusion of day 42 red blood cells (RBCs) increased circulating levels of plasticizers (diethylhexyl phthalate and derivatives) by up to 18-fold. Similarly, transfusion of day 42 blood significantly increased circulating levels of proinflammatory oxylipins, including prostaglandins, hydroxyeicosatrienoic acids (HETEs), and dihydroxyoctadecenoic acids. Oxylipins were the most significantly increasing metabolites (for 9-HETE: up to ∼41-fold, P = 3.7e-06) in day 42 supernatants. Measurements of arginine metabolism confirmed an increase in arginase activity at the expense of nitric oxide synthesis capacity in the bloodstream of recipients of day 42 blood, which correlated with measurements of hemodynamics. Metabolic changes in stored RBC supernatants impact the plasma metabolome of healthy transfusion recipients, with observed increases in plasticizers, as well as vasoactive, pro-oxidative, proinflammatory, and immunomodulatory metabolites after 42 days of storage.
Collapse
|
28
|
Buehler PW, Humar R, Schaer DJ. Haptoglobin Therapeutics and Compartmentalization of Cell-Free Hemoglobin Toxicity. Trends Mol Med 2020; 26:683-697. [PMID: 32589936 DOI: 10.1016/j.molmed.2020.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Hemolysis and accumulation of cell-free hemoglobin (Hb) in the circulation or in confined tissue compartments such as the subarachnoid space is an important driver of disease. Haptoglobin is the Hb binding and clearance protein in human plasma and an efficient antagonist of Hb toxicity resulting from physiological red blood cell turnover. However, endogenous concentrations of haptoglobin are insufficient to provide protection against Hb-driven disease processes in conditions such as sickle cell anemia, sepsis, transfusion reactions, medical-device associated hemolysis, or after a subarachnoid hemorrhage. As a result, there is increasing interest in developing haptoglobin therapeutics to target 'toxic' cell-free Hb exposures. Here, we discuss key concepts of Hb toxicity and provide a perspective on the use of haptoglobin as a therapeutic protein.
Collapse
Affiliation(s)
- Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Rok Humar
- Division of Internal Medicine, University Hospital, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital, Zurich, Switzerland.
| |
Collapse
|
29
|
Applefeld WN, Wang J, Solomon SB, Sun J, Klein HG, Natanson C. RBC Storage Lesion Studies in Humans and Experimental Models of Shock. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:1838. [PMID: 38362479 PMCID: PMC10868675 DOI: 10.3390/app10051838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The finding of toxicity in a meta-analysis of observational clinical studies of transfused longer stored red blood cells (RBC) and ethical issues surrounding aging blood for human studies prompted us to develop an experimental model of RBC transfusion. Transfusing older RBCs during canine pneumonia increased mortality rates. Toxicity was associated with in vivo hemolysis with release of cell-free hemoglobin (CFH) and iron. CFH can scavenge nitric oxide, causing vasoconstriction and endothelial injury. Iron, an essential bacterial nutrient, can worsen infections. This toxicity was seen at commonly transfused blood volumes (2 units) and was altered by the severity of pneumonia. Washing longer-stored RBCs mitigated these detrimental effects, but washing fresh RBCs actually increased them. In contrast to septic shock, transfused longer stored RBCs proved beneficial in hemorrhagic shock by decreasing reperfusion injury. Intravenous iron was equivalent in toxicity to transfusion of longer stored RBCs and both should be avoided during infection. Storage of longer-stored RBCs at 2 °C instead of higher standard temperatures (4-6 °C) minimized the release of CFH and iron. Haptoglobin, a plasma protein that binds CFH and increases its clearance, minimizes the toxic effects of longer-stored RBCs during infection and is a biologically plausible novel approach to treat septic shock.
Collapse
Affiliation(s)
- Willard N. Applefeld
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Jeffrey Wang
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Harvey G. Klein
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - Charles Natanson
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| |
Collapse
|
30
|
Affiliation(s)
- Zoe K McQuilten
- Transfusion Research Unit, Monash University, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - D James Cooper
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Remy KE, Cortés-Puch I, Sun J, Feng J, Lertora JJ, Risoleo T, Katz J, Basu S, Liu X, Perlegas A, Kim-Shapiro DB, Klein HG, Natanson C, Solomon SB. Haptoglobin therapy has differential effects depending on severity of canine septic shock and cell-free hemoglobin level. Transfusion 2019; 59:3628-3638. [PMID: 31639229 PMCID: PMC8216248 DOI: 10.1111/trf.15567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND During sepsis, higher plasma cell-free hemoglobin (CFH) levels portend worse outcomes. In sepsis models, plasma proteins that bind CFH improve survival. In our canine antibiotic-treated Staphylococcus aureus pneumonia model, with and without red blood cell (RBC) exchange transfusion, commercial human haptoglobin (Hp) concentrates bound and compartmentalized CFH intravascularly, increased CFH clearance, and lowered iron levels, improving shock, lung injury, and survival. We now investigate in our model how very high CFH levels and treatment time affect Hp's beneficial effects. MATERIALS AND METHODS Two separate canine pneumonia sepsis Hp studies were undertaken: one with exchange transfusion of RBCs after prolonged storage to raise CFH to very high levels and another with rapidly lethal sepsis alone to shorten time to treat. All animals received continuous standard intensive care unit supportive care for 96 hours. RESULTS Older RBCs markedly elevated plasma CFH levels and, when combined with Hp therapy, created supraphysiologic CFH-Hp complexes that did not increase CFH or iron clearance or improve lung injury and survival. In a rapidly lethal bacterial challenge model without RBC transfusion, Hp binding did not increase clearance of complexes or iron or show benefits seen previously in the less lethal model. DISCUSSION High-level CFH-Hp complexes may impair clearance mechanisms and eliminate Hp's beneficial effect during sepsis. Rapidly lethal sepsis narrows the therapeutic window for CFH and iron clearance, also decreasing Hp's beneficial effects. In designing clinical trials, dosing and kinetics may be critical factors if Hp infusion is used to treat sepsis.
Collapse
Affiliation(s)
- Kenneth E. Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland;,Department of Pediatrics, Division of Critical Care, Washington University in St. Louis, St. Louis, Missouri
| | - Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland;,Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, California
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Juan J. Lertora
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Thomas Risoleo
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Julia Katz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Swati Basu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Xiaohua Liu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
The Effects of Storage Age of Blood in Massively Transfused Burn Patients: A Secondary Analysis of the Randomized Transfusion Requirement in Burn Care Evaluation Study. Crit Care Med 2019; 46:e1097-e1104. [PMID: 30234568 DOI: 10.1097/ccm.0000000000003383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Major trials examining storage age of blood transfused to critically ill patients administered relatively few blood transfusions. We sought to determine if the storage age of blood affects outcomes when very large amounts of blood are transfused. DESIGN A secondary analysis of the multicenter randomized Transfusion Requirement in Burn Care Evaluation study which compared restrictive and liberal transfusion strategies. SETTING Eighteen tertiary-care burn centers. PATIENTS Transfusion Requirement in Burn Care Evaluation evaluated 345 adults with burns greater than or equal to 20% of the body surface area. We included only the 303 patients that received blood transfusions. INTERVENTIONS The storage ages of all transfused red cell units were collected during Transfusion Requirement in Burn Care Evaluation. A priori measures of storage age were the the mean storage age of all transfused blood and the proportion of all transfused blood considered very old (stored ≥ 35 d). MEASUREMENTS AND MAIN RESULTS The primary outcome was the severity of multiple organ dysfunction. Secondary outcomes included time to wound healing, the duration of mechanical ventilation, and in-hospital mortality. There were 6,786 red cell transfusions with a mean (± SD) storage age of 25.6 ± 10.2 days. Participants received a mean of 23.4 ± 31.2 blood transfusions (range, 1-219) and a mean of 5.3 ± 10.7 units of very old blood. Neither mean storage age nor proportion of very old blood had any influence on multiple organ dysfunction severity, time to wound healing, or mortality. Duration of ventilation was significantly predicted by both mean blood storage age and the proportion of very old blood, but this was of questionable clinical relevance given extreme variability in duration of ventilation (adjusted r ≤ 0.01). CONCLUSIONS Despite massive blood transfusion, including very old blood, the duration of red cell storage did not influence outcome in burn patients. Provision of the oldest blood first by Blood Banks is rational, even for massive transfusion.
Collapse
|
33
|
Ziebart A, Schaefer MM, Thomas R, Kamuf J, Garcia-Bardon A, Möllmann C, Ruemmler R, Heid F, Schad A, Hartmann EK. Random allogeneic blood transfusion in pigs: characterisation of a novel experimental model. PeerJ 2019; 7:e7439. [PMID: 31440432 PMCID: PMC6699485 DOI: 10.7717/peerj.7439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Background Organ cross-talk describes interactions between a primary affected organ and a secondarily injured remote organ, particularly in lung-brain interactions. A common theory is the systemic distribution of inflammatory mediators that are released by the affected organ and transferred through the bloodstream. The present study characterises the baseline immunogenic effects of a novel experimental model of random allogeneic blood transfusion in pigs designed to analyse the role of the bloodstream in organ cross-talk. Methods After approval of the State and Institutional Animal Care Committee, 20 anesthetized pig were randomized in a donor and an acceptor (each n = 8): the acceptor animals each received high-volume whole blood transfusion from the donor (35–40 ml kg−1). Four animals received balanced electrolyte solution instead of blood transfusion (control group; n = 4). Afterwards the animals underwent extended cardiorespiratory monitoring for eight hours. Post mortem assessment included pulmonary, cerebral and systemic mediators of early inflammatory response (IL-6, TNF-alpha, iNOS), wet to dry ratio, and lung histology. Results No adverse events or incompatibilities occurred during the blood transfusion procedures. Systemic cytokine levels and pulmonary function were unaffected. Lung histopathology scoring did not display relevant intergroup differences. Neither within the lung nor within the brain an up-regulation of inflammatory mediators was detected. High volume random allogeneic blood transfusion in pigs neither impaired pulmonary integrity nor induced systemic, lung, or brain inflammatory response. Conclusion This approach can represent a novel experimental model to characterize the blood-bound transmission in remote organ injury.
Collapse
Affiliation(s)
- Alexander Ziebart
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Moritz M Schaefer
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Rainer Thomas
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas Garcia-Bardon
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Möllmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Heid
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Arno Schad
- Institute of Pathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
34
|
Kanias T, Busch MP. Diversity in a blood bag: application of omics technologies to inform precision Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:258-262. [PMID: 31184580 PMCID: PMC6683866 DOI: 10.2450/2019.0056-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Kanias
- Vitalant Research Institute, Denver, CO, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| |
Collapse
|
35
|
Sharma S. Role of redox iron towards an increase in mortality among patients: a systemic review and meta-analysis. Blood Res 2019; 54:87-101. [PMID: 31309086 PMCID: PMC6614104 DOI: 10.5045/br.2019.54.2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022] Open
Abstract
An increase in biochemical concentrations of non-transferrin bound iron (NTBI) within the patients with an increase in serum iron concentration was evaluated with the following objectives: (a) Iron overloading diseases/conditions with free radicle form of ‘iron containing’ reactive oxygen species (ROS) and its imbalance mediated mortality, and (b) Intervention with iron containing drugs in context to increased redox iron concentration and treatment induced mortality. Literature search was done within Pubmed and cochrane review articles. The Redox iron levels are increased during dys-erythropoiesis and among transfusion recipient population and are responsive to iron-chelation therapy. Near expiry ‘stored blood units’ show a significant rise in the ROS level. Iron mediated ROS damage may be estimated by the serum antioxidant level, and show reduction in toxicity with high antioxidant, low pro-oxidant levels. Iron drug therapy causes a significant increase in NTBI and labile iron levels. Hospitalized patients on iron therapy however show a lower mortality rate. Serum ferritin is a mortality indicator among the high-dose iron therapy and transfusion dependent population. The cumulative difference of pre-chelation to post chelation ROS iron level was 0.97 (0.62; 1.32; N=261) among the transfusion dependent subjects and 2.89 (1.81–3.98; N=130) in the post iron therapy ‘iron ROS’ group. In conclusion, iron mediated mortality may not be mediated by redox iron among multi-transfused and iron overloaded patients.
Collapse
Affiliation(s)
- Sankalp Sharma
- Department of Transfusion Medicine and Blood Bank, All India Institute of Medical Sciences Raipur, Chhattisgarh, India
| |
Collapse
|
36
|
Baron-Stefaniak J, Leitner GC, Küntzel NKI, Meyer EL, Hiesmayr MJ, Ullrich R, Baron DM. Transfusion of standard-issue packed red blood cells induces pulmonary vasoconstriction in critically ill patients after cardiac surgery-A randomized, double-blinded, clinical trial. PLoS One 2019; 14:e0213000. [PMID: 30856182 PMCID: PMC6411146 DOI: 10.1371/journal.pone.0213000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Experimental and volunteer studies have reported pulmonary vasoconstriction during transfusion of packed red blood cells (PRBCs) stored for prolonged periods. The primary aim of this study was to evaluate whether transfusion of PRBCs stored over 21 days (standard-issue, siPRBCs) increases pulmonary artery pressure (PAP) to a greater extent than transfusion of PRBCs stored for less then 14 days (fresh, fPRBCs) in critically ill patients following cardiac surgery. The key secondary aim was to assess whether the pulmonary vascular resistance index (PVRI) increases after transfusion of siPRBCs to a greater extent than after transfusion of fPRBCs. METHODS The study was performed as a single-center, double-blinded, parallel-group, randomized clinical trial. Leukoreduced PRBCs were transfused while continuously measuring hemodynamic parameters. Systemic concentrations of syndecan-1 were measured to assess glycocalyx injury. After randomizing 19 patients between January 2014 and June 2016, the study was stopped due to protracted patient recruitment. RESULTS Of 19 randomized patients, 11 patients were transfused and included in statistical analyses. Eight patients were excluded prior to transfusion, 6 patients received fPRBCs (10±3 storage days), whereas 5 patients received siPRBCs (33±4 storage days). The increase in PAP (7±3 vs. 2±2 mmHg, P = 0.012) was greater during transfusion of siPRBCs than during transfusion of fPRBCs. In addition, the change in PVRI (150±89 vs. -4±37 dyn·s·cm-5·m2, P = 0.018) was greater after transfusion of siPRBCs than after transfusion of fPRBCs. The increase in PAP correlated with the change of systemic syndecan-1 concentrations at the end of transfusion (R = 0.64,P = 0.034). CONCLUSION Although this study is underpowered and results require verification in larger clinical trials, our findings suggest that transfusion of siPRBCs increases PAP and PVRI to a greater extent than transfusion of fPRBCs in critically ill patients following cardiac surgery. Glycocalyx injury might contribute to pulmonary vasoconstriction associated with transfusion of stored blood.
Collapse
Affiliation(s)
- Joanna Baron-Stefaniak
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerda C. Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Nina K. I. Küntzel
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Elias L. Meyer
- Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Michael J. Hiesmayr
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - David M. Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
37
|
Cullison M, Mahon R, McGwin G, McCarron R, Browning R, Auker C. Blood transfusions, blood storage, and correlation with elevated pulmonary arterial pressures. Transfusion 2019; 59:1259-1266. [PMID: 30681152 DOI: 10.1111/trf.15122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of this study was to determine if transfusion with RBCs is associated with a rise in mean pulmonary artery pressure (MPAP) and whether such a rise is influenced by the duration of RBC storage. STUDY DESIGN AND METHODS A retrospective chart review of intensive care unit patients with pulmonary artery catheters was conducted at two military medical centers. RESULTS RBC transfusion is associated with a sustained (≥4 hours) statistically significant 2- to 3-mm Hg rise in MPAP relative to both pretransfusion levels (p < 0.05) and compared to asanguinous fluid infusions (p < 0.05). The magnitude of the rise (all infusions, RBCs, and asanguinous) correlates positively with in-hospital mortality (p < 0.01) and hospital length of stay (p < 0.01). The duration of RBC storage was not statistically correlated with the magnitude of rise in the population studied. Mean infusion volume was greater for RBC (vs. asanguinous) infusions, but volume adjustment of MPAP values did not alter the pattern or statistical significance of the results. CONCLUSIONS Analysis of retrospectively collected data suggests that transfusion of RBC-containing fluids results in a sustained elevation of MPAP. In the patient population studied, the duration of RBC storage did not correlate with the magnitude of MPAP rise. Future prospective studies of transfusion effects should consider including assessment of MPAP and subpopulation analyses.
Collapse
Affiliation(s)
- Marilynn Cullison
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Richard Mahon
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Gerald McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard McCarron
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Robert Browning
- Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles Auker
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| |
Collapse
|
38
|
Blaine KP, Cortés-Puch I, Sun J, Wang D, Solomon SB, Feng J, Gladwin MT, Kim-Shapiro DB, Basu S, Perlegas A, West K, Klein HG, Natanson C. Impact of different standard red blood cell storage temperatures on human and canine RBC hemolysis and chromium survival. Transfusion 2019; 59:347-358. [PMID: 30383305 PMCID: PMC6615554 DOI: 10.1111/trf.14997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Storage temperature is a critical factor for maintaining red-blood cell (RBC) viability, especially during prolonged cold storage. The target range of 1 to 6°C was established decades ago and may no longer be optimal for current blood-banking practices. STUDY DESIGN AND METHODS Human and canine RBCs were collected under standard conditions and stored in precision-controlled refrigerators at 2°C, 4°C, or 6°C. RESULTS During 42-day storage, human and canine RBCs showed progressive increases in supernatant non-transferrin-bound iron, cell-free hemoglobin, base deficit, and lactate levels that were overall greater at 6°C and 4°C than at 2°C. Animals transfused with 7-day-old RBCs had similar plasma cell-free hemoglobin and non-transferrin-bound iron levels at 1 to 72 hours for all three temperature conditions by chromium-51 recovery analysis. However, animals transfused with 35-day-old RBCs stored at higher temperatures developed plasma elevations in non-transferrin-bound iron and cell-free hemoglobin at 24 and 72 hours. Despite apparent impaired 35-day storage at 4°C and 6°C compared to 2°C, posttransfusion chromium-51 recovery at 24 hours was superior at higher temperatures. This finding was confounded by a preparation artifact related to an interaction between temperature and storage duration that leads to removal of fragile cells with repeated washing of the radiolabeled RBC test sample and renders the test sample unrepresentative of the stored unit. CONCLUSIONS RBCs stored at the lower bounds of the temperature range are less metabolically active and produce less anaerobic acidosis and hemolysis, leading to a more suitable transfusion product. The higher refrigeration temperatures are not optimal during extended RBC storage and may confound chromium viability studies.
Collapse
Affiliation(s)
- Kevin P. Blaine
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
- Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Dong Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Kamille West
- Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Harvey G. Klein
- Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
40
|
Wozniak MJ, Sullo N, Qureshi S, Dott W, Cardigan R, Wiltshire M, Morris T, Nath M, Bittar N, Bhudia SK, Kumar T, Goodall AH, Murphy GJ. Randomized trial of red cell washing for the prevention of transfusion-associated organ injury in cardiac surgery. Br J Anaesth 2018; 118:689-698. [PMID: 28475670 PMCID: PMC5430295 DOI: 10.1093/bja/aex083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background. Experimental studies suggest that mechanical cell washing to remove pro-inflammatory components that accumulate in the supernatant of stored donor red blood cells (RBCs) might reduce inflammation and organ injury in transfused patients. Methods. Cardiac surgery patients at increased risk of large-volume RBC transfusion were eligible. Participants were randomized to receive either mechanically washed allogenic RBCs or standard care RBCs. The primary outcome was serum interleukin-8 measured at baseline and at four postsurgery time points. A mechanism substudy evaluated the effects of washing on stored RBCs in vitro and on markers of platelet, leucocyte, and endothelial activation in trial subjects. Results. Sixty adult cardiac surgery patients at three UK cardiac centres were enrolled between September 2013 and March 2015. Subjects received a median of 3.5 (interquartile range 2–5.5) RBC units, stored for a mean of 21 (sd 5.2) days, within 48 h of surgery. Mechanical washing reduced concentrations of RBC-derived microvesicles but increased cell-free haemoglobin concentrations in RBC supernatant relative to standard care RBC supernatant. There was no difference between groups with respect to perioperative serum interleukin-8 values [adjusted mean difference 0.239 (95% confidence intervals −0.231, 0.709), P=0.318] or concentrations of plasma RBC microvesicles, platelet and leucocyte activation, plasma cell-free haemoglobin, endothelial activation, or biomarkers of heart, lung, or kidney injury. Conclusions. These results do not support a hypothesis that allogenic red blood cell washing has clinical benefits in cardiac surgery. Clinical trial registration. ISRCTN 27076315.
Collapse
Affiliation(s)
- M J Wozniak
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - N Sullo
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - S Qureshi
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - W Dott
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - R Cardigan
- National Health Service Blood and Transplant, Cambridge CB2 0PT, UK
| | - M Wiltshire
- National Health Service Blood and Transplant, Cambridge CB2 0PT, UK
| | - T Morris
- Leicester Clinical Trials Unit, Leicester Diabetes Centre, Leicester General Hospital, Leicester LE5 4PW, UK
| | - M Nath
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - N Bittar
- Blackpool Victoria Hospital NHS Trust, Blackpool, Lancashire FY3 8NR, UK
| | - S K Bhudia
- University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - T Kumar
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - A H Goodall
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - G J Murphy
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
41
|
Gautam R, Oh JY, Marques MB, Dluhy RA, Patel RP. Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy. Lab Med 2018; 49:298-310. [PMID: 29893945 PMCID: PMC6180846 DOI: 10.1093/labmed/lmy018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The therapeutic efficacy and safety of stored red blood cells (RBCs) relies on minimal in-bag hemolysis. The accuracy of current methods of measuring hemolysis can suffer as a result of specimen collection and processing artefacts. OBJECTIVE To test whether Raman spectroscopy could be used to assess hemolysis. METHODS RBCs were stored for as long as 42 days. Raman spectra of RBCs were measured before and after washing, and hemolysis was measured in supernatant by visible spectroscopy. RESULTS Raman spectra indicated increased concentrations of oxyhemoglobin (oxyHb) and methemoglobin (metHb), and decreased membrane fluidity with storage age. Changes in oxyHb and metHb were associated with the intraerythrocytic and extracellular fractions, respectively. Hemolysis increased in a storage age-dependent manner. Changes in Raman bands reflective of oxyHb, metHb, and RBC membranes correlated with hemolysis; the most statistically significant change was an increased intensity of metHb and decreased membrane fluidity. CONCLUSIONS These data suggest that Raman spectroscopy may offer a new label-free modality to assess RBC hemolysis during cold storage.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo-Yeun Oh
- Department of Chemistry Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marisa B Marques
- Department of Chemistry Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard A Dluhy
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh P Patel
- Department of Chemistry Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Ferreira RRF, Graça RMC, Cardoso IM, Gopegui RR, de Matos AJF. In vitro hemolysis of stored units of canine packed red blood cells. J Vet Emerg Crit Care (San Antonio) 2018; 28:512-517. [DOI: 10.1111/vec.12770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Rui R. F. Ferreira
- Departments of Veterinary Clinics; Institute for Biomedical Sciences of Abel Salazar; University of Porto; Porto Portugal
| | | | | | - Rafael R. Gopegui
- Department of Animal Medicine and Surgery; Veterinary Faculty; Barcelona Autonomous University; Barcelona Spain
| | - Augusto J. F. de Matos
- Departments of Veterinary Clinics; Institute for Biomedical Sciences of Abel Salazar; University of Porto; Porto Portugal
- Multidisciplinary Unit for Biomedical Research; Porto Portugal
| |
Collapse
|
43
|
Remy KE, Cortés-Puch I, Solomon SB, Sun J, Pockros BM, Feng J, Lertora JJ, Hantgan RR, Liu X, Perlegas A, Warren HS, Gladwin MT, Kim-Shapiro DB, Klein HG, Natanson C. Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight 2018; 3:123013. [PMID: 30232287 PMCID: PMC6237235 DOI: 10.1172/jci.insight.123013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock.
Collapse
Affiliation(s)
- Kenneth E. Remy
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA.,Department of Pediatrics, Division of Critical Care, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Benjamin M. Pockros
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Juan J. Lertora
- Clinical Pharmacology Program, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Roy R. Hantgan
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Xiaohua Liu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - H. Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, and Shriners Hospital for Crippled Children, Boston, Massachusetts, USA
| | - Mark T. Gladwin
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Marin T, Patel RM, Roback JD, Stowell SR, Guo Y, Easley K, Warnock M, Skvarich J, Josephson CD. Does red blood cell irradiation and/or anemia trigger intestinal injury in premature infants with birth weight ≤ 1250 g? An observational birth cohort study. BMC Pediatr 2018; 18:270. [PMID: 30098602 PMCID: PMC6087009 DOI: 10.1186/s12887-018-1241-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a leading cause of neonatal morbidity and mortality in premature infants. To date, no effective biomarkers exist to predict which premature infants will develop NEC, limiting targeted prevention strategies. Multiple observational studies have reported an association between the exposure to red blood cell (RBC) transfusion and/or anemia and the subsequent development of NEC; however, the underlying physiologic mechanisms of how these factors are independently associated with NEC remain unknown. METHODS In this paper, we outline our prospective, multicenter observational cohort study of infants with a birth weight ≤ 1250 g to investigate the associations between RBC transfusion, anemia, intestinal oxygenation and injury that lead to NEC. Our overarching hypothesis is that irradiation of RBC units followed by longer storage perturbs donor RBC metabolism and function, and these derangements are associated with paradoxical microvascular vasoconstriction and intestinal tissue hypoxia increasing the risk for injury and/or NEC in transfused premature infants with already impaired intestinal oxygenation due to significant anemia. To evaluate these associations, we are examining the relationship between prolonged irradiation storage time (pIST), RBC metabolomic profiles, and anemia on intestinal oxygenation non-invasively measured by near-infrared spectroscopy (NIRS), and the development of NEC in transfused premature infants. DISCUSSION Our study will address a critical scientific gap as to whether transfused RBC characteristics, such as irradiation and metabolism, impair intestinal function and/or microvascular circulation. Given the multifactorial etiology of NEC, preventative efforts will be more successful if clinicians understand the underlying pathophysiologic mechanisms and modifiable risk factors influencing the disease. TRIAL REGISTRATION Our study is registered in ClinicalTrials.gov Identifier: NCT02741648 .
Collapse
Affiliation(s)
- Terri Marin
- Department of Physiological and Technological Nursing, Augusta University, College of Nursing, 1120 15th Street, EC-5354, Augusta, GA 30912 USA
| | - Ravi M. Patel
- Department of Pediatrics, Emory University, School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University, School of Medicine, 1364 Clifton Rd NE, Atlanta, GA 30322 USA
| | - Sean R. Stowell
- Department of Pathology and Laboratory Medicine, Emory University, School of Medicine, 1364 Clifton Rd NE, Atlanta, GA 30322 USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Emory University, School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322 USA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Emory University, School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322 USA
| | - Megan Warnock
- Department of Biostatistics and Bioinformatics, Emory University, School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322 USA
| | - Jane Skvarich
- Department of Pediatrics, Emory University, School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| | - Cassandra D. Josephson
- Department of Pediatrics, Emory University, School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| |
Collapse
|
45
|
Refaai MA, Conley GW, Henrichs KF, McRae H, Schmidt AE, Phipps RP, Spinelli SL, Masel D, Cholette JM, Pietropaoli A, Eaton MP, Blumberg N. Decreased Hemolysis and Improved Platelet Function in Blood Components Washed With Plasma-Lyte A Compared to 0.9% Sodium Chloride. Am J Clin Pathol 2018; 150:146-153. [PMID: 29878038 DOI: 10.1093/ajcp/aqy036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Washing cellular blood products is accepted to ameliorate repeated severe allergic reactions but is associated with RBC hemolysis and suboptimal platelet function. We compared in vitro hemolysis and platelet function in blood components after washing with Plasma-Lyte A (PL-A) vs normal saline (NS). METHODS RBC (n = 14) were washed/resuspended in NS or PL-A. Free hemoglobin and heme were determined at 0, 24, 48, and 72 hours. Platelet concentrates (PCs; n = 21) were washed with NS or PL-A and resuspended in same washing solution (n = 13) or ABO-identical plasma (n = 8). Platelet aggregation and spreading were evaluated. RESULTS The 24-hour free hemoglobin and heme levels were higher in NS (P < .05). Improved platelet function was observed in PL-A-washed PCs (P < .001). DISCUSSION PL-A showed less RBC hemolysis and better platelet function than NS. Whether such differences would occur in vivo is unknown.
Collapse
Affiliation(s)
- Majed A Refaai
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Grace W Conley
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Kelly F Henrichs
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Hannah McRae
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Amy E Schmidt
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
- Departments of Environmental Medicine and Microbiology and Immunology, Rochester, NY
- Department of Pediatrics and Critical Care and Cardiology Division, Golisano Children’s Hospital, Rochester, NY
- Department of Medicine, Pulmonary and Critical Care Division, Rochester, NY
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Debra Masel
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| | - Jill M Cholette
- Department of Pediatrics and Critical Care and Cardiology Division, Golisano Children’s Hospital, Rochester, NY
| | | | - Michael P Eaton
- Department of Anesthesia, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Rochester, NY
| |
Collapse
|
46
|
McQuilten ZK, French CJ, Nichol A, Higgins A, Cooper DJ. Effect of age of red cells for transfusion on patient outcomes: a systematic review and meta-analysis. Transfus Med Rev 2018. [DOI: 10.1016/j.tmrv.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Youssef LA, Spitalnik SL. Iron: a double-edged sword. Transfusion 2018; 57:2293-2297. [PMID: 28944542 DOI: 10.1111/trf.14296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lyla A Youssef
- Department of Microbiology & Immunology, Columbia University, New York, NY
| | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University, New York, NY
| |
Collapse
|
48
|
Cushing MM, Kelley J, Klapper E, Friedman DF, Goel R, Heddle NM, Hopkins CK, Karp JK, Pagano MB, Perumbeti A, Ramsey G, Roback JD, Schwartz J, Shaz BH, Spinella PC, Cohn CS, Cohn CS, Cushing MM, Kelley J, Klapper E. Critical developments of 2017: a review of the literature from selected topics in transfusion. A committee report from the AABB Clinical Transfusion Medicine Committee. Transfusion 2018. [PMID: 29520794 DOI: 10.1111/trf.14520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The AABB compiles an annual synopsis of the published literature covering important developments in the field of Transfusion Medicine. For the first time, an abridged version of this work is being made available in TRANSFUSION, with the full-length report available as an Appendix S1 (available as supporting information in the online version of this paper). STUDY DESIGN AND METHODS Papers published in 2016 and early 2017 are included, as well as earlier papers cited for background. Although this synopsis is comprehensive, it is not exhaustive, and some papers may have been excluded or missed. RESULTS The following topics are covered: duration of red blood cell storage and clinical outcomes, blood donor characteristics and patient outcomes, reversal of bleeding in hemophilia and for patients on direct oral anticoagulants, transfusion approach to hemorrhagic shock, pathogen inactivation, pediatric transfusion medicine, therapeutic apheresis, and extracorporeal support. CONCLUSION This synopsis may be a useful educational tool.
Collapse
Affiliation(s)
| | - James Kelley
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ellen Klapper
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David F Friedman
- Blood Bank and Transfusion Medicine Department, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruchika Goel
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Nancy M Heddle
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Julie Katz Karp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Monica B Pagano
- Transfusion Medicine Division, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Ajay Perumbeti
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Glenn Ramsey
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York-Presbyterian Hospital
| | | | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | - James Kelley
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ellen Klapper
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
49
|
Red blood cells ageing markers: a multi-parametric analysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:239-248. [PMID: 28518051 DOI: 10.2450/2017.0318-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Red blood cells collected in citrate-phosphate-dextrose can be stored for up to 42 days at 4 °C in saline-adenine-glucose-mannitol additive solution. During this controlled, but nevertheless artificial, ex vivo ageing, red blood cells accumulate lesions that can be reversible or irreversible upon transfusion. The aim of the present study is to follow several parameters reflecting cell metabolism, antioxidant defences, morphology and membrane dynamics during storage. MATERIALS AND METHODS Five erythrocyte concentrates were followed weekly during 71 days. Extracellular glucose and lactate concentrations, total antioxidant power, as well as reduced and oxidised intracellular glutathione levels were quantified. Microvesiculation, percentage of haemolysis and haematologic parameters were also evaluated. Finally, morphological changes and membrane fluctuations were recorded using label-free digital holographic microscopy. RESULTS The antioxidant power as well as the intracellular glutathione concentration first increased, reaching maximal values after one and two weeks, respectively. Irreversible morphological lesions appeared during week 5, where discocytes began to transform into transient echinocytes and finally spherocytes. At the same time, the microvesiculation and haemolysis started to rise exponentially. After six weeks (expiration date), intracellular glutathione was reduced by 25%, reflecting increasing oxidative stress. The membrane fluctuations showed decreased amplitudes during shape transition from discocytes to spherocytes. DISCUSSION Various types of lesions accumulated at different chemical and cellular levels during storage, which could impact their in vivo recovery after transfusion. A marked effect was observed after four weeks of storage, which corroborates recent clinical data. The prolonged follow-up period allowed the capture of deep storage lesions. Interestingly, and as previously described, the severity of the changes differed among donors.
Collapse
|
50
|
The potential adverse effects of haemolysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:218-221. [PMID: 28518048 DOI: 10.2450/2017.0311-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Haemolysis occurs in many haematologic and non-haematologic diseases. Transfusion of packed red blood cells (pRBCs) can result in intravascular haemolysis, in which the RBCs are destroyed within the circulation, and extravascular haemolysis, in which RBCs are phagocytosed in the monocyte-macrophage system. This happens especially after RBCs have been stored under refrigerated conditions for long periods. The clinical implications and the relative contribution of intra- vs extra-vascular haemolysis are still a subject of debate. They have been associated with adverse effects in animal models, but it remains to be determined whether these may be involved in mediating adverse effects in humans.
Collapse
|