1
|
Heim C, Hartig L, Weinelt N, Moser LM, Salzmann-Manrique E, Merker M, Wels WS, Tonn T, Bader P, Klusmann JH, van Wijk SJ, Rettinger E. Bortezomib promotes the TRAIL-mediated killing of resistant rhabdomyosarcoma by ErbB2/Her2-targeted CAR-NK-92 cells via DR5 upregulation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200802. [PMID: 38706988 PMCID: PMC11067460 DOI: 10.1016/j.omton.2024.200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Treatment resistance and immune escape are hallmarks of metastatic rhabdomyosarcoma (RMS), underscoring the urgent medical need for therapeutic agents against this disease entity as a key challenge in pediatric oncology. Chimeric antigen receptor (CAR)-based immunotherapies, such as the ErbB2 (Her2)-CAR-engineered natural killer (NK) cell line NK-92/5.28.z, provide antitumor cytotoxicity primarily through CAR-mediated cytotoxic granule release and thereafter-even in cases with low surface antigen expression or tumor escape-by triggering intrinsic NK cell-mediated apoptosis induction via additional ligand/receptors. In this study, we showed that bortezomib increased susceptibility toward apoptosis in clinically relevant RMS cell lines RH30 and RH41, and patient-derived RMS tumor organoid RMS335, by upregulation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor DR5 in these metastatic, relapsed/refractory (r/r) RMS tumors. Subsequent administration of NK-92/5.28.z cells significantly enhanced antitumor activity in vitro. Applying recombinant TRAIL instead of NK-92/5.28.z cells confirmed that the synergistic antitumor effects of the combination treatment were mediated via TRAIL. Western blot analyses indicated that the combination treatment with bortezomib and NK-92/5.28.z cells increased apoptosis by interacting with the nuclear factor κB, JNK, and caspase pathways. Overall, bortezomib pretreatment can sensitize r/r RMS tumors to CAR- and, by upregulating DR5, TRAIL-mediated cytotoxicity of NK-92/5.28.z cells.
Collapse
Affiliation(s)
- Catrin Heim
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Leonie Hartig
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Nadine Weinelt
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
| | - Laura M. Moser
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Emilia Salzmann-Manrique
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Michael Merker
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Torsten Tonn
- DRK-Blutspendedienst Baden-Württemberg/Hessen gemeinnützige GmbH, 60505 Frankfurt am Main, Germany
| | - Peter Bader
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Sjoerd J.L. van Wijk
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| | - Eva Rettinger
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Heim C, Moser LM, Kreyenberg H, Bonig HB, Tonn T, Wels WS, Gradhand E, Ullrich E, Meister MT, Koerkamp MG, Holstege FCP, Drost J, Klusmann JH, Bader P, Merker M, Rettinger E. ErbB2 (HER2)-CAR-NK-92 cells for enhanced immunotherapy of metastatic fusion-driven alveolar rhabdomyosarcoma. Front Immunol 2023; 14:1228894. [PMID: 37662907 PMCID: PMC10471977 DOI: 10.3389/fimmu.2023.1228894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Metastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. Methods Here, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model. Results Our results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors. Discussion These findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS.
Collapse
Affiliation(s)
- Catrin Heim
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
| | - Laura M. Moser
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Herman Kreyenberg
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
| | - Halvard B. Bonig
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Elise Gradhand
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Michael T. Meister
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marian Groot Koerkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Frankfurt am Main, Germany
| | - Peter Bader
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Michael Merker
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Eva Rettinger
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| |
Collapse
|
4
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
5
|
Zeng J, Shu Z, Liang Q, Zhang J, Wu W, Wang X, Zhou A. Structural basis of von Willebrand factor multimerization and tubular storage. Blood 2022; 139:3314-3324. [PMID: 35148377 PMCID: PMC11022981 DOI: 10.1182/blood.2021014729] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The von Willebrand factor (VWF) propeptide (domains D1D2) is essential for the assembly of VWF multimers and its tubular storage in Weibel-Palade bodies. However, detailed molecular mechanism underlying this propeptide dependence is unclear. Here, we prepared Weibel-Palade body-like tubules using the N-terminal fragment of VWF and solved the cryo-electron microscopy structures of the tubule at atomic resolution. Detailed structural and biochemical analysis indicate that the propeptide forms a homodimer at acidic pH through the D2:D2 binding interface and then recruits 2 D'D3 domains, forming an intertwined D1D2D'D3 homodimer in essence. Stacking of these homodimers by the intermolecular D1:D2 interfaces brings 2 D3 domains face-to-face and facilitates their disulfide linkages and multimerization of VWF. Sequential stacking of these homodimers leads to a right-hand helical tubule for VWF storage. The clinically identified VWF mutations in the propeptide disrupted different steps of the assembling process, leading to diminished VWF multimers in von Willebrand diseases (VWD). Overall, these results indicate that the propeptide serves as a pH-sensing template for VWF multimerization and tubular storage. This sheds light on delivering normal propeptide as a template to rectify the defects in multimerization of VWD mutants.
Collapse
Affiliation(s)
- Jianwei Zeng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zimei Shu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Formes H, Bernardes JP, Mann A, Bayer F, Pontarollo G, Kiouptsi K, Schäfer K, Attig S, Nikolova T, Hofmann TG, Schattenberg JM, Todorov H, Gerber S, Rosenstiel P, Bopp T, Sommer F, Reinhardt C. The gut microbiota instructs the hepatic endothelial cell transcriptome. iScience 2021; 24:103092. [PMID: 34622147 PMCID: PMC8479694 DOI: 10.1016/j.isci.2021.103092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota affects remote organ functions but its impact on organotypic endothelial cell (EC) transcriptomes remains unexplored. The liver endothelium encounters microbiota-derived signals and metabolites via the portal circulation. To pinpoint how gut commensals affect the hepatic sinusoidal endothelium, a magnetic cell sorting protocol, combined with fluorescence-activated cell sorting, was used to isolate hepatic sinusoidal ECs from germ-free (GF) and conventionally raised (CONV-R) mice for transcriptome analysis by RNA sequencing. This resulted in a comprehensive map of microbiota-regulated hepatic EC-specific transcriptome profiles. Gene Ontology analysis revealed that several functional processes in the hepatic endothelium were affected. The absence of microbiota influenced the expression of genes involved in cholesterol flux and angiogenesis. Specifically, genes functioning in hepatic endothelial sphingosine metabolism and the sphingosine-1-phosphate pathway showed drastically increased expression in the GF state. Our analyses reveal a prominent role for the microbiota in shaping the transcriptional landscape of the hepatic endothelium. Germ-free mice show transcriptome differences in the liver sinusoidal endothelium Gut microbiota suppresses sphingolipid metabolism in the hepatic sinusoidal endothelium Cholesterol flux and angiogenesis in liver endothelium is microbiota-regulated Bacteroides thetaiotaomicron did not affect expression levels of the identified genes
Collapse
Affiliation(s)
- Henning Formes
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,Department of Chemistry, Biochemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Attig
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,TRON, Translational Oncology at the University Medical Center, Johannes Gutenberg-University Mainz gGmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Teodora Nikolova
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, Department of Internal Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
8
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
9
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
10
|
Argaw T, Marino MP, Timmons A, Eldridge L, Takeda K, Li P, Kwilas A, Ou W, Reiser J. In vivo targeting of lentiviral vectors pseudotyped with the Tupaia paramyxovirus H glycoprotein bearing a cell-specific ligand. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:670-680. [PMID: 34141822 PMCID: PMC8166926 DOI: 10.1016/j.omtm.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Despite their exceptional capacity for transgene delivery ex vivo, lentiviral (LV) vectors have been slow to demonstrate clinical utility in the context of in vivo applications. Unresolved safety concerns related to broad LV vector tropism have limited LV vectors to ex vivo applications. Here, we report on a novel LV vector-pseudotyping strategy involving envelope glycoproteins of Tupaia paramyxovirus (TPMV) engineered to specifically target human cell-surface receptors. LV vectors pseudotyped with the TPMV hemagglutinin (H) protein bearing the interleukin (IL)-13 ligand in concert with the TPMV fusion (F) protein allowed efficient transduction of cells expressing the human IL-13 receptor alpha 2 (IL-13Rα2). Immunodeficient mice bearing orthotopically implanted human IL-13Rα2 expressing NCI-H1299 non-small cell lung cancer cells were injected intravenously with a single dose of LV vector pseudotyped with the TPMV H-IL-13 glycoprotein. Vector biodistribution was monitored using bioluminescence imaging of firefly luciferase transgene expression, revealing specific transduction of tumor tissue. A quantitative droplet digital PCR (ddPCR) analysis of lung tissue samples revealed a >15-fold increase in the tumor transduction in mice treated with LV vectors displaying IL-13 relative to those without IL-13. Our results show that TPMV envelope glycoproteins can be equipped with ligands to develop targeted LV vectors for in vivo applications.
Collapse
Affiliation(s)
- Takele Argaw
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Michael P. Marino
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Andrew Timmons
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Lindsey Eldridge
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Pingjuan Li
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Vedere Bio, Inc., Cambridge, MA 02139, USA
| | - Anna Kwilas
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Corresponding author: Jakob Reiser, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, 10903 New Hampshire Avenue, Building 52/72, Room 3106, Silver Spring, MD 20993, USA.
| |
Collapse
|
11
|
Remes A, Basha DI, Puehler T, Borowski C, Hille S, Kummer L, Wagner AH, Hecker M, Soethoff J, Lutter G, Frank D, Arif R, Frey N, Zaradzki M, Müller OJ. Alginate hydrogel polymers enable efficient delivery of a vascular-targeted AAV vector into aortic tissue. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:83-93. [PMID: 33768132 PMCID: PMC7973147 DOI: 10.1016/j.omtm.2021.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
Gene therapeutic approaches to aortic diseases require efficient vectors and delivery systems for transduction of endothelial cells (ECs) and smooth muscle cells (SMCs). Here, we developed a novel strategy to efficiently deliver a previously described vascular-specific adeno-associated viral (AAV) vector to the abdominal aorta by application of alginate hydrogels. To efficiently transduce ECs and SMCs, we used AAV9 vectors with a modified capsid (AAV9SLR) encoding enhanced green fluorescent protein (EGFP), as wild-type AAV vectors do not transduce ECs and SMCs well. AAV9SLR vectors were embedded into a solution containing sodium alginate and polymerized into hydrogels. Gels were surgically implanted around the adventitia of the infrarenal abdominal aorta of adult mice. Three weeks after surgery, an almost complete transduction of both the endothelium and tunica media adjacent to the gel was demonstrated in tissue sections. Hydrogel-mediated delivery resulted in induction of neutralizing antibodies but did not cause inflammatory responses in serum or the aortic wall. To further determine the translational potential, aortic tissue from patients was embedded ex vivo into AAV9SLR-containing hydrogel, and efficient transduction could be confirmed. These findings demonstrate that alginate hydrogel harboring a vascular-targeting AAV9SLR vector allows efficient local transduction of the aortic wall.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Dima Ibrahim Basha
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Puehler
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Christopher Borowski
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas H. Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jasmin Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Lutter
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Corresponding author: Oliver J. Müller, Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
12
|
Merker M, Wagner J, Kreyenberg H, Heim C, Moser LM, Wels WS, Bonig H, Ivics Z, Ullrich E, Klingebiel T, Bader P, Rettinger E. ERBB2-CAR-Engineered Cytokine-Induced Killer Cells Exhibit Both CAR-Mediated and Innate Immunity Against High-Risk Rhabdomyosarcoma. Front Immunol 2020; 11:581468. [PMID: 33193388 PMCID: PMC7641627 DOI: 10.3389/fimmu.2020.581468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
High-risk rhabdomyosarcoma (RMS) occurring in childhood to young adulthood is associated with a poor prognosis; especially children above the age of 10 with advanced stage alveolar RMS still succumb to the disease within a median of 2 years. The advent of chimeric antigen receptor (CAR)-engineered T cells marked significant progress in the treatment of refractory B cell malignancies, but experience for solid tumors has proven challenging. We speculate that this is at least in part due to the poor quality of the patient's own T cells and therefore propose using CAR-modified cytokine-induced killer (CIK) cells as effector cells. CIK cells are a heterogeneous population of polyclonal T cells that acquire phenotypic and cytotoxic properties of natural killer (NK) cells through the cultivation process, becoming so-called T-NK cells. CIK cells can be genetically modified to express CARs. They are minimally alloreactive and can therefore be acquired from haploidentical first-degree relatives. Here, we explored the potential of ERBB2-CAR-modified random-donor CIK cells as a treatment for RMS in xenotolerant mice bearing disseminated high-risk RMS tumors. In otherwise untreated mice, RMS tumors engrafted 13-35 days after intravenous tumor cell injection, as shown by in vivo bioluminescence imaging, immunohistochemistry, and polymerase chain reaction for human gDNA, and mice died shortly thereafter (median/range: 62/56-66 days, n = 5). Wild-type (WT) CIK cells given at an early stage delayed and eliminated RMS engraftment in 4 of 6 (67%) mice, while ERBB2-CAR CIK cells inhibited initial tumor load in 8 of 8 (100%) mice. WT CIK cells were detectable but not as active as CAR CIK cells at distant tumor sites. CIK cell therapies during advanced RMS delayed but did not inhibit tumor progression compared to untreated controls. ERBB2-CAR CIK cell therapy also supported innate immunity as evidenced by selective accumulation of NK and T-NK cell subpopulations in disseminated RMS tumors, which was not observed for WT CIK cells. Our data underscore the power of heterogenous immune cell populations (T, NK, and T-NK cells) to control solid tumors, which can be further enhanced with CARs, suggesting ERBB2-CAR CIK cells as a potential treatment for high-risk RMS.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Line, Tumor
- Cytokine-Induced Killer Cells/immunology
- Humans
- Immunity, Innate/immunology
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Natural Killer T-Cells/immunology
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/immunology
- Rhabdomyosarcoma/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Michael Merker
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Juliane Wagner
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Catrin Heim
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura M. Moser
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Halvard Bonig
- Department of Cellular Therapeutics/Cell Processing (Good Manufacturing Practice, GMP), Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Thomas Klingebiel
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Oelsner S, Waldmann A, Billmeier A, Röder J, Lindner A, Ullrich E, Marschalek R, Dotti G, Jung G, Große-Hovest L, Oberoi P, Bader P, Wels WS. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer 2019; 145:1935-1945. [PMID: 30860598 DOI: 10.1002/ijc.32269] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells represent a promising effector cell type for adoptive cancer immunotherapy. Both, genetically modified donor-derived NK cells as well as continuously expanding NK-92 cells are currently under clinical development. To enhance their therapeutic utility for the treatment of pre-B-cell acute lymphoblastic leukemia (B-ALL), we engineered NK-92 cells by lentiviral gene transfer to express a FMS-like tyrosine kinase 3 (FLT3)-specific CAR that contains a composite CD28-CD3ζ signaling domain. FLT3 has primarily been described as a therapeutic target for acute myeloid leukemia, but overexpression of FLT3 has also been reported in B-ALL. Exposure of FLT3-positive targets to CAR NK-92 cells resulted in conjugate formation between NK and leukemia cells, NK-cell degranulation and selective cytotoxicity toward established B-ALL cell lines and primary blasts that were resistant to parental NK-92. In a SEM B-ALL xenograft model in NOD-SCID IL2R γnull mice, treatment with CAR NK-92 but not parental NK-92 cells markedly inhibited disease progression, demonstrating high antileukemic activity in vivo. As FLT3 is known to be also expressed on precursor cells, we assessed the feasibility of incorporating an inducible caspase-9 (iCasp9) suicide switch to enhance safety of our approach. Upon addition of the chemical dimerizer AP20187 to NK-92 cells coexpressing the FLT3-specific CAR and iCasp9, rapid iCasp9 activation was observed, precluding further CAR-mediated cytotoxicity. Our data demonstrate that B-ALL can be effectively targeted by FLT3-specific CAR NK cells which may complement CD19-directed immunotherapies, particularly in cases of inherent or acquired resistance to the latter.
Collapse
Affiliation(s)
- Sarah Oelsner
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Anja Waldmann
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Arne Billmeier
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Jasmin Röder
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Aline Lindner
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt, Germany
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - Gundram Jung
- Department of Immunology, Eberhard Karls University, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pranav Oberoi
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| |
Collapse
|
15
|
Shobaki N, Sato Y, Harashima H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int J Nanomedicine 2018; 13:8395-8410. [PMID: 30587967 PMCID: PMC6294068 DOI: 10.2147/ijn.s188016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction The development of targeted drug delivery systems is a rapidly growing area in the field of nanomedicine. Methods We report herein on optimizing the targeting efficiency of a lipid nanoparticle (LNP) by manipulating the acid dissociation constant (pKa) value of its membrane, which reflects its ionization status. Instead of changing the chemical structure of the lipids to achieve this, we used a mixture of two types of pH-sensitive cationic lipids that show different pKa values in a single LNP. We mixed various ratios of YSK05 and YSK12-C4 lipids, which have pKa values of 6.50 and 8.00, respectively, in one formulation (referred to as YSK05/12-LNP). Results The pKa of the YSK05/12-LNP was dependent not only on the molar ratio of each lipid but also on the individual contribution of each lipid to the final pKa (the YSK12-C4 lipid showed a higher contribution). Furthermore, we succeeded in targeting and delivering short interfering RNA to liver sinusoidal endothelial cells using one of the YSK05/12-LNPs which showed an optimum pKa value of 7.15 and an appropriate ionization status (~36% cationic charge) to permit the particles to be taken up by liver sinusoidal endothelial cells. Conclusion This strategy has the potential for preparing custom LNPs with endless varieties of structures and final pKa values, and would have poten tial applications in drug delivery and ionic-based tissue targeting.
Collapse
Affiliation(s)
- Nour Shobaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| |
Collapse
|
16
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|
17
|
Pfeiffer A, Thalheimer FB, Hartmann S, Frank AM, Bender RR, Danisch S, Costa C, Wels WS, Modlich U, Stripecke R, Verhoeyen E, Buchholz CJ. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med 2018; 10:e9158. [PMID: 30224381 PMCID: PMC6220327 DOI: 10.15252/emmm.201809158] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells brought substantial benefit to patients with B-cell malignancies. Notwithstanding, CAR T-cell manufacturing requires complex procedures impeding the broad supply chain. Here, we provide evidence that human CD19-CAR T cells can be generated directly in vivo using the lentiviral vector CD8-LV specifically targeting human CD8+ cells. Administration into mice xenografted with Raji lymphoma cells and human peripheral blood mononuclear cells led to CAR expression solely in CD8+ T cells and efficacious elimination of CD19+ B cells. Further, upon injection of CD8-LV into mice transplanted with human CD34+ cells, induction of CAR T cells and CD19+ B-cell depletion was observed in 7 out of 10 treated animals. Notably, three mice showed elevated levels of human cytokines in plasma. Tissue-invading CAR T cells and complete elimination of the B-lymphocyte-rich zones in spleen were indicative of a cytokine release syndrome. Our data demonstrate the feasibility of in vivo reprogramming of human CD8+ CAR T cells active against CD19+ cells, yet with similar adverse effects currently notorious in the clinical practice.
Collapse
Affiliation(s)
- Anett Pfeiffer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Annika M Frank
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Ruben R Bender
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Simon Danisch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH and German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Caroline Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Modlich
- Division of Veterinary Medicine, Research Group for Gene Modification in Stem Cells, Paul-Ehrlich-Institut, Langen, Germany
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH and German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Els Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- INSERM, C3M, Université Côte d'Azur, Nice, France
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Hartmann J, Münch RC, Freiling RT, Schneider IC, Dreier B, Samukange W, Koch J, Seeger MA, Plückthun A, Buchholz CJ. A Library-Based Screening Strategy for the Identification of DARPins as Ligands for Receptor-Targeted AAV and Lentiviral Vectors. Mol Ther Methods Clin Dev 2018; 10:128-143. [PMID: 30101151 PMCID: PMC6077149 DOI: 10.1016/j.omtm.2018.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
Delivering genes selectively to the therapeutically relevant cell type is among the prime goals of vector development. Here, we present a high-throughput selection and screening process that identifies designed ankyrin repeat proteins (DARPins) optimally suited for receptor-targeted gene delivery using adeno-associated viral (AAV) and lentiviral (LV) vectors. In particular, the process includes expression, purification, and in situ biotinylation of the extracellular domains of target receptors as Fc fusion proteins in mammalian cells and the selection of high-affinity binders by ribosome display from DARPin libraries each covering more than 1012 variants. This way, DARPins specific for the glutamate receptor subunit GluA4, the endothelial surface marker CD105, and the natural killer cell marker NKp46 were generated. The identification of DARPins best suited for gene delivery was achieved by screening small-scale vector productions. Both LV and AAV particles displaying the selected DARPins transduced only cells expressing the corresponding target receptor. The data confirm that a straightforward process for the generation of receptor-targeted viral vectors has been established. Moreover, biochemical analysis of a panel of DARPins revealed that their functional cell-surface expression as fusion proteins is more relevant for efficient gene delivery by LV particles than functional binding affinity.
Collapse
Affiliation(s)
- Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Robert C. Münch
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ruth-Therese Freiling
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Irene C. Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Washington Samukange
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Christian J. Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
19
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
20
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
21
|
Wagner J, Pfannenstiel V, Waldmann A, Bergs JWJ, Brill B, Huenecke S, Klingebiel T, Rödel F, Buchholz CJ, Wels WS, Bader P, Ullrich E. A Two-Phase Expansion Protocol Combining Interleukin (IL)-15 and IL-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Front Immunol 2017; 8:676. [PMID: 28659917 PMCID: PMC5466991 DOI: 10.3389/fimmu.2017.00676] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 01/10/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children. Despite intensive research in recent decades the prognosis for patients with metastatic or relapsed diseases has hardly improved. New therapeutic concepts in anti-tumor therapy aim to modulate the patient’s immune system to increase its aggressiveness or targeted effects toward tumor cells. Besides surgery, radiotherapy and chemotherapy, immune activation by direct application of cytokines, antibodies or adoptive cell therapy are promising approaches. In the last years, adoptive transfer of natural killer (NK) cells came into the focus of translational medicine, because of their high cytotoxic potential against transformed malignant cells. A main challenge of NK cell therapy is that it requires a high amount of functional NK cells. Therefore, ex vivo NK cell expansion protocols are currently being developed. Many culturing strategies are based on the addition of feeder or accessory cells, which need to be removed prior to the clinical application of the final NK cell product. In this study, we addressed feeder cell-free expansion methods using common γ-chain cytokines, especially IL-15 and IL-21. Our results demonstrated high potential of IL-15 for NK cell expansion, while IL-21 triggered NK cell maturation and functionality. Hence, we established a two-phase expansion protocol with IL-15 to induce an early NK cell expansion, followed by short exposure to IL-21 that boosted the cytotoxic activity of NK cells against RMS cells. Further functional analyses revealed enhanced degranulation and secretion of pro-inflammatory cytokines such as interferon-γ and tumor necrosis factor-α. In a proof of concept in vivo study, we also observed a therapeutic effect of adoptively transferred IL-15 expanded and IL-21 boosted NK cells in combination with image guided high precision radiation therapy using a luciferase-transduced RMS xenograft model. In summary, this two-phased feeder cell-free ex vivo culturing protocol combined efficient expansion and high cytolytic functionality of NK cells for treatment of radiation-resistant RMS.
Collapse
Affiliation(s)
- Juliane Wagner
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| | - Viktoria Pfannenstiel
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Judith W J Bergs
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bader
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Zhang Y, Liu NM, Wang Y, Youn JY, Cai H. Endothelial cell calpain as a critical modulator of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1326-1335. [PMID: 28366876 DOI: 10.1016/j.bbadis.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown that calpain activity can be increased in endothelial cells by growth factors, primarily vascular endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain activation, and the newly identified mechanistic roles and downstream signaling events of calpains in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an increase in calpain activity. Further discussed include the differential strategies of modulating angiogenesis through manipulating calpain expression/activity in different pathological settings. Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of significant translational potential. Emerging strategies of tissue-specific targeting, environment-dependent targeting, and genome-targeted editing may turn out to be effective regimens for targeted manipulation of angiogenesis through calpain pathways, for differential treatments including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Yongchen Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA.
| |
Collapse
|
23
|
Clinical Advancements in the Targeted Therapies against Liver Fibrosis. Mediators Inflamm 2016; 2016:7629724. [PMID: 27999454 PMCID: PMC5143744 DOI: 10.1155/2016/7629724] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis.
Collapse
|
24
|
Badieyan ZS, Pasewald T, Mykhaylyk O, Rudolph C, Plank C. Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection. Biochem Biophys Res Commun 2016; 482:796-801. [PMID: 27888105 DOI: 10.1016/j.bbrc.2016.11.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery.
Collapse
Affiliation(s)
- Zohreh Sadat Badieyan
- Institute of Molecular Immunology-Experimental Oncology, Technische Universität München, Munich, Germany.
| | | | | | | | - Christian Plank
- Institute of Molecular Immunology-Experimental Oncology, Technische Universität München, Munich, Germany; Ethris GmbH, Planegg, Germany
| |
Collapse
|
25
|
Oelsner S, Friede ME, Zhang C, Wagner J, Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T, Wels WS. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy 2016; 19:235-249. [PMID: 27887866 DOI: 10.1016/j.jcyt.2016.10.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. METHODS To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). RESULTS Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. CONCLUSIONS Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent.
Collapse
Affiliation(s)
- Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Miriam E Friede
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Badura
- Department of Medicine, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver G Ottmann
- Department of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden and Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany.
| |
Collapse
|
26
|
Dronadula N, Wacker BK, Van Der Kwast R, Zhang J, Dichek DA. Stable In Vivo Transgene Expression in Endothelial Cells with Helper-Dependent Adenovirus: Roles of Promoter and Interleukin-10. Hum Gene Ther 2016; 28:255-270. [PMID: 27842439 DOI: 10.1089/hum.2016.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our long-term goal is to prevent or reverse atherosclerosis by delivering gene therapy from stably transduced endothelial cells (EC). We previously reported that EC-directed gene therapy with a helper-dependent adenovirus (HDAd) expressing apolipoprotein A-I (apo A-I) retarded development of atherosclerosis in rabbit carotid arteries over a 1-month interval. However, a 70% decline in apo A-I expression during this time raised concerns about long-term efficacy of this approach. Here we report use of several approaches aimed either at preventing this decline or at increasing apo A-I expression from HDAd at all time points: codon optimization, deletion of 3' untranslated sequences, substitution of a synthetic mammalian-based promoter (4XETE) for the cytomegalovirus (CMV) promoter, and co-transduction with an HDAd expressing interleukin-10. We tested these approaches using plasmid transfection of cultured EC and in vivo transduction of rabbit carotid artery EC. Codon optimization did not increase apo A-I expression. Deletion of 3' untranslated sequences extinguished apo A-I expression. Both substitution of 4XETE for the CMV promoter and expression of interleukin-10 stabilized apo A-I expression in vivo, although at the cost of lower early (3-day) expression levels. Surprisingly, both interventions stabilized apo A-I expression without altering the rate at which HDAd genomes were lost. These data establish that transgene expression from HDAd in EC is inherently stable in vivo and suggest that the early decline of CMV promoter-driven expression from HDAd-transduced EC is due neither to active downregulation of transcription nor to loss of HDAd genomes. Instead, apparent loss of expression from the CMV promoter appears to be a consequence of early (3-day) upregulation of CMV promoter activity via inflammatory pathways. Our results yield new paradigms to explain the early loss of genomes and transgene expression after in vivo gene transfer. These new paradigms will redirect strategies for achieving high-level, stable expression of transgenes in EC.
Collapse
Affiliation(s)
- Nagadhara Dronadula
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Bradley K Wacker
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Reginald Van Der Kwast
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Jingwan Zhang
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
27
|
Alidori S, Bowman RL, Yarilin D, Romin Y, Barlas A, Mulvey JJ, Fujisawa S, Xu K, Ruggiero A, Riabov V, Thorek DLJ, Ulmert HDS, Brea EJ, Behling K, Kzhyshkowska J, Manova-Todorova K, Scheinberg DA, McDevitt MR. Deconvoluting hepatic processing of carbon nanotubes. Nat Commun 2016; 7:12343. [PMID: 27468684 PMCID: PMC4974572 DOI: 10.1038/ncomms12343] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. Application of carbon nanotubes as drug delivery carriers is stalled by uncertainties over their distribution and toxicity in vivo. Here, the authors use animal models to show that, while the bulk of nanotubes is renally cleared, a fraction can be eliminated through an alternative hepatobiliary pathway.
Collapse
Affiliation(s)
- Simone Alidori
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Robert L Bowman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Dmitry Yarilin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - J Justin Mulvey
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Sho Fujisawa
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Ke Xu
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Alessandro Ruggiero
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Cambridge University Health Partners, Cambridge CB23 3RE, UK
| | - Vladimir Riabov
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hans David S Ulmert
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Elliott J Brea
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Katja Behling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.,Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim 68167, Germany
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - David A Scheinberg
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, New York 10065, USA
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York 10065, USA
| |
Collapse
|
28
|
Oelsner S, Wagner J, Friede ME, Pfirrmann V, Genßler S, Rettinger E, Buchholz CJ, Pfeifer H, Schubert R, Ottmann OG, Ullrich E, Bader P, Wels WS. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival. Int J Cancer 2016; 139:1799-809. [DOI: 10.1002/ijc.30217] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Oelsner
- Georg-Speyer-Haus; Institute for Tumor Biology and Experimental Therapy; Frankfurt Germany
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
- LOEWE Center for Cell and Gene Therapy; Goethe University; Frankfurt Germany
| | - Miriam E. Friede
- Georg-Speyer-Haus; Institute for Tumor Biology and Experimental Therapy; Frankfurt Germany
| | - Verena Pfirrmann
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
| | - Sabrina Genßler
- Georg-Speyer-Haus; Institute for Tumor Biology and Experimental Therapy; Frankfurt Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
| | - Christian J. Buchholz
- Molecular Biotechnology and Gene Therapy; Paul-Ehrlich-Institut; Langen Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
| | - Heike Pfeifer
- Department of Medicine, Hematology and Oncology; Goethe University; Frankfurt Germany
| | - Ralf Schubert
- Division for Allergology, Pneumology and Cystic Fibrosis; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
| | - Oliver G. Ottmann
- Department of Haematology, Division of Cancer and Genetics; Cardiff University School of Medicine; Cardiff United Kingdom
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
- LOEWE Center for Cell and Gene Therapy; Goethe University; Frankfurt Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology; Hospital for Children and Adolescents, Goethe University; Frankfurt Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus; Institute for Tumor Biology and Experimental Therapy; Frankfurt Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz; Germany
| |
Collapse
|
29
|
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. J Mater Chem B 2016; 4:3365-3376. [DOI: 10.1039/c6tb00686h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy provides a new strategy for promoting endothelialization, and rapid endothelialization has attracted increasing attention for inhibiting thrombosis and restenosis in artificial vascular implants.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Wen Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
30
|
Marcelo KL, Lin F, Rajapakshe K, Dean A, Gonzales N, Coarfa C, Means AR, Goldie LC, York B. Deciphering hepatocellular responses to metabolic and oncogenic stress. J Biol Methods 2015; 2. [PMID: 26504887 DOI: 10.14440/jbm.2015.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ), and sinusoidal endothelial cells (SEC) play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD) or diethylnitrosamine (DEN), a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular "fingerprints" for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fumin Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Adam Dean
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Naomi Gonzales
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony R Means
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lauren C Goldie
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA ; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA ; USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine, Houston, TX, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Buchholz CJ, Friedel T, Büning H. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends Biotechnol 2015; 33:777-790. [PMID: 26497425 DOI: 10.1016/j.tibtech.2015.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Recent progress in gene transfer technology enables the delivery of genes precisely to the application-relevant cell type ex vivo on cultivated primary cells or in vivo on local or systemic administration. Gene vectors based on lentiviruses or adeno-associated viruses can be engineered such that they use a cell surface marker of choice for cell entry instead of their natural receptors. Binding to the surface marker is mediated by a targeting ligand displayed on the vector particle surface, which can be a peptide, single-chain antibody, or designed ankyrin repeat protein. Examples include vectors that deliver genes to specialized endothelial cells or lymphocytes, tumor cells, or particular cells of the nervous system with potential applications in gene function studies and molecular medicine.
Collapse
Affiliation(s)
- Christian J Buchholz
- Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | | | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner sites Bonn-Cologne and Hannover-Braunschweig, Germany
| |
Collapse
|
32
|
Assmann JC, Körbelin J, Schwaninger M. Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta Mol Basis Dis 2015; 1862:381-94. [PMID: 26454206 DOI: 10.1016/j.bbadis.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
33
|
Lévy C, Verhoeyen E, Cosset FL. Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 2015; 24:79-85. [DOI: 10.1016/j.coph.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
34
|
Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 2015; 108:4-20. [PMID: 26239654 PMCID: PMC4571836 DOI: 10.1093/cvr/cvv205] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/22/2015] [Indexed: 01/06/2023] Open
Abstract
Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca2+-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality.
Collapse
Affiliation(s)
- Melvin Y Rincon
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Building D, room D306, Laarbeeklaan 103, Brussels, Belgium Centro de Investigaciones, Fundacion Cardiovascular de Colombia, Floridablanca, Colombia
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Building D, room D306, Laarbeeklaan 103, Brussels, Belgium Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Building D, room D306, Laarbeeklaan 103, Brussels, Belgium Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhou Q, Uhlig KM, Muth A, Kimpel J, Lévy C, Münch RC, Seifried J, Pfeiffer A, Trkola A, Coulibaly C, von Laer D, Wels WS, Hartwig UF, Verhoeyen E, Buchholz CJ. Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors. THE JOURNAL OF IMMUNOLOGY 2015; 195:2493-501. [PMID: 26232436 DOI: 10.4049/jimmunol.1500956] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.
Collapse
Affiliation(s)
- Qi Zhou
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Katharina M Uhlig
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Anke Muth
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Camille Lévy
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Robert C Münch
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Janna Seifried
- Host Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Anett Pfeiffer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Cheick Coulibaly
- Central Animal Unit, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60596 Frankfurt, Germany
| | - Udo F Hartwig
- 3rd Department of Medicine-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Équipe 3, 06204 Nice, France; and
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Friedel T, Hanisch LJ, Muth A, Honegger A, Abken H, Plückthun A, Buchholz CJ, Schneider IC. Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Eng Des Sel 2015; 28:93-106. [PMID: 25715658 DOI: 10.1093/protein/gzv005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An increasing number of applications require the expression of single-chain variable fragments (scFv) fusion proteins in mammalian cells at the cell surface membrane. Here we assessed the CD30-specific scFv HRS3, which is used in immunotherapy, for its ability to retarget lentiviral vectors (LVs) to CD30 and to mediate selective gene transfer into CD30-positive cells. Fused to the C-terminus of the type-II transmembrane protein hemagglutinin (H) of measles virus and expressed in LV packaging cells, gene transfer mediated by the released LV particles was inefficient. A series of point mutations in the scFv framework regions addressing its biophysical properties, which substantially improved production and increased the melting temperature without impairing its kinetic binding behavior to CD30, also improved the performance of LV particles. Gene transfer into CD30-positive cells increased ∼100-fold due to improved transport of the H-scFv protein to the plasma membrane. Concomitantly, LV particle aggregation and syncytia formation in packaging cells were substantially reduced. The data suggest that syncytia formation can be triggered by trans-cellular dimerization of H-scFv proteins displayed on adjacent cells. Taken together, we show that the biophysical properties of the targeting ligand have a decisive role for the gene transfer efficiency of receptor-targeted LVs.
Collapse
Affiliation(s)
- Thorsten Friedel
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Lydia J Hanisch
- Roche Pharmaceutical Research and Early Development, Protein Engineering Group, Roche Innovation Center Zürich, Schlieren 8952, Switzerland
| | - Anke Muth
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Christian J Buchholz
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Irene C Schneider
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| |
Collapse
|
37
|
Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 2015; 6:6246. [PMID: 25665714 DOI: 10.1038/ncomms7246] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/08/2015] [Indexed: 11/09/2022] Open
Abstract
We describe receptor-targeted adeno-associated viral (AAV) vectors that allow genetic modification of rare cell types ex vivo and in vivo while showing no detectable off-targeting. Displaying designed ankyrin repeat proteins (DARPins) on the viral capsid and carefully depleting DARPin-deficient particles, AAV vectors were made specific for Her2/neu, EpCAM or CD4. A single intravenous administration of vector targeted to the tumour antigen Her2/neu was sufficient to track 75% of all tumour sites and to extend survival longer than the cytostatic antibody Herceptin. CD4-targeted AAVs hit human CD4-positive cells present in spleen of a humanized mouse model, while CD8-positive cells as well as liver or other off-target organs remained unmodified. Mimicking conditions of circulating tumour cells, EpCAM-AAV detected single tumour cells in human blood opening the avenue for tumour stem cell tracking. Thus, the approach developed here delivers genes to target cell types of choice with antibody-like specificity.
Collapse
|
38
|
Marino MP, Panigaj M, Ou W, Manirarora J, Wei CH, Reiser J. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins. Gene Ther 2015; 22:280-5. [DOI: 10.1038/gt.2014.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023]
|
39
|
Kays SK, Kaufmann KB, Abel T, Brendel C, Bonig H, Grez M, Buchholz CJ, Kneissl S. CD105 is a surface marker for receptor-targeted gene transfer into human long-term repopulating hematopoietic stem cells. Stem Cells Dev 2015; 24:714-23. [PMID: 25517513 DOI: 10.1089/scd.2014.0455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are an important target cell population for gene therapy since they can reconstitute the entire hematopoietic system. HSC-enriched cell populations can be recognized based on cell surface marker expression, such as CD34, which is broadly expressed on immature and partially differentiated cells. In mice, co-expression of CD34 and CD105 was previously shown to be relatively more specific for the most immature, long-term repopulating HSCs. Here, we evaluated whether CD105, which is expressed on 30%-80% of CD34(+) cells, is a marker also for human long-term repopulating HSCs. Therefore, we tracked the mature progeny of CD34(+) cells transduced with the CD105-targeted lentiviral vector CD105-LV in xenotolerant mice. Transduction was blocked with soluble CD105 protein confirming specificity. Importantly, CD105-LV transduced human CD34(+) cells engrafted in NOD-scid IL2Rγ(-/-) mice with up to 20% reporter gene-positive cells detected long term in all human hematopoietic lineages in bone marrow (BM), spleen, and blood. In addition, competitive repopulation experiments in mice showed a superior engraftment of CD105-LV transduced CD34(+) cells in BM and spleen compared with cells transduced with a conventional nontargeted lentiviral vector. Thus, human CD34(+)/CD105(+) cells are enriched for early HSCs with high repopulating capacity. Targeting this cell population with CD105-LV offers a novel gene transfer strategy to reach high engraftment rates of transduced cells and highlights the applicability of receptor-targeted vectors to trace cell subsets offering an alternative to prospective isolation by surface markers.
Collapse
Affiliation(s)
- Sarah-Katharina Kays
- 1 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Interpreting outcome data in hematopoietic cell transplantation for leukemia: tackling common biases. Bone Marrow Transplant 2015; 50:324-33. [DOI: 10.1038/bmt.2014.270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/15/2014] [Accepted: 07/03/2014] [Indexed: 11/08/2022]
|
41
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
42
|
Ciré S, Da Rocha S, Yao R, Fisson S, Buchholz CJ, Collins MK, Galy A. Immunization of mice with lentiviral vectors targeted to MHC class II+ cells is due to preferential transduction of dendritic cells in vivo. PLoS One 2014; 9:e101644. [PMID: 25058148 PMCID: PMC4109917 DOI: 10.1371/journal.pone.0101644] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022] Open
Abstract
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.
Collapse
Affiliation(s)
- Séverine Ciré
- Inserm, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Evry, France
- UMR_S951, University of Evry, Genethon, Evry, France
- Genethon, Evry, France
| | - Sylvie Da Rocha
- Inserm, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Evry, France
- UMR_S951, University of Evry, Genethon, Evry, France
- Genethon, Evry, France
| | - Roseline Yao
- Inserm, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Evry, France
- UMR_S951, University of Evry, Genethon, Evry, France
- Genethon, Evry, France
| | - Sylvain Fisson
- Inserm, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Evry, France
- UMR_S951, University of Evry, Genethon, Evry, France
- Genethon, Evry, France
| | | | - Mary K. Collins
- Infection and Immunity, University College London, London, United Kingdom
| | - Anne Galy
- Inserm, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Evry, France
- UMR_S951, University of Evry, Genethon, Evry, France
- Genethon, Evry, France
| |
Collapse
|
43
|
Abstract
In this issue of Blood, Abel et al designed lentiviral vectors (LVs) enabling specific gene delivery into endothelial cells in vivo. This opens new perspectives for gene therapy of hereditary disorders, cardiovascular diseases, and cancer.
Collapse
|